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Abstract

Single cell trajectory analysis is a computational approach that orders cells along a pseudotime 

axis. This temporal modeling approach allows the characterization of transitional processes such 

as lineage development, response to insult, and tissue regeneration. The concept can also be 

applied to resolve spatial organization of cells within the originating tissue. Known as temporal 

and spatial transcriptomics, respectively, these methods belong to the most powerful analytical 

analysis techniques for quantitative gene expression data currently available. Here, we discuss 

three different approaches: principal component analysis, the ‘Monocle’ algorithm, and self-

organizing maps. We use a previously published qRT-PCR dataset of single neuroblast cells 

isolated from the developing mouse inner ear to highlight the basic features of the three methods, 

their individual limitations, as well as the distinct advantages that make them useful for research in 

the inner ear. The complex developmental morphogenesis of the inner ear and its specific 

challenges such as the paucity of cells as well as important open questions such as sensory hair 

cell regeneration render this organ as a prime target for single cell trajectory analysis strategies.
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Introduction

Organ development, disease progression, and regeneration are examples for biological 

processes that affect the state and identity of cells over time. In a simple case, this can 

describe the transition from an unspecified progenitor cell to a more specialized lineage-

committed differentiated cell, for example a sensory hair cell of the inner ear. Such a change 

can occur unidirectionally or in bifurcating form as inner ear precursor cells give rise to 

either neurons or to supporting cells and hair cells, the two major types of inner ear sensory 

epithelia (Fig. 1A). As development progresses, expression of progenitor cell-associated 

genes will mostly decrease whereas markers that confer cell-type identity, as well as 

cytomorphological and physiological specializations will become successively upregulated. 

These changes in gene expression are universally translated in dissimilar transcriptomes 
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(that is the mixture of all RNA molecules present in a cell at a given time) and can be 

measured quantitatively using gene arrays, quantitative (q)RT-PCR, or whole transcriptome 

shotgun sequencing platforms (RNA-Seq). A typical approach to study the dynamic 

behavior of development-associated gene expression has been time-series experiments in 

which dissected tissues are sampled from defined consecutive time points and collectively 

subjected to quantitative expression analyses. Usually this strategy results in the 

identification of stage-specific markers and global genetic co-regulatory modules that may 

play a role in orchestrating tissue development ((Spellman, et al., 1998), reviewed in (Bar-

Joseph, et al., 2012)). Nevertheless, biological systems are inherently dynamic and 

heterogeneous in nature and consequently aforementioned conventional investigations will 

fall short of accurately mirroring cellular progression over time. The major difficulty arises 

from the fact that bulk of cell groups rather than individual cells are assessed, which 

disregards cellular heterogeneity as a universal trait. Inevitably, this leads to an incomplete 

picture of the developmental process as for example, gene-to-gene correlations in small 

subsets of cells are challenging to identify in bulk samples. Additionally, averaging artifacts 

can mask biologically relevant processes and can negatively interfere with correct data 

interpretation as shown in a number of studies (Bengtsson, et al., 2005, Levsky and Singer, 

2003, Toriello, et al., 2008). Even in cases of presumed homogenous cell populations (e.g., 

cell lines or purified cell types) asynchronicity effects will lead to mixture of cells where 

each member of the group may execute the same developmental program, yet at different 

paces. The study of single cells, on the other hand, presents a promising alternative to 

sufficiently address some if not all listed issues. Single-cell analysis allows for the 

discrimination of distinct subpopulations of cells that are transitory in character and 

delineate specific cell states within otherwise homogeneously appearing populations. To 

better understand a cell’s progression from one state to a different state it is essential to 

characterize the many and often obscure intermediate conditions that connect both states. 

Resolving this process down to a cell-to-cell scale and being able to record quantitative data 

puts the researcher in the favorable position to start tackling the conundrum of cellular 

differentiation.

Successful applications of single cell analysis requires (1) the ability to isolate individual 

cells from the tissue source, and (2) a platform to process them rapidly and in parallel. With 

the advent of fluorescence-activated cell sorting (FACS) and the availability of different 

transgenic reporter mice it is now routine to selectively enrich for specific cellular subsets of 

organs like the inner ear (Doetzlhofer, et al., 2006, Herget, et al., 2013, Jan, et al., 2011, 

Sinkkonen, et al., 2011). Conventional flow cytometers are capable of depositing individual 

cells into single wells of multiwell plates for subsequent analyses. Secondly, the 

introduction of microfluidic circuit devices (Melin and Quake, 2007, Whitesides, 2006) have 

paved the way for successful single cell applications in a number of fields including cell 

culture and nucleic acid quantitation. These ‘lab-on-a-chip’ instruments enable the 

simultaneous and reliable measurement of hundreds of different parameters in hundreds of 

individual cells (Blow, 2009). Commercial availability as well as numerous established 

methodologies allow researchers to obtain quantitative gene expression data in a matter of 

hours. Lastly, continuous advancements in next-generation sequencing technologies (such as 

Illumina and Ion Torrent platforms) contributed further to the field, which has led to a 
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steady increase of cell-multiplexing capability and decrease of overall expenses (Wang, et 

al., 2009). For research on the inner ear, this is good news all along because particularly 

molecular studies have been hampered for decades by the scarcity of tissue material.

What is single cell trajectory analysis and why is it important?

Single cell trajectory analysis strives to utilize biological heterogeneity among related cells 

that undergo changes over time. A trajectory describes a directional path along which 

individual cells can be arranged, such that their order represents for instance a temporally 

defined process. This can be achieved by applying mathematical analysis techniques aimed 

at identifying patterns in high-dimensional data – the data format distinctive of quantitative 

expression studies, such as the output of multiplex single cell qRT-PCR or RNAseq 

experiments. The reason why this strategy that generally is referred to as ‘temporal 

transcriptomics’ works, can be explained by the fact that no two individual cells are exactly 

the same even within most homogeneous cell populations. Sources for such omnipresent 

degree of cellular heterogeneity have been identified en mass in the past and seem to have 

crucial impact on cells of developing organs/organisms in general (Arias and Hayward, 

2006, Hayashi, et al., 2008, Losick and Desplan, 2008, Raj and van Oudenaarden, 2008). 

For instance, extrinsic stimuli may trigger non-uniform responses of cells in a clonal or 

isogenic cell population. Niche compartments in vivo are illustrative examples where cells 

may have different access to environmental determinants. Another example is cultured cells 

such as human myoblast cells that undergo induced differentiation and may respond 

differently based on cell-to-cell contact deviations or other reasons (Trapnell, et al., 2014). 

As a result, cells profiled collectively at one static time point after the trigger always differ 

from another depending on the kind and rate of response. These, often minuscule differences 

are reflected in successive changes of global gene expression that can be used to reconstruct 

temporal patterns (i.e. trajectories, Fig. 1B).

Compressing high-dimension data to a single dimension by formulating an in silicio 

progression model results in a vector. Along it, individual cells are organized such that each 

of them resides at a particular stage of the process and therefore represents a singular 

pseudotime point. This means that in a traditional time-series experiment each respective 

time point would represent a separate time-series study by itself (for example, time points 1, 

2, and 3 in Fig. 1B). If cellular differentiation is the underlying biological process and if the 

genes that are assayed construe the various steps of the process, then there is a high 

likelihood that the resulting cell trajectory derived from a single time point will describe cell 

differentiation. Connecting trajectories of multiple time points can additionally enhance the 

biological integrity and coherence of the model. Variably chosen time intervals (e.g., hours, 

days, weeks) will lead to variable degrees of trajectory overlap and as a result can describe 

the differentiation process over multiple sampling time points across varying timescales 

(Fig. 1B). The power of this approach is that it reveals the order of molecular events as cells 

transit over time such as from a progenitor state into a differentiating and subsequently into 

a differentiated state. Quantitative information on select groups of genes (if multiplex qRT-

PCR is being used) or on all detectable genes expressed in individual cells (for RNA-Seq 

datasets) is available for each single cell along the pseudotime-axis, and allows the 

researcher to extract knowledge with unprecedented efficiency and resolution. In turn, this 
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contributes to a better understanding of how cells change from one state to another during 

the time period investigated and decipher mechanisms involved during these changes.

A possible limitation that could influence the sequence of individual cells along a trajectory 

relates to the characteristic process of transcription, which is stochastic to a certain extent 

and can happen in bursts (Raj and van Oudenaarden, 2008). Specifically the initiation of 

gene expression follows stochastic principles leading to random differences in transcript 

levels in cells that just start expressing a certain gene (van Roon, et al., 1989). Additional 

random fluctuations in availability of proteins and factors involved in mRNA synthesis at 

any given time result in phenotypical differences between otherwise identical cells 

(McAdams and Arkin, 1997). Once mRNA synthesis has reached a steady state, it is 

conceivable that the concentration of a specific transcript in an individual cell becomes 

mostly defined by the “burst” or pulse duration and its frequency. The low and high limits of 

transcript concentrations consequently are different in each individual cell and differ for 

each individual gene (Fig. 2A–C). The question of how much of the variation of gene 

expression levels between individual cells can be attributed to biological-associated 

heterogeneity rather than just ‘noise’ requires the utilization of a multidimensional approach 

that considers gene expression data from many closely related cells as well as many genes. 

In addition, the analysis methods described in this review do not reduce quantitative gene 

expression information to a binary code, but consider distinct expression level ranges (Fig. 

2A–C), a principle that substantially increases the available complexity of relevant 

information. Ordering of cells along a trajectory does consequently not rely on binary 

information (i.e., on versus off) of a few genes, but takes into consideration information 

extracted from the quantitative transcript measures of many genes. As a consequence, the 

more genes of the assay (in case of multiplex single cell qRT-PCR) or the more detectable 

genes with RNA-Seq are correlated with a trajectory, the smaller the potential error 

introduced by stochastic gene expression. Along the same plausibility, stochastic events will 

also even out with increasing sample sizes. We conclude that although stochastic gene 

expression could affect the outcome of trajectory analyses at low sample sizes and when 

only a few genes are taken into consideration, its effects become less significant and 

probably negligible as sample size and gene number increase.

Temporal transcriptomics in inner ear research

In the developing inner ear, we recently utilized trajectory analysis to describe the lineage 

progression of neuroblasts (Durruthy-Durruthy, et al., 2014a). These neural precursor cells 

are born in the ventro-anterior region of the otocyst, a transiently existing vesicle that forms 

in mice during the 10th day post fertilization. They delaminate from the otocyst and migrate 

ventro-medially. As development proceeds neuroblasts accumulate, proliferate, and 

eventually differentiate into the neurons that ultimately form the ganglia innervating the 

organ of Corti and the vestibular organs of the inner ear (Rubel and Fritzsch, 2002). To 

analyze not only the neuroblast lineage but also the cell population that constitutes the 

otocyst, we used a Pax2-Cre transgenic mouse line to permanently label cells of the otic 

lineage in a fluorescent reporter mouse line. 384 cells were sorted by FACS and 

subsequently examined by multiplex qRT-PCR for expression of 96 preselected otic genes. 

A number of clustering approaches and dimension-reduction techniques, such as principal 
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component analysis (PCA) revealed that about 30% of all cells were of neuronal lineage 

identity (Durruthy-Durruthy, Gottlieb, Hartman, Waldhaus, Laske, Altman and Heller, 

2014a). This group was further partitioned into two related subgroups, one with prevalent 

expression of genes found in early neuroblasts such as Neurog1 (Ma, et al., 1998), whereas 

the second group was defined by markers that become upregulated as neuron precursors 

migrate and differentiate, for example Isl1 (Li, et al., 2004). PCA seeks to identify the 

directions defined by vectors in multi-dimensional variable space along which the variance 

of the data is greatest. Known as principal components, these vectors are ordered 

ascendingly according to their overall contribution to variability. We noted that by far the 

majority of variability of neuroblast-associated cells was preserved in the very first 

component, which suggested that only one single dimension might adequately visualize 

differences between cells. Upon projection of neuronal cells onto the first component, we 

interpreted the resulting trajectory as a measure of time (Fig. 3A), as described in Durruthy-

Durruthy et al. (Durruthy-Durruthy, Gottlieb, Hartman, Waldhaus, Laske, Altman and 

Heller, 2014a). Cells ordered along the pseudotime-line displayed the transition from an 

early neuroblast state, likely representing the newly emerging or early delaminating phase 

towards a differentiated state where cells began displaying neural identity. Although most 

genes subject in this particular study were not included to exclusively describe the 

neuroblast lineage per se, we succeeded in identifying a number of interesting co-regulatory 

motifs as well as regulatory components indicated by expression of signaling pathway-

associated markers. Ultimately, a more targeted collection of genes will be necessary to 

thoroughly resolve specific events of neuroblast differentiation starting from the moment of 

cell fate initiation, delamination, migration, accumulation, transient proliferation, and 

bifurcation into cochlear and vestibular fates; experiments that are currently under way.

The question that arises from this first example of single cell trajectory analysis of otic 

derivatives is whether one-dimensional PCA is robust enough to be applicable to other 

biological systems inside and outside of the inner ear. In the following section, we introduce 

alternative methods for establishing single cell trajectories and apply them to our existing 

dataset from Durruthy-Durruthy et al., 2014. We will discuss the major differences between 

them as well as advantages that each procedure offers for potential applications to cell 

trajectories in the developing, regenerating, and mature inner ear.

Limitations of PCA-based trajectory analyses

A disadvantage of one-dimensional PCA lies in its inability to resolve processes following 

trends other than of unidirectional nature. Lineage bifurcations, which are common events in 

developing organs, as well as disturbances that arise from secondary and higher order 

biological processes cannot be described by multi-dimensional data reduction to a single 

vector/trajectory. This is because one-dimensional PCA requires the majority of variability 

inherent to the dataset to be represented by a single principal component. Therefore, in more 

complex scenarios it is important to acknowledge the interlaced structure of assorted 

biological sequences of events that might take place in parallel and can fully or partially 

overlap. Moreover, for some processes, we will not have a priori knowledge about 

distinguishing genes making it challenging to define differential trajectories. These 

conceptual difficulties require alternative mathematical algorithms.
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A specific example of aforementioned complexity addresses the study of sensory hair cell 

regeneration in non-mammalian vertebrate utricles, an ongoing project in our laboratory. 

Here, we presume that ototoxic insult resulting in hair cell loss leads to a series of events 

orchestrated by dying hair cells and surviving supporting cells that initiate a highly efficient 

regenerative program. The chicken inner ear utilizes two general mechanisms of hair cell 

regeneration (Adler and Raphael, 1996, Cafaro, et al., 2007, Corwin and Cotanche, 1988, 

Roberson, et al., 1992, Roberson, et al., 2004, Ryals and Rubel, 1988): a) the direct 

conversion of supporting cells into hair cells, a process also known as direct 

transdifferentiation, and b) the asymmetric division of supporting cells into new hair cells 

and supporting cells. We hypothesize that both processes will be carried out by different 

classes of supporting cells, but the time course and genetic programs regulating initiation, 

progression, and termination of the different modes of hair cell regeneration will transpire in 

distinctively different lineage trajectories. We speculate direct transdifferentiation will 

follow a unidirectional path, whereas asymmetric division of supporting cells will be 

featured by more complex aspects of the data with multiple biological processes implicated 

(cell cycle re-entry, cell division, bifurcating lineage, and cell differentiation). Unraveling 

these heterogeneous supporting cell groups and assembling different lineage trajectories in 

this specific case will require new inventive analytical approaches that go beyond simple 

cluster analysis followed by PCA. In this review, we will not be able to solve the intricacies 

of hair cell regeneration, although it has been part of an important and highly relevant debate 

of our field. However, we highlight the potential of single cell analysis and how it can profit 

our domain, as researchers will undoubtedly be confronted with high-dimensional datasets 

in the upcoming years.

Monocle and one-dimensional self-organizing maps as alternatives

Other procedures to order cells or populations of cells on a temporal scale exist and bypass 

the limitations of PCA-based algorithms (Amir el, et al., 2013, Bendall, et al., 2014, Bendall, 

et al., 2011).

‘Monocle’ is one a recently introduced method that places whole-transcriptome profiles of 

single cells along an artificial temporal curve in orderly fashion (Trapnell, Cacchiarelli, 

Grimsby, Pokharel, Li, Morse, Lennon, Livak, Mikkelsen and Rinn, 2014). Using individual 

primary human skeletal muscle myoblasts, Trapnell and colleagues impressively showcased 

the power of their unsupervised approach when applied to single cells by improving 

temporal resolution during a dynamic biological process such as differentiation. Assuming 

that cellular differentiation can be described as a continuous procedure with several 

intermediate states, ‘Monocle’ aims to model this process by identifying a starting and end 

point(s) of cell trajectories in high-dimensional space. As the number of dimensions directly 

correlates with the number of genes by which an individual cell is characterized, ‘Monocle’ 

implements – similarly to one-dimensional PCA – a dimension-reduction step prior to cell 

ordering. Yet, instead of recognizing the principal components of the data structure, their 

approach attempts to establish the independent components of the data using independent 

component analysis (ICA) (Hyvarinen, 1997, Hyvarinen and Oja, 2000). Although ICA is 

generally regarded as a generalization of PCA as it calculates vectors in multi-dimensional 

space as linear combinations, both operations are fundamentally different from an analytical 
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perspective (Draper, et al., 2003). Whereas PCA assumes the data to be normally distributed 

and organized linearly, ICA expects non-Gaussian data dispersion. Likewise, the overall 

goal of PCA is to identify the direction in high-dimensional space along which data variance 

is maximized so that the lower-dimension data-projection error is minimized (Jolliffe, 2002). 

In contrast, ICA intends to minimize statistical dependence among vectors (thus, they are as 

independent from each other as possible) and coincidently maximize the non-normal 

distribution of vector elements. As a result, components derived from PCA have an 

associated importance value (called eigenvalue), are arranged accordingly, and have an 

orthogonal relationship, contrary to components computed from ICA, which exhibit equal 

significance and are constructed non-orthogonally (Fig. 3A, left, center). These 

mathematical differences can have far-reaching consequences in successfully recognizing 

patterns in differentially structured biological data that relate to processes like 

differentiation, regeneration, or disease progression.

An additional criterion distinguishing ‘Monocle’ from 1D-PCA is the modality of cell 

ordering. Whereas in PCA (Fig. 3B, top left; (Durruthy-Durruthy, Gottlieb, Hartman, 

Waldhaus, Laske, Altman and Heller, 2014a)), the sequence of cells along the trajectory is 

simply the result of data projection, ‘Monocle’ makes use of so called minimum spanning 

trees to connect cells along the longest possible path involving as many cells as possible 

(Trapnell, Cacchiarelli, Grimsby, Pokharel, Li, Morse, Lennon, Livak, Mikkelsen and Rinn, 

2014). This strategy is particularly useful in dissecting biological processes that cannot be 

explained as unbranched processes and may occur in parallel. Notably during differentiation, 

a progenitor cell may give rise to more than one lineage, leading to two or more lineage 

trajectories. This level of complexity, generally termed as bifurcation can be described using 

‘Monocle’. In addition, Monocle allows for subsequent cluster analysis comparing two or 

more groups of cells as a function of pseudotime and identifying differentially expressed 

genes.

To test how the algorithm performs on datasets other than Trapnell and colleagues described 

in their study, we utilized single cell qRT-PCR data from our neuroblast-associated cell 

group that was assembled by a multitude of clustering assessments. We focused on the three 

hallmark genes that describe the progress of early inner ear neurogenesis best possibly. The 

protocol involves the initial selection of two input parameters, namely (1) the genes whose 

expression data are used to ‘order’ all cells, and (2) the number of paths one expects the 

cells to associate on. ‘Ordering genes’ as the authors refer to them are supposed to comprise 

a group of markers that explain the dynamic behavior of the biological process best, hence 

their expression profiles across single cells varies considerably. We designated Neurog1, 

Neurod1, and Isl1 for sequence determination and visualized their expression levels on three 

equivalent trajectories. Due to the lack of distinctive markers we chose only one trajectory 

path without bifurcating attributes. Similarly to published data (Durruthy-Durruthy, 

Gottlieb, Hartman, Waldhaus, Laske, Altman and Heller, 2014a), neuroblast-specifier 

Neurog1 becomes gradually downregulated along the axis as one follows individual cells 

from left to right (Fig. 3B, right). Markers that are expressed at later stages of otic 

neurogenesis markedly label cells on the right side of the model, mirroring the further 

advanced stage of maturation. Interestingly, Neurod1 and Isl1 show a synchronous order of 
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events, defined by an increase of expression, followed by decrease, which then again is 

succeeded by marker upregulation towards the end of the axis. Altogether the trend of all 

three markers, although not immediately detectable for Neurod1 and Isl1 in our 1D-PCA 

model, coincides with our published findings. Nonetheless, in this particular sample, 

Monocle facilitates a more readily assessment of differences in gene expression along the 

trajectory.

As a reminder, regardless of the approach employed, the series of cells along the trajectory 

does not necessarily indicate how similar two cells are, nor does it allow determining a 

particular stage of the process. It does, however, permit to conclude that a cell that precedes 

another cell is less advanced in the process of investigation, and vice versa.

Notwithstanding, 1D-PCA and Monocle differ in various mathematical ways, but they have 

one commonality that may limit their overall utility in recognizing additional biologically 

relevant patterns: both assume the variables to conform a linear relationship which is not 

always the case and prevents the identification of motifs that are of nonlinear character. A 

simple example is the correlative but non-linear behavior of expression levels of two genes. 

A continuous increase of expression of a specific gene could be accompanied by a 

discontinuous (such as exponential or binary) change of expression of the second gene.

As non-linear but correlated relationships have implications in many biological systems, we 

propose as a third practical alternative the use of self-organizing maps (SOMs), a subtype of 

artificial neural networks (Kohonen, et al., 2001). Neural network terminology refers to a 

general operating principle of the sensory nervous system where input signals are projected 

onto particular territories in the brain. For instance, neighboring photoreceptors in the retina 

when stimulated elicit a response in the visual cortex of the cerebellum with distinct 

topographical arrangement. Surprisingly, SOMs have not been as widely used as PCA in 

analysis of multivariate datasets derived from quantitative RNA measurements of single or 

bulk cells. Tamayo and colleagues were one of the first to apply SOMs to describe 

hematopoietic differentiation and yeast cell-cycle regulation in several well-studied cell-line 

models (Tamayo, et al., 1999). Instead of classifying samples the authors were able to group 

genes to functionally related cohorts and conclusively demonstrated how SOMs can greatly 

support data interpretation. The key distinction to afore-discussed procedures is that 

dimension-reduction in SOMs operates in a topology-preserving mode. Thus, neighborhood-

relationships and distance associations between single cells in high-dimensional space are 

conserved when presented onto a lower-dimensional format. Considering data points (cells) 

positioned in a multi-variable coordinate system with objects positioned further away from 

each other the more different they are, this may effectively help capturing dissimilarities. 

Usually the low-dimension space comprises a 2D-lattice that is composed of interconnecting 

nodes (called neurons) which itself encompass similar, classified objects, such as cells. The 

degree of ‘similarity’ refers herby to how close two cells are in multivariate space where 

their location is exclusively determined by their expression profiles (Fig. 3A, right).

A central feature of artificial neural networks is their capability to learn unlike non-machine-

learning algorithms such as ICA or PCA. In SOMs, this learning phase happens adaptively 

such that observations (i.e., cells) of an input layer are successively presented to a pre-
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defined number of adjoined neurons in an output layer. Generally, the number of neurons is 

smaller than the number of input cells. If expression data is provided, this reiterative 

learning process assures that nearby cells are eventually classified in the same or adjacently 

located nodes/neurons. After training and mapping is completed, the resulting maps can 

serve as a platform for various clustering approaches to identify distinct territories that 

distinguish groups of cells.

To illustrate the potential of this strategy we tested the qRT-PCR data from the identified 

neuroblast population. We chose a one-dimensional 15×1 neuron-lattice as output layout and 

exemplary visualized expression data of the previously introduced neuroblast markers (Fig. 

3B, bottom left). In comparison to 1D-PCA and Monocle, the output of this SOM analysis 

shows an analogous expression distribution of all three genes, characterized by contrasting 

gradients of markers Neurog1 and Isl1, and largely unchanged expression of Neurod1 across 

all nodes. Even though one loses single-cell-resolution, as nodes represent classifier objects 

that include cells in close high-dimension proximity, we conjecture that self-organizing 

maps, especially when examining hundreds or thousands of cells will offer an invaluable 

tool to parse multivariate expression data from single cells of developing organs. 

Furthermore, SOMs are suitable for subsequent cluster analysis that in turn may promote 

data interpretation.

Conclusion and outlook

The wonderfully complex morphology and physiology of the inner ear offers a multitude of 

applications for single cell trajectory analysis. Trajectories do not necessarily have to be of 

temporal nature, but could also be applied to systems with spatial coordinates, a concept that 

is referred to as ‘spatial transcriptomics’. Rather than early versus late, opposing ends of the 

output curve could represent dorsal versus ventral for instance. Recent projects that utilize 

high-dimensional quantitative transcriptome data to reconstruct the mouse otocyst in form of 

a hollow sphere (Durruthy-Durruthy, Gottlieb, Hartman, Waldhaus, Laske, Altman and 

Heller, 2014a, Durruthy-Durruthy, et al., 2014b) illustrate how single cell spatial 

transcriptomics can have the potential to greatly impact research in inner ear biology. A 

prime example for another useful application of spatial transcriptomics is the molecular 

analysis of the tonotopic organization of the cochlear duct in mammals. Gradual changes in 

hair cell morphology as well as physiologically tonotopic gradients along the basal-to-apical 

cochlear axis manifest in changes of hair cell mechanoelectrical transduction channel 

properties, calcium buffers, and synapses (Holton and Hudspeth, 1983, Liberman, et al., 

2011, Mutai, et al., 2005, Ricci, et al., 2003, Ricci, et al., 2000). Utilizing single cell 

trajectory analysis of qRT-PCR or RNAseq data, these spatially encrypted variations can be 

studied at high-resolution. We envision that such experiments can contribute to a better 

understanding of how molecular gradients bestow hair cells with highly specialized and 

gradually changing features allowing them to maintain physiological properties that are in 

perfect alignment with their position along the cochlear frequency map. Of course, this 

exploration will not halt at inner and outer hair cells; it can be extended to analyze different 

supporting cell subtypes as well as to study processes that govern tonotopy establishment 

during development.
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The ability to profile thousands of genes in individual cells has remarkably improved our 

understanding of organ development (Brunskill, et al., 2014, Durruthy-Durruthy, Gottlieb, 

Hartman, Waldhaus, Laske, Altman and Heller, 2014a), tissue homeostasis (Buczacki, et al., 

2013), and regeneration (Pina, et al., 2012) in various biological systems. Whereas 

nowadays expression profiles of hundreds of single cells are routinely assayed in one 

experiment, soon this number will climb to the thousands, if not even higher. Methodologies 

that are proficient to deal with this mounting data are needed and their successful 

implementation will inevitably determine the pace and direction of the development of 

single-cell research in the future.

The herein discussed concept of computationally constructed single-cell trajectories may be 

universally applied and is (should be) particularly promising for the inner ear research 

community. Understanding lineage formation and progression such as of the prosensory 

domain cells in the vestibular system, the cochlea, as well as the before mentioned 

neuroblasts are prerequisite in developing cell-based therapeutic approaches. Likewise, we 

envision that this methodology will allow researchers to identify the distinct steps that 

initiate, execute, maintain, and terminate the process of hair cell regeneration in the non-

mammalian inner ear. This knowledge, in turn, when paired with future studies conducted in 

mammals, which in the adult show dysfunctional regenerative abilities, could indeed speed 

up the process of finding novel cures for hearing loss. There are many additional 

possibilities and we would like to conclude with advising overexcited researchers like 

ourselves to remain calm and to focus on carefully planning experiments with a strong 

emphasis on data analysis.
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Figure 1. Trajectory Analysis – Conceptual Overview
(A) Trajectories describe a directional route, which can serve as a model to describe cellular 

differences. Shown is an unbranched as well as a branched (bifurcated) type of trajectory. 

Single cells are organized along the vector and because they gradually differ in their 

transcriptomes, they represent temporally defined processes or spatial organization. (B) 

Schematic overview of a simplified trajectory analysis workflow to resolve temporal 

dynamics of a biological process. Individual cells are profiled at three distinct, consecutive 

time points. Subsequently, cells are ordered along different trajectories according to the 

experimental time points. Trajectories may be merged to give rise to a joined vector that 

comprehensively describes the biological process.
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Figure 2. Violin plots of select transcript expression histograms in otic vesicle/neuroblast cells
Shown are expression distributions for “housekeeping genes” Actb and Gapdh in 382 

individual cells isolated from the mouse otocyst and delaminating neuroblasts. Note that all 

cells express the two genes and that expression levels range between a low and high level on 

the log2 scale of expression. (B) Expression distributions of Notch2 and Pax2 mRNA show 

a unimodal distribution of cells that express the genes at different levels. A fraction of cells 

do not express these genes, illustrated by the peaks centered at zero. (C) Examples for 

multimodal expression such as Tbx2. MRNA is detectable in a majority of the 382 cells but 

with distinct peaks at different expression levels that likely reflect biological heterogeneity 

and not simply noise. Likewise, Eya2 transcripts center around two distinct expression level 

maxima when detected, indicating the presence of two distinct subpopulations of cells 

(bimodal distribution).
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Figure 3. Comparison of three different unsupervised, exploratory approaches to study 
progression of otic neurogenesis over time along a trajectory
(A) Schematic overview of the mathematical principle that governs each of the following 

approaches: One-Dimensional Principal Component Analysis (1D-PCA, left), Independent 

Component Analysis (ICA, center), and One-Dimensional Self-Organizing Maps (1D-SOM, 

right). For each case hypothetical data points are shown and how they spread across a two-

dimensional (2D) coordinate system. Left: In 1D-PCA, red arrows indicate the two principal 

components (PC) of the data and their orthogonal relationship. PC1 follows the direction of 

the largest variability of the data. Center: Red arrows refer to the two independent 

components of the data. The drawing suggests that they present the original data more 

accurately than PCA as IC1 and IC2 are not required to stand perpendicular to each other. 

Right: Final 2D-lattice (red) of 9 neurons is shown as it spans across the 2D-data space after 

hypothetical training process. Topological features of the data are preserved in the neuron-

organization of the SOM.

(B) Visualization of expression data for three marker genes for each of the three approaches. 

Top left: Adopted from (Durruthy-Durruthy, Gottlieb, Hartman, Waldhaus, Laske, Altman 

and Heller, 2014a). Individual points represent cells and are color-coded according to gene 
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expression levels. Cells are ordered along the first principal component vector. Right: 

Individual cells are shown in red and organized across a pseudo-time axis after the 

‘Monocle’ algorithm. Distribution of cells is fitted (line) and shows additional information 

of the dynamics of otic neurogenesis. Bottom left: Self-organizing maps color-coded with 

mean expression levels for each of the three markers. The map consists of 15 neurons of 

which each contains a variable number of individual cells.
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