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Summary

This manuscript considers regression models for generalized, multilevel functional responses: 

functions are generalized in that they follow an exponential family distribution and multilevel in 

that they are clustered within groups or subjects. This data structure is increasingly common 

across scientific domains and is exemplified by our motivating example, in which binary curves 

indicating physical activity or inactivity are observed for nearly six hundred subjects over five 

days. We use a generalized linear model to incorporate scalar covariates into the mean structure, 

and decompose subject-specific and subject-day-specific deviations using multilevel functional 

principal components analysis. Thus, functional fixed effects are estimated while accounting for 

within-function and within-subject correlations, and major directions of variability within and 

between subjects are identified. Fixed effect coefficient functions and principal component basis 

functions are estimated using penalized splines; model parameters are estimated in a Bayesian 

framework using Stan, a programming language that implements a Hamiltonian Monte Carlo 

sampler. Simulations designed to mimic the application have good estimation and inferential 

properties with reasonable computation times for moderate datasets, in both cross-sectional and 

multilevel scenarios; code is publicly available. In the application we identify effects of age and 

BMI on the time-specific change in probability of being active over a twenty-four hour period; in 

addition, the principal components analysis identifies the patterns of activity that distinguish 

subjects and days within subjects.
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1. Introduction

1.1 Motivating data

Continuous monitoring of activity using accelerometers and other wearable devices 

promises to revolutionize the measurement of physical activity by providing objective, 

unbiased observation in unprecedented minute-by-minute detail over several days or weeks. 

Accelerometers generally measure activity through electrical signals that are a proxy 

measure for acceleration (Spierer et al., 2011). “Activity counts” are devised by 

summarizing the voltage signals across a monitoring period known as an epoch (a one-

minute epoch is common), and can be dichotomized into “active” and “inactive” epochs to 

study sedentary behavior. Thus, these devices give rise to generalized multilevel functional 

observations: generalized because both activity counts and the derived binary “active” 

versus “inactive” outcomes do not follow a Gaussian distribution; multilevel because each 

subject has several days of data; and functional in that continuous 24-hour trajectories are 

considered the basic unit of observation.

Accelerometers have already been deployed to explore many pressing public health 

contexts. Unfortunately, the analysis of accelerometer data typically reduces thousands of 

data points to a single summary, such as the total activity count over a 24-hour period, and 

few current methods utilize the richness of densely observed activity data. This immense 

data reduction leaves important scientific questions unaddressed. How are daily physical 

activity trajectories related to subject covariates, like age, gender, BMI, or socio-

demographic status? To what degree do subjects differ from each other in their patterns of 

activity and inactivity, and to what degree do multiple days differ within one subject?

The motivation for this manuscript is to identify covariate effects and characterize residual 

patterns of activity in accelerometer data collected from elderly subjects enrolled in the 

Baltimore Longitudinal Study on Aging (Schrack et al., 2014). BLSA is a study of 

normative human aging with healthy, functionally-independent participants. Once enrolled, 

participants are followed for life and undergo extensive testing every 1-4 years depending on 

age. The sub-sample we consider in this paper consists of 583 men and women who wore 

the Actiheart, a combined heart rate and physical activity monitor adhesively placed on the 

chest (Brage et al., 2006). Subjects were asked to wear the device at all times other than 

bathing or swimming. Physical activity was measured in activity counts per minute, a 

cumulative summary of acceleration detected by the device within one-minute monitoring 

epochs (see Bai et al., 2014, for further discussion of activity counts). Throughout, we will 

use the term “activity” to refer to physical activity that results in measurable acceleration.

Our primary analysis focuses on binary “activity” and “inactivity” daily trajectories (see 

Figure 5 for example data from two subjects); analyses of the activity count trajectories 

appear in Appendix A.4. The goals of this work are to describe and quantify the effects of 

age and BMI on the time-varying probability of being active over the course of a day, and to 

characterize the patterns of activity that differentiate subjects from each other and days 

within subjects. In addition to this motivating dataset, the proposed methods will be directly 

relevant to existing and future accelerometer studies including the National Health and 

Nutrition Examination Survey (Troiano et al., 2008), the Women's Health Study (Shiroma et 
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al., 2013), the Health ABC Study (Atkinson et al., 2007), and the Columbia Center for 

Children's Environmental Health birth cohort study.

1.2 Statistical framework

We observe data [Yij(t), xij] for subjects 1 ≤ i ≤ I, visits 1 ≤ j ≤ Ji and times t ∈ [0, T], where 

Yij(t) is a generalized response curve and xij is a length p vector of scalar covariates. For 

each time t, Yij(t) is a realization of a random variable with an exponential family 

distribution. We introduce the generalized multilevel function-on-scalar regression model

(1)

in which g(·) is a known link function, the βk(t) are fixed effect coefficient functions 

corresponding to the scalar covariates xij, bi(t) is a subject-specific random deviation from 

the fixed effect mean structure, and υij(t) is a subject- and visit-specific random deviation 

from the subject-specific mean. The inclusion of covariate-specific random effects is a direct 

extension of model (1); as in traditional mixed models such “random slope functions” would 

allow subject-specific impacts of changing covariate levels and should be considered in 

future applications. As is detailed in later sections, we estimate fixed effect coefficients 

using a penalized spline expansion. The subject-level and subject-visit-level effects (bi(t) 

and υij(t), respectively) are assumed to be independent and will be decomposed using a 

multilevel functional principal components analysis that separates within- and between-

subject directions of variability (Di et al., 2009). Principal component basis functions will be 

estimated using penalized splines. All model parameters – including fixed effect spline 

coefficients, principal component spline coefficients, and principal components scores – are 

jointly estimated in a Bayesian analysis.

The use of smooth functions to model activity is in accordance with the goals of our 

analysis. We are concerned with modeling large-scale daily activity profiles and their 

change as a function of age and BMI, as well as decomposing profiles into dominant 

patterns that distinguish subjects from each other and distinguish days within subjects. This 

is important for characterizing activity in an aging population, with BMI being a potential 

target for public health intervention. An alternative approach is to model active and inactive 

bouts, their duration, frequency and switches between them. All of these may be important 

contributors to a subject's overall health, but address questions distinct from those of interest 

here.

Elements of our analysis have antecedents in the statistical literature. Functional principal 

components analysis for cross-sectional continuous-valued curves has a long history in 

functional data analysis as a tool for dimension reduction and for identifying the major 

patterns that contribute to variation across curves; Ramsay and Silverman (2005, §8.2) has 

an overview, and Yao et al. (2005) describe a broadly used framework for FPCA. Goldsmith 

et al. (2013) noted that this standard FPCA method implicitly conditions on the estimated 

covariance and thus fails to account for uncertainty in estimated basis functions, meaning 
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inference for individual curves can be poor. For multilevel functional data, Di et al. (2009) 

estimates both within- and between-subject covariances, and subsequently decomposes these 

into subject-level and visit-level principal component basis functions, with scores again 

estimated in a mixed model framework. van der Linde (2008) develops a Bayesian approach 

to FPCA using low-dimensional spline expansions for basis functions and estimating 

parameters through a variational approximation to the full posterior; this work is based on 

the probabilistic and Bayesian (non-functional) PCA methods popularized in Tipping and 

Bishop (1999) and Bishop (1999). Probabilistic PCA poses a factor analysis model with the 

additional assumption that errors follow a Gaussian distribution. It is then possible to derive 

maximum likelihood estimates for PCs that are equivalent to standard PCA estimates up to 

an arbitrary orthogonal rotation. Using probabilistic and Bayesian PCA, it is possible to 

rotate estimated components into principal components that span the same principal space, 

and thereby recover the appealing interpretation of traditional PCA.

There is an extensive literature on function-on-scalar regression with real-valued response 

curves. Brumback and Rice (1998) and Guo (2002) use penalized splines to model both 

population-level effects and curve-level deviations – the former relied on the use of fixed 

effects for computational convenience and the latter utilized random effect models. Several 

approaches have been developed that focus on population fixed effects only, treating 

individual curves as errors around the covariate-dependent mean; (Ramsay and Silverman, 

2005, §13.4) provides an introduction. Developments in Reiss et al. (2010) and Scheipl et al. 

(2013) use penalized splines to model fixed effects in cross sectional and multilevel models, 

respectively, using cross validation or restricted maximum likelihood to select tuning 

parameters. A criticism of these approaches is that they make the assumption that functional 

errors are uncorrelated over the domain, which typically does not hold for functional data 

and can lead to poor inference for fixed effects. To resolve this, Reiss et al. (2010) also 

propose an iterative procedure, in which the fixed effects are estimated under assumed 

independence and then used to estimate the residual covariance. The fixed effects are then 

re-estimated using generalized least squares. Wavelet-based Bayesian functional mixed 

models are presented in Morris and Carroll (2006) with errors in the wavelet space assumed 

to be independent, an assumption justified by the “whitening” property of wavelet 

transformations. Goldsmith and Kitago (2013) developed a Bayesian penalized spline 

approach for multilevel function-on-scalar regression that models potential residual 

correlations explicitly, and showed that posterior credible intervals for fixed effects achieve 

nominal coverage.

In contrast to the rich literature for real-valued functional data, relatively little work exists 

for generalized functional responses. Hall et al. (2008) directly extend the real-valued FPCA 

method of Yao et al. (2005) to generalized data by positing a latent continuous process that, 

through a known link function, gives rise to the observed generalized outcome. The mean 

and covariance are estimated using observed data, and the latent mean and basis functions 

are obtained by inverting a linear approximation to the known link function. For binary data, 

Serban et al. (2013) extend this framework to allow multilevel curves with spatial 

correlation structures, and propose non-linear approximations to the logit link function for 

rare-event data. Because this approach is based on a covariance decomposition, the number 

of basis functions can be chosen to satisfy a percent variance explained criterion. However, 
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methods for curve-level estimation and inference are not presented, and incorporating 

covariate effects in the mean is not considered. van der Linde (2009) develops a variational 

Bayesian algorithm for generalized FPCA that uses low-dimensional spline representations 

for the mean and basis functions.

With respect to the preceding literature, our methods are statistically novel in several 

important ways. We provide a framework for both generalized function-on-scalar regression 

and functional principal components analysis. From a regression standpoint, we explicitly 

model residual correlation to improve inference for population-level effects; at the same 

time, the FPCA framework describes major directions of variability. The use of fully 

Bayesian estimation and inference, rather than variational Bayes approximations, avoids 

unreasonable assumptions of posterior independence and provides joint inference that has 

been shown to have good numerical properties in simulations that mimic our motivating 

data. We consider generalized multilevel functional data, including both binary and count 

response curves, and develop accompanying methods; all methods can be simplified 

appropriately for cross-sectional data.

The remainder of the paper is organized as follows. Section 2 presents the novel 

methodological contributions of the manuscript, and includes subsections on the model 

specification, computation, and rotating estimated components to induce orthonormality. 

Section 3 presents simulation studies designed to mimic the motivating data and explore the 

estimation accuracy and inferential properties of the proposed methods. Section 4 presents 

the real data analysis for binary response curves. We close with a discussion in Section 5. 

An online appendix contains a graphical depiction of our model, additional simulations for 

cross-sectional data and comparing our methodology with that of Serban et al. (2013), 

analyses for activity counts under a Poisson distribution and log link, and details of the 

software implementation. All simulation code is publicly available.

2. Methods

2.1 Model

For subjects 1 ≤ i ≤ I and visits 1 ≤ j ≤ Ji, let xij be a length-p vector of scalar covariates and 

Yij(t) be a generalized response curve: for each t ∈ [0, 1], Yij(t) follows an exponential 

family distribution with density

where E[Yij(t)|αij(t)] = μij(t) = b′[αij(t)] and Var[Yij(t)|αij(t)] = b″[αij(t)]ϕ. The mean is 

related to a linear predictor by a known link function g[μij(t)] as described in model (1). In 

simulations and applications we use the canonical link αij(t) = g[μij(t)], although this is not 

necessary for our methodology. For the binary and count response curves that are primarily 

discussed in the paper, the dispersion parameter ϕ is known; for other distributions (or to 

allow overdispersion) it may be necessary to model this parameter. The subject/visit-specific 

curves αij(t) and μij(t) implicitly depend on the covariates xij and the random effects bi(t) and 

υij(t). We assume that observations on different subjects are independent; that observations 
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on different days within a subject are conditionally independent given fixed and subject-

specific parameters; and that observations at different times of the same day for the same 

subject are conditionally independent given fixed, subject-, and subject/day-specific 

parameters.

In model (1), our interest is estimating population-level fixed effects βk(t), subject-level 

deviations bi(t) from the covariate-dependent mean, and subject-visit specific deviations 

υij(t) from the subject-specific mean. Generalizing the multilevel FPCA approach (Di et al., 

2009), we expand subject-specific (level 1) and subject/day-specific (level 2) effects in 

terms of population basis functions and unique scores:

(2)

The approximation in the third line stems from the use of truncated functional principal 

components expansions for subject-specific effects bi(t) and subject-visit-specific effects 

υij(t), and is implicit in all FPCA methods. Level 1 and level 2 basis functions (  and 

, respectively) describe the major patterns that generate variation across subjects and 

across visits within subjects, and associated scores (  and , respectively) indicate the 

subject-and subject/day-specific contribution of each basis function.

In practice curves are observed on a finite grid of length D that, for notational simplicity, we 

assume is shared across subjects. For finite data, let Y be the (Σi Ji) × D matrix of row-

stacked generalized functional response; X be the (Σi Ji) × (p + 1) fixed effects design 

matrix constructed by row-stacking the xij; β be the (p+1) × D matrix with rows containing 

βk(t) evaluated on the finite grid; Z be a (Σi Ji) × I random intercept design matrix for the 

subject-specific effects; b be the I × D matrix with rows containing bi(t) evaluated on the 

finite grid; and υ be the (Σi Ji) × D matrix with rows containing υij(t) evaluated on the finite 

grid. Fixed effects and FPCA basis functions at both levels are expressed using a spline 

expansion. Let Θ denote the known D × KΘ matrix of cubic B-spline basis functions 

evaluated over the finite grid on which functions are observed. Spline coefficients for the 

fixed effects βk(t), the level 1 FPCA basis functions ψ(1)(t), and the level 2 FPCA basis 

functions ψ(2)(t) are columns in the matrices BX, Bψ(1), and Bψ(2), respectively. Thus 

 and, letting C(1) and C(2) be the matrices created by row-stacking level 1 and 

level 2 scores for each subject and subject-visit,  and . 

Model (3) can now be re-expressed for finite data using
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(3)

Notationally, model (4) is formulated in a similar fashion as the continuous-valued cross-

sectional function-on-scalar regression models described in Ramsay and Silverman (2005, 

§13.4) and the continuous-valued multilevel function-on-scalar regression models described 

in Goldsmith and Kitago (2013). In model (4), the unknown parameters to be estimated are 

BX, C(1),Bψ(1), C(2), and Bψ(2); the fixed and random effect design matrices X and Z are 

known, as is the B-spline basis Θ.

To ensure flexibility we use a rich B-spline basis by taking KΘ large, but impose smoothness 

on resulting coefficient function estimates through the prior specification. In particular, we 

assume the following priors for the columns of BX, Bψ(1), and Bψ(2):

(4)

In (4), P is a pre-specified KΘ × KΘ penalty matrix that enforces smoothness through the 

connection between Bayesian priors and quadratic penalization (Ruppert et al., 2003). We 

use P = αP0 + (1 − α)P2 where P0 and P2 are zeroth- and second-order derivative penalty 

matrices. Taking 0 < α ≤ 1 balances the universal shrinkage encoded in P0 with the 

smoothness constraint of P2, while ensuring P is positive definite and priors are proper. In 

our simulations and real data analyses we set α = .1 to predominantly enforce smoothness 

rather than shrinkage as is common in FDA; sensitivity analyses have indicated robustness 

to the choice of α in this analysis.

Completing the model specification, score vectors are assigned independent standard 

Normal priors  and , consistent with the probabilistic 

framework for PCA (Tipping and Bishop, 1999). Variance components ,  and 

are assigned IG[0.01, 0.01]. The number of level 1 and level 2 basis functions, K(1) and K(2), 

are fixed constants chosen prior to the analysis, and sensitivity to these choices should be 

assessed. Simulations indicate that choosing K(1) and K(2) larger than necessary does not 

degrade estimation or inference, but leads to increases in computation time.

2.2 Computation Using Stan

The model in Section 2.1 is implemented in Stan (Stan Development Team, 2013; Hoffman 

and Gelman, 2011), using an R interface for data entry and for summarizing posterior 

samples. Stan is an open-source, general purpose programming language for Bayesian 

analysis that, at the user interface level, has similarities with BUGS (Lunn et al., 2009) or 

JAGS (Plummer, 2003). Samples are generated using Hamiltonian Monte Carlo, an MCMC 

algorithm that avoids random walk behavior by using the gradient of the log-posterior (Neal, 
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2011). In comparison with earlier MCMC algorithms such as the Gibbs sampler, 

Hamiltonian Monte Carlo offers fast convergence and parameter space exploration when 

posteriors are highly correlated, such as in the case of the fixed, subject-specific, and 

subject-day-specific effects in model (3). Code for both model (3) and for an analogous 

cross-sectional model described in Section 3 is publicly available on the first author's 

website.

Computation time is a concern in all Bayesian approaches, especially for high-dimensional 

data such as those we consider. Here, computation times were reasonable for the moderate 

datasets considered in the simulations – taking several minutes for cross-sectional datasets 

consisting of up to 100 curves measured on grids of length 100, and taking at most a few 

hours for multilevel datasets with up to 100 subjects and 4 curves per subject. Real data 

analyses were more computationally expensive due to the higher dimensionality and 

increased complexity, and took several days. Details for computation time are provided in 

Sections 3 and 4.

2.3 Rotation

As noted in the introduction, the probabilistic PCA methods that underpin our Bayesian 

approach yield estimates that include an arbitrary orthogonal rotation. In this subsection we 

describe a method to select a specific rotation using a singular value decomposition of the 

estimated basis. Although this is not a necessary step for estimation, it is useful for aligning 

estimates across sampler iterations and for obtaining the appealing and well-established 

interpretation of FPCA. Here we omit notation for level 1 and level 2 basis functions: both 

are obtained using the same steps.

FPCA is typically posed as an expansion , with the  orthonormal 

basis functions and scores  uncorrelated zero mean random variables with non-increasing 

variances λk. Basis functions and variances are estimated using a truncated Karhunen-Loève 

decomposition of the covariance matrix Var(bi(t)). Within each iteration of the sampler we 

estimate  where Ψ are basis functions evaluated on a finite grid, and we wish 

to obtain an equivalent C*Ψ* for which Ψ* is an orthonormal basis. To do so, we use the 

singular value decomposition of the Ψ estimated without orthonormality constraints Ψ = 

UDV with U, V unitary matrices and D a diagonal matrix whose entries are the singular 

values of Ψ in descending order. Making a substitution, we have CΨ = CUDV and define 

C* := CUD and Ψ* := V. Moreover, the prior assumption that Var(ci) = I implies that for 

each row  of C*, . Thus 

estimates of the score variance components λ1 ≥ λ2 ≥ … λK ≥ 0 are provided by squaring the 

diagonal entries of D. This rotation can be conducted within each iteration of the sampler 

and, accounting for potential sign changes in the basis functions, provides a posterior 

distribution of orthonormal basis functions.

This rotation step provides a mechanism to identify the effective dimension of the basis 

through an examination of the λ1 ≥ λ2 ≥ … λK ≥ 0 using, for example, a scree plot as in 
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Figure 4. Such a plot can indicate whether all estimated basis functions contribute non-

negligibly to the subject- and subject/day-specific effects.

3. Simulations

We demonstrate the performance of our method using a simulation in which generated data 

mimic the motivating application. Our focus is on assessing the estimation accuracy and 

inferential properties of the proposed methods. All code for the following simulations is 

publicly available. Additional simulations considering the cross-sectional case and 

comparing our proposed method to that of Serban et al. (2013) are in Appendices A.2 and A.

3. Results for the cross-sectional case are similar to those presented here, and the 

comparison of the two approaches generally favors our method for the scenario considered.

We generate binary response curves Yij(t) on an equally spaced grid of length 100 according 

to the model

(5)

assuming a logit link function. We let t ∈ [0, 1] represent a 24-hour period as in the 

motivating accelerometer study, and in the following use descriptions motivated by this 

context. The intercept is β0(t) = −1.5 − sin(2tπ) − cos(2tπ), which roughly mimics a 

circadian rhythm over one day. The fixed effect , where ϕ(·) is the 

standard Normal density function, affects the probability of activity in the afternoon but not 

in the late evening or early morning, and we generate scalar predictors using xi1 ∼ N(0, 25). 

The subject-level orthogonal basis functions are chosen to be 

 and , scaled such that 

 and . The first basis function amplifies or diminishes the 

circadian rhythm found in β0(t), broadly giving higher or lower overall activity patterns, 

while the second affects activity probabilities in the early and later afternoon. Subject-level 

PC scores are generated from a mean-zero Normal distribution with variance components λ1 

= 3 and λ2 = 1.5. Subject/day-level basis functions 

and , again scaled so that squared basis functions integrate to 1. Level 2 

variance components are  and . Setting  means that the 

dominant pattern of variability across subjects is also the dominant pattern of variability 

across days within a subject. This is not only scientifically plausible but also in line with our 

findings in the motivating example. This assumption, however, increases the difficulty of the 

estimation problem. For all simulations we let Ji, the number of days observed per subject, 

be 4.

One hundred datasets are constructed according to the preceding model for all combinations 

of sample size I ∈ {50, 100} and number of estimated principal components K̂(1)= K̂(2) ∈ {2, 
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5}, giving a total of four possible simulation designs. When K̂(1) = K̂(2) = 5 the number of 

estimated PC basis functions is larger than the number of true basis functions, which is held 

at K = 2 throughout. Model parameters are estimated using the methodology described in 

Section 2. Estimation and inference is based on posterior means and quantiles of 5000 

iterations from the sampler, after discarding the first 2000 as burn-in; visual inspection and 

diagnostics for the one simulated dataset indicate that these levels are sufficient for 

convergence to and exploration of the posterior distribution. We quantify estimation 

accuracy for fixed effects using the integrated squared error  and 

for the latent subject probability trajectories using the mean integrated squared error 

. Inference is evaluated using average pointwise 

coverage of 95% posterior credible intervals.

Figure 1 illustrates the simulation design and results for a single dataset with I = 50 and K̂ = 

5. Simulated latent probability curves μi(t) are shown in the left panel, and demonstrate the 

structure of activity trajectories as well as their variability across subjects. The true and 

estimated fixed effects β0(t) and β1(t) are plotted in the middle panels (dashed curves), along 

with the posterior mean (solid lines) and a posterior sample (translucent curves). Finally, the 

right panel shows the observed binary data Yij(t) for one subject on one day (points), the true 

latent probability curve μij(t) (dashed curve), the posterior mean (solid curve) and a sample 

from the posterior distribution of μij(t) (translucent curves).

Table 1 provides the average (across 100 simulated datasets) MISE for fixed effects and 

average MISE for latent probability trajectories, as well as average pointwise coverage and 

computation time. As one would expect, estimation accuracy for fixed effects improves as 

sample size increases. Estimation of subject effects also improves as sample size increases, 

although to a lesser extent than for fixed effects. In all cases, coverage for fixed effects and 

latent probability trajectories in near nominal levels, and the coverage of intervals for the 

latent subject-specific trajectories μi(t) and latent subject-day-specific trajectories μij(t) 

increases as K̂ increases. Increasing K̂ does not affect estimation accuracy for β1(t) but may 

negatively affect accuracy for β0(t), either due to the flexibility in the model or because 

. Meanwhile, increasing K̂ may improve coverage for both fixed effects. 

Computation times are larger but not prohibitive, and generally take between one and four 

hours.

4. Application

We now apply methods of Section 2 to the motivating data. For 583 subjects, we observe 

age, BMI, and minute-by-minute activity count trajectories for 5 days. Here we present 

results for dichotomized “active vs. inactive” response curves obtained by thresholding the 

observed activity counts at 10; this value is fairly conservative for defining activity in order 

to allow for low-intensity activity commonly observed in elderly subjects (Schrack et al., 

2014). Results from the cross-sectional analysis using a Poisson distribution and log link to 

model activity count response curves appear in Appendix A.4. To reduce the computational 

burden of the analysis, data are thinned to one data point for every 10 minutes, giving 144 
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observations per subject per day. Our model considers age and BMI, centered at 60 and 25 

respectively, as potential predictors of activity. To ensure that the value of coefficient 

functions at times 0:00 and 24:00 are equal we use a periodic B-spline basis. We set the size 

of the FPC bases K(1) = K(2) = 8 and the dimension of the B-spline basis Θ is KΘ = 10. 

Additional analyses using K(1) = K(2) = 16 and KΘ = 20 confirm that these choices suffice to 

estimate the smooth effects observed in this application. We fit model (4) using 5000 

iterations of the sampler, discarding 2000 as burn-in; total computation time was 10 days.

Figures 2 and 3 provide the estimated fixed effect coefficients. In Figure 2 we show the 

estimated effect as a solid curve and a posterior sample as translucent curves. The intercept 

β0(t) gives the log odds of activity for 60 year old subject with a BMI of 25, and has an 

expected circadian rhythm shape. Coefficient functions βage(t) and βBMI(t) have a log odds 

ratio interpretation; for example, βage(t) is the change in the log odds of activity for each one 

year increase in age, keeping BMI fixed, over a 24-hour time course. From the posterior 

distribution, it seems that both age and BMI have significant negative effects on the 

probability of being active during daytime hours. The effect of age is most pronounced in 

the late afternoon, perhaps as a result of increased fatigue in older subjects, while BMI is 

most significant in the mid-morning and mid-afternoon. Figure 3 demonstrates these effects 

by plotting the fitted probability of being active over a 24-hour period for several age and 

BMI levels.

In addition to fixed effects, we estimate level 1 and level 2 principal component basis 

functions ψ(1)(t) and ψ(1)(t), which have been rotated as described in 2.3. These functions 

model the subject- and subject-day-specific residual dependency in the 24-hour trajectories 

unaccounted for in the covariate-dependent mean. The top row of Figure 4 shows the 

directions of variation explained by the first two level 1 basis functions by plotting 

, k = 1, 2; the third panel shows the scree plot for the level 1 

decomposition. The major directions that distinguish subjects are a general shift in the 

probability of being active and a contrast in the probability of being active in the daytime 

and non-daytime hours. Similar plots are shown for the level 2 decomposition in the second 

row of Figure 4. Although these figures show the basis functions using the probability of 

activity, the percent variance explained is calculated and the orthonormality property 

enforced in the log odds of activity scale. The proportion of residual (after removing fixed 

effects) variance explained by subject level effects, given by  is 0.46 

in this application, indicating moderate stability within subjects over multiple days.

Finally, we compare fitted values and observed data in Figure 5. The top row contains plots 

for a 85 year old subject with a BMI of 26.5. The left and middle panels show observed data 

for two different days as points and a moving average of the observed data as dashed lines. 

Subject-day-specific estimates, combining fixed effects with level 1 and level 2 FPC effects, 

are overlayed: the posterior mean Ŷij(t) is shown as a solid curve and a posterior sample is 

shown as translucent curves. The right panel shows the moving average trajectory for each 

of the five observed days as separate dashed lines. Subject-specific estimates, combining 
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fixed effects with only level 1 FPC effects, are again overlayed with the posterior mean Ŷi(t) 

as a solid curve and a posterior sample as translucent curves. Data for a second subject, aged 

51 years with a BMI of 23.8, is shown in the bottom row of Figure 5. Our method accurately 

captures both large scale patterns and detailed phenomena, giving accurate estimates of the 

probability of being active over a 24-hour period using relatively few principal components 

and scores.

5. Concluding remarks

The generalized multilevel function-on-scalar regression and principal components analysis 

techniques developed in this manuscript are necessary tools in modern functional data 

analysis and are required by our application. From a methodological perspective, this work 

has two major motivations that have often been neglected in functional data analysis. For the 

problem of function-on-scalar regression, some effort is needed to account for residual 

correlation within functions to develop reasonable inferential procedures. Meanwhile, in 

functional principal components analyses, it is common to condition (implicitly or 

explicitly) on the estimated mean and basis functions when predicting latent subject-specific 

trajectories and constructing related confidence/credible intervals. Both of these issues are 

made more difficult in the context of generalized and multilevel functional data. Our 

approach has been to jointly model all parameters of interest in a Bayesian context, and in 

doing so we have attempted to develop a unified framework for both function-on-scalar 

regression and functional principal components analysis.

In the motivating real-data analysis, we confirm and quantify a scientifically plausible 

hypothesis: that the probability of activity decreases as individuals age and as BMI 

increases, and these effects are dynamic over the course of the day. Moreover, we identify 

the major patterns of activity that distinguish subjects from each other and that distinguish 

days within subjects. By focusing here on a binary activity variable we address a concern 

that is distinct from the intensity of activity, instead examining changes in sedentary 

behavior associated with changes in covariates. Meanwhile, the analysis of the changes in 

activity intensity appears in the Appendix with qualitatively similar results. For both 

outcomes, the consideration of other potentially important covariates and allowing for non-

linear effects is warranted in future work.

The Bayesian procedure we develop was shown in realistic simulations to have good 

estimation and inferential properties. Not surprisingly, computation time can be a serious 

concern particularly as sample sizes, grid densities, and the number of estimated principal 

component basis functions grow. Another important limitation of our method is the 

necessity to select the dimension of the FPC bases prior to analysis. Determining whether a 

selection is sufficient to describe the major directions of variation can require additional 

confirmatory analyses with even larger values, which can impose considerable 

computational expense.

Future work focusing on variational Bayes or other approximations will address the 

computational concerns and, we suspect, will result in good estimation of model 

components. This will provide an important tool for choosing the dimension of the FPC 
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bases by allowing rapid comparisons of different selections, and may also have the property 

of automatic relevance determination. Because such an algorithm seeks a posterior mode 

rather than exploring the posterior distribution, “unimportant” directions can be effectively 

removed by shrinking their associated variance components to zero. This decrease in 

computational burden may be accompanied by poorer inferential performance due to the 

assumptions needed for such an approximation. Balancing these priorities will depend on the 

particular data scenario, and both will be important.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of data and results for cross-sectional simulations. The left panel shows 

simulated probability curves μi(t) for all subjects i ∈ 1, …, I. The middle panels show fixed 

effects β0(t) and β1(t) as dashed curves, with posterior mean and sample intervals in solid 

and translucent curves. The right panel shows observed binary responses Y1,1(t) for subject i 

= 1 on day j = 1 as points; the true probability curve μ1,1(t) as a dashed line; a sample from 

the posterior of μ1,1(t) as translucent curves; and the posterior mean as a solid curve. This 

figure appears in color in the electronic version of this article.
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Figure 2. 
Estimated fixed effects (solid) from the real data analysis with samples from the posterior 

(translucent). The left panel shows the intercept β0(t); the middle panel shows the age effect 

βAge(t); the right panel shows the BMI effect βBMI(t).
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Figure 3. 
The left panel shows the effect on the probability of being active of varying age in 5 year 

increments from 50 to 80 as a decreasing sequence of functions, while keeping BMI fixed at 

25. The right panel shows the effect of varying BMI in 2.5 unit increments from 20 to 35 as 

a decreasing sequence of functions, while keeping age fixed at 60. In both panels, the 

subject- and subject-day-specific effects are set to zero. This figure appears in color in the 

electronic version of this article. An interactive version of this graphic appears on the first 

author's webpage.
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Figure 4. 
Estimated MFPCA basis functions and scree plots for subject-level and subject-day-level 

effects (top and bottom row, respectively). Basis functions are illustrated by plotting 

 for basis functions k ∈ {1, 2} and levels L ∈ {1, 2}. This figure 

appears in color in the electronic version of this article.
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Figure 5. 
Fitted values for two subjects, separately by row. In each row, the left and middle panels 

show observed binary values Yij(t) as points (separate days are shown in each panel). A 

Gaussian kernel smooth with IQR of 1.5 hours of the observed data is shown as a dashed 

curve. Estimates of subject-day-specific probability trajectories μˆij(t) are shown as solid 

curves, and a sample from the posterior of μij(t) is shown as translucent curves. In the right 

panel of each row, kernel smooths for each of the five observed days of the subject are 

shown as dashed curves. The estimated subject-specific mean trajectory μˆi(t) is shown as a 

solid curve, and a sample from the posterior of μi(t) is shown as translucent curves. This 

figure appears in color in the electronic version of this article.
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