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Abstract

Primary open-angle glaucoma is the most common optic neuropathy and an important cause of 

irreversible blindness worldwide. The optic nerve head or optic disc is divided in two parts: a 

central cup (without nerve fibers) surrounded by the neuroretinal rim (containing axons of the 

retinal ganglion cells). The International Glaucoma Genetics Consortium conducted a meta-

analysis of genome-wide association studies consisting of 17,248 individuals of European ancestry 

and 6,841 individuals of Asian ancestry. The outcomes of the genome-wide association studies 

were disc area and cup area. These specific measurements describe optic nerve morphology in 

another way than the vertical cup-disc ratio, which is a clinically used measurement, and may shed 

light on new glaucoma mechanisms. We identified 10 new loci associated with disc area 

(CDC42BPA, F5, DIRC3, RARB, ABI3BP, DCAF4L2, ELP4, TMTC2, NR2F2, and HORMAD2) 

and another 10 new loci associated with cup area (DHRS3, TRIB2, EFEMP1, FLNB, FAM101, 

DDHD1, ASB7, KPNB1, BCAS3, and TRIOBP). The new genes participate in a number of 

pathways and future work is likely to identify more functions related to the pathogenesis of 

glaucoma.
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Introduction

The optic nerve is a white matter tract approximately 55 millimeters in length that transmits 

visual information from the eye to the brain. Various diseases—the most common of which 

is glaucoma—affect the optic nerve morphology and function. There are many types of 

glaucoma and in this manuscript we focus on primary open-angle or simple glaucoma, 

which is one of the leading causes of irreversible blindness worldwide. The optic nerve 

head, often referred to as the optic disc, is the place where the retinal ganglion cell axons 

leave the eye and bundle together to form the optic nerve. It is visible at the back of the eye 
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by ophthalmoscopy and is valuable in the assessment of optic nerve-related diseases. 

Additionally, the optic nerve morphology is a major target of imaging devices (including the 

Heidelberg Retina Tomography and Optical Coherence Tomography) in screening and 

follow-up of glaucoma-suspect persons and glaucoma patients. The optic disc consists of 

two morphologically distinct parts: the cup in the center of the disc, without nerve fibers, 

and the (neuroretinal) rim, carrying the axons of the retinal ganglion cells. There is a small, 

age-related decline in the number of axons during life: the decrease is about one third of 

axons in 100 years [Jonas et al., 1990; Jonas et al., 1992]. Glaucoma is characterized by an 

accelerated loss of retinal ganglion cell axons, resulting in an enlarged cup and a reduced 

rim area. The heritability of optic nerve morphological features is estimated to be 52–83% 

for the disc area, 66–77% for the cup area, and 34–39% for the rim area [Sanfilippo et al., 

2010; van Koolwijk et al., 2007]. The majority of genetic studies has focused on the vertical 

cup-disc ratio (VCDR), which is a measure used to assess glaucoma clinically. However, 

different mechanisms (growth vs. degeneration) may underlie the disc, cup, and rim area. 

This raises the question whether gene discovery focusing on other measures (parameters) 

describing the optic disc than only the VCDR may shed light on the development and 

pathogenesis and mechanisms of diseases of the optic nerve. To date, genome-wide 

association studies (GWAS) have identified four loci for disc area within or near to the 

genes ATOH7, CARD10, CDC7/TGFBR3, and SALL1 and one locus for rim area (RERE) 

[Axenovich et al., 2011; Khor et al., 2011; Macgregor et al., 2010; Ramdas et al., 2010]. We 

performed a meta-analysis of GWAS for these disc area parameters within the International 

Glaucoma Genetics Consortium (IGGC).

Methods

Study design

We performed a meta-analysis on directly genotyped and imputed SNPs from individuals of 

European ancestry in seven studies, with a total of 17,248 individuals (stage 1). 

Subsequently, we evaluated significantly associated SNPs in 6,841 subjects of Asian origin 

including four different studies (stage 2) and performed a meta-analysis on all individual 

studies from stage 1 and stage 2 (stage 3).

Participants and Phenotyping

All studies included in this meta-analysis are part of the International Glaucoma Genetics 

Consortium (IGGC). The ophthalmic examination of each study included an assessment of 

the optic nerve head (Supplementary Table S1B).

The meta-analysis of stage 1 was based on seven studies of European ancestry: Brisbane 

Adolescent Twin Study (BATS), Erasmus Rucphen Family (ERF) Study, Gutenberg Health 

Study (GHS I/GHS II), Raine Study, Rotterdam Study (RS-I/RS-II/RS-III), Twins Eye 

Study in Tasmania (TEST), and TwinsUK. Stage 2 comprised four Asian studies: the 

Beijing Eye Study (BES), Singapore Chinese Eye Study (SCES), Singapore Malay Eye 

Study (SIMES), and Singapore Indian Eye Study (SINDI).
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Information on general methods, demographics, phenotyping, and genotyping methods of 

the study cohorts can be found in Supplementary Tables S1 and S2 and the Supplementary 

Note. All studies were performed with the approval of their local medical ethics committee, 

and written informed consent was obtained from all participants in accordance with the 

Declaration of Helsinki.

Genotyping and Imputation

Information on genotyping in each cohort, the particular platforms used to perform 

genotyping and the methods of imputation can be found in more detail in Supplementary 

Table S1C. To produce consistent datasets and enable a meta-analysis of studies across 

different genotyping platforms, the studies performed genomic imputation on available 

HapMap Phase 2 genotypes with MACH [Li et al., 2010] or IMPUTE [Marchini et al., 

2007], using the appropriate ancestry groups as templates. Each study applied stringent 

quality control procedures for imputation (Supplementary Note). For the metaanalysis, only 

single nucleotide polymorphisms (SNPs) with minor allele frequency ≥ 1%, Hardy 

Weinberg Equilibrium P-value > 10−6, and imputation quality scores ≥ 0.3 (proper-info of 

IMPUTE) or R2 ≥ 0.3 (MACH) were included.

Statistical Analysis

As the rim area is the difference between the disc area and cup area, there are two 

independent variables. Of these, we selected (essentially arbitrarily from a mathematical 

point of view) disc area and cup area. Moreover, disc and cup area are clearly correlated 

(Pearson correlation coefficient is 0.59 in Rotterdam Study I). For that reason, we analyzed 

(1) disc area and (2) cup area adjusted for disc area. We used the mean of the measurements 

of both eyes. Unreliable optic nerve head data were excluded (e.g., images with standard 

deviation > 50 for the Heidelberg Retina Tomograph). In cases of missing or unreliable data 

for one eye, data for the other eye were taken. Each individual study did a linear regression 

model between the outcomes and approximately 2.5 million HapMap stage 2 SNPs under 

the assumption of an additive model for the effect of the risk allele. Analyses were adjusted 

for age, sex, and the first two principal components (for population-based studies) or family 

structure (for family-based studies) to correct for population substructure. Adding additional 

principal components did not appreciably change the lambda. Glaucoma is characterized by 

an increased cupping independent of the size of the disc. Therefore, in the linear regression 

analysis with cup area as outcome, we used disc area as an extra covariate.

All study effect estimates were oriented to the positive strand of the NCBI Build 36 

reference. Positioning and annotations for the SNPs were done using the NCBI Build 37 

reference. We performed an inverse variance weighted fixed-effect meta-analysis using 

METAL software [Willer et al., 2010]. We used the ‘genomic control’ option in METAL 

that estimates the inflation of the test statistic of each individual study and corrects the 

standard error of each individual study for the inflation.

In stage 1, a P-value < 5.0 × 10−8 (the genome-wide threshold of association) was 

considered significant. In the replication stage 2, a nominal P-value < 0.05 was considered 

significant given the already high prior probabilities of association from stage 1. Genome-
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wide significant SNPs for disc area were tested for cup area, and vice versa. In total, there 

were 36 independent SNPs. Therefore, our Bonferonni corrected significant threshold for 

this analysis was 0.05/36 = 1.39 × 10−3. Manhattan, regional, and forest plots were made 

using R (http://www.r-project.org/), LocusZoom [Pruim et al., 2010], and Stata/SE 12.0 

(StataCorp LP, College Station, TX, USA), respectively.

Gene-Based Test Using VEGAS

Gene-based testing was performed using VEGAS software [Liu et al., 2010], which 

combines the test statistics of all SNPs present within and 50 kb upstream or downstream of 

each gene. Linkage disequilibrium (LD) between the markers was accounted for through 

simulations from the multivariate normal distribution, based on estimates of LD from 

reference populations. Because Asian and European ancestry populations show different LD 

patterns, we performed separate gene-based tests for each population. Hapmap 2 CEU 

population was used as a reference to calculate LD for European ancestry data, whereas 

Hapmap 2 JPT and CHB combined population was used as a reference for Asian ancestry 

data. After calculation of gene-based test statistics for Asian and European ancestry 

populations separately, meta-analysis was conducted using Fisher’s method for combining 

P-values. VEGAS was applied to the summary data from the full disc and cup area analysis 

(as in Tables 1 and 2).

Phenotypic Variability

To evaluate whether the different optic nerve head area parameters have a shared genetic 

component with primary open-angle glaucoma, two genetic risk scores were calculated 

based on the GWAS results for disc area and cup area. The genotyped SNPs from the 

discovery cohort were categorized into 17 categories according to P-values, and risk scores 

for each category were calculated in the ANZRAG study consisting of 1,155 glaucoma cases 

and 1,992 controls and NEIGHBOR consisting of 2,131 glaucoma cases and 2,290 controls 

as target cohorts (see Supplementary Information). To maximize the overlap between the 

genotyped SNPs from the discovery cohort and the SNPs included in the target cohorts, the 

imputed SNPs with imputation quality score > 0.8 in the target cohort were used for risk 

score calculation to replace SNPs that were not genotyped in the target cohort. For each 

individual, the score for a particular SNP was calculated as the effect estimate of the SNP 

multiplied by the dosage of the effect allele of that SNP. The risk score was defined as the 

mean of the scores for all SNPs. Logistic regression analyses with glaucoma as outcome 

adjusted for sex as covariate were performed to calculate the Nagelkerke R-square for the 

two risk scores (disc area and cup area).

Pathway-Analysis Using Pathway-VEGAS

Prespecified pathways from the Gene Ontology database with size ranging in 5–500 genes 

were used to perform pathway analysis. Pathway-VEGAS combines VEGAS gene-based 

test statistics based on prespecified biological pathways [Lu et al., 2013]. Pathway P-values 

were computed by summing χ2 test statistics derived from VEGAS P-values. Empirical 

“VEGAS-pathway” P-values for each pathway were computed by comparing the real data 

summed χ2 test statistics with 500,000 simulations where the relevant number (as per size of 
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pathway) of randomly drawn χ2 test statistics was summed. To ensure clusters of genes did 

not adversely affect the result, gene-sets were pruned such that each gene was >500 kb from 

all other genes in the pathway. When genes were clustered, only one of the clustered genes 

was included for that pathway. Pathway-VEGAS was performed separately for European 

and Asian ancestry datasets. Meta-analysis was conducted using Fisher’s method for 

combining P-values.

Results

This work followed two parallel directions that corresponded to multistage meta-analyses of 

two phenotypes of interest. Although there were superimpositions in the genetic risk of each 

of these phenotypes leading to regulation of optic disc morphology in the populations, 

results will be broken down and reported individually for each. As described in the Methods, 

we tested for association using linear regression models adjusting for age, sex, and two 

principal components or family structure.

Disc Area

Stage 1 included 17,248 individuals of European ancestry. We analyzed approximately 2.5 

million directly genotyped or imputed (HapMap) SNPs. The inflation factors (λ) varied 

between 0.98 and 1.06 (1.10 for the meta-analysis), implying adequate within-study control 

of population substructure (Supplementary Table S2 and Supplementary Fig. S2A, B, and 

C). This analysis yielded 296 genome-wide significant (P < 5.0 × 10−8) SNPs located across 

five chromosomal regions (CDC7/TGFBR3, CDC42BPA, DCAF4L2, ATOH7, and SALL1) 

(Table 1, Supplementary Fig. S1A and Supplementary Table S3).

Stage 2 included 6,841 individuals of Asian ancestry. The λ varied between 1.00 and 1.03. 

Of the most significantly associated SNPs at each of the five chromosomal regions in 

Europeans, three reached nominal significance (P < 0.05) in the Asians: CDC7/TGFBR3, 

CDC42BPA, and ATOH7. The SNP with the most significant association at the chromosome 

8 region (DCAF4L2) in stage 1 was not imputed in the Asian population. The second most 

associated SNP in Europeans (rs12547416, β = −0.03, P = 3.25 × 10−8) at this region was 

significant in the Asian population (β = −0.03, P = 2.95 × 10−4).

The combined analysis in stage 3 (overall λ 1.10) resulted in nine additional genome-wide 

significant chromosomal regions. The results of these SNPs were genome-wide suggestive 

(P < 5.0 × 10−5) in the individuals of European ancestry and nominally significant in 

individuals of Asian ancestry (P < 0.05). Of the 14 associated regions (five associated in 

Europeans and Asians and nine identified using all cohorts), 10 were not previously related 

to disc area: CDC42BPA (chr. 1) and DCAF4L2 (chr. 8) identified in stage 1, and F5 (chr.1), 

DIRC3 (chr. 2), RARB (chr.3), ABI3BP (chr. 3), ELP4 (chr. 11), TMTC2 (chr. 12), NR2F2 

(chr. 15), and HORMAD2 (chr. 22) identified in stage 3.

In order to identify new loci that were not found through per-SNP test, we performed a 

gene-based test using VE-GAS software. Because of the smaller number of genes tested 

(17,872), our gene-based significance threshold pgene-based was 2.80 × 10−6 (0.05/17,872). 

Supplementary Table S5 shows 23 genes with a P-value below 2.80 × 10−6 for the gene-
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based test. Of these 23 genes, 22 genes were located in loci identified by the GWAS. In 

addition to the loci already identified, we found a gene-based significant association of 

PAX6 with disc area (gene-based test P = 5.15 × 10−8).

Cup Area

Stage 1 included 17,218 individuals of European ancestry, with λ-values varying between 

0.98 and 1.06 (1.10 for the meta-analysis), implying adequate within-study control of 

population substructure (Supplementary Table S2 and Supplementary Fig. S6A, B, and C). 

In total, 342 SNPs located across 15 chromosomal regions were genome-wide significant 

(Table 2, Supplementary Fig. S5A and Supplementary Table S4).

Stage 2 consisted of 6,613 individuals of Asian ancestry (λ 1.01–1.03). Nine of the 15 most 

associated SNPs across the 15 chromosomal regions were nominal significant in this Asian 

population. The most significantly associated SNP on chromosome 16 in Europeans could 

not be imputed with sufficient accuracy for use in individuals of Asian ancestry (SALL1). 

The second most significant associated SNP in the Europeans (rs4238758, β = −0.02, P = 

4.83 × 10−8) did not replicate in individuals of Asian ancestry (β = −0.02, P = 3.11 × 10−1).

In stage 3, the combined analysis (meta-analysis λ 1.10) yielded seven additional genome-

wide significant loci. Of the 22 (15 + 7) chromosomal regions, 12 were previously genome-

wide significant associated with the VCDR, the clinically used optic disc parameter 

[Springelkamp et al., 2014]. The VCDR is highly correlated to cup area (r = 0.78, calculated 

in the Rotterdam Study I). The other 10 loci were new: DHRS3 (chr.1), TRIB2 (chr.2), 

KPNB1 (chr.17), and BCAS3 (chr.17) identified in stage 1, and EFEMP1 (chr. 2), FLNB 

(chr.3), FAM101A (chr.12), DDHD1 (chr.14), ASB7 (chr.15), and TRIOBP (chr.22) 

identified in stage 3.

In the gene-based analysis, FAT4 was significantly associated with cup area, but this 

association disappeared after correction for disc area. This gene is also associated with disc 

area (nominal significant; P = 6.69 × 10−3) suggesting that FAT4 acts primarily through its 

effect on disc area. For the cup area adjusted for disc area analysis, 27 genes were 

significant but all of them are located in regions identified by the GWAS.

From Genes to Glaucoma

To investigate the relevance of the disc area and cup area SNPs in the clinical disease 

glaucoma, we calculated the explained variance of glaucoma in ANZRAG and NEIGHBOR. 

The top SNPs from the disc area analysis (P < 10−8) explained 0.1% (ANZRAG) and 0.07% 

(NEIGHBOR) of the variance of glaucoma (Table 3). The top SNPs from the cup area 

analyses (P < 10−8), explained 2.1% (ANZRAG), and 3.2% (NEIGHBOR) of the variance. 

The top SNPs mainly consisted of SNPs in CDKN2B-AS1 and SIX6. To investigate the 

effect of other SNPs, we removed SNPs within 1 MB from CDKN2B-AS1 and SIX6 in 

ANZRAG. The explained variance of glaucoma decreased from 1.5% to 1.0% (SNPs P < 

0.1), but was still significant (P = 1.36 × 10−6). In the Rotterdam Study I, the 10 new cup 

area SNPs explained an additional 0.9% of the VCDR phenotypic variability compared to 

known VCDR SNPs [Springelkamp et al., 2014].
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Pathway Analysis

To test whether the genes found through the VEGAS gene-based approach were enriched in 

4,628 prespecified Gene Ontology pathways we performed a pathway analysis using 

Pathway-VEGAS [Lu et al., 2013]. We used a pathway-wide significance threshold of 1.08 

× 10−5 (0.05/4,628). One pathway exceeded the pathway-wide significance level for disc 

area: “Entrainment of circadian clock” (P = 8.00 × 10−6). This pathway result was driven by 

the strong association signal at ATOH7. For cup area (unadjusted for disc area), the top 

pathway is “Negative regulation of cyclin-dependent protein kinase activity” that is also 

associated with VCDR [Springelkamp et al., 2014]. After adjustment for disc area, the top 

pathway for cup area was “G1/S transition checkpoint” (P = 4.66 × 10−5) (Supplementary 

Table S6). The known POAG gene CDKN2B-AS1 is part of this pathway.

Discussion

This study identified new genetic loci associated with two parameters describing the 

morphology of the optic nerve head. In total, we identified 10 new disc area loci and 10 new 

cup area loci. Gene-based analysis identified one additional region associated with disc area.

Of the 10 new disc area loci, two were identified in stage 1 and did replicate in stage 2. The 

eight other new loci were identified in stage 3 and therefore replication is missing because of 

lack of samples. In the cup area analysis, four new loci were identified in stage 1 and the 

KPNB1 and BCAS3 SNPs did not replicate in stage 2. However, the effect estimates are 

similar and in the same direction in Caucasian and Asian populations so this might be due to 

lack of power since we included less samples in stage 2. For the six other new loci from 

stage 3, replication is also missing. Although there is lack of replication for the new loci 

identified in stage 3, the P-values of the associations from stage 1 are low for these SNPs 

and the effect estimates are similar and in the same direction in stage 2, suggesting that these 

new loci are real new loci. Some SNPs showed heterogeneity. Therefore, we ran also a 

random-effect meta-analysis. For the new loci, most effect estimates and P-values remain 

similar after the random-effect meta-analysis. Only the P-value for BCAS3 (cup area) 

decreased from 4.49 × 10−11 to 9.27 × 10−3, but the effect estimate remained similar (−0.018 

vs. −0.017), which is compatible with the heterogeneity as measured with the I2.

We investigated the expression of the genes implicated in the parameters for optic nerve 

head areas by these analyses in various eye tissues using published literature or human 

ocular gene expression databases (Supplementary Tables S7 and S8) [Bowes Rickman et al., 

2006; Liu et al., 2011; Wagner et al., 2013; Young et al., 2013]. The highest expression in 

the optic nerve was found for ABI3BP. Most of the other genes were also expressed in the 

optic nerve or other glaucoma-related eye tissues like the trabecular meshwork and the 

cornea.

The genes in the new disc area loci have different functions. An interesting gene is RARB, 

which limits cell growth by regulating gene expression. Also NR2F2 plays a role in gene 

regulation. PAX6 was identified by gene-based analysis. Although PAX6 is a neighboring 

gene (with linkage disequilibrium extending across this region) to ELP4, which was 

associated with disc area in the GWAS, the strong biological relevance of PAX6 to eye 
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development (it is expressed in developing eyes, and rare mutations cause aniridia, a rare 

developmental eye disorder [Jordan et al., 1992]) suggests that genetic variation in this 

region more likely influences the regulation of PAX6 rather than other genes in the region.

Our study shows that studies of optic nerve head parameters may shed light on clinical 

outcomes. The genetic overlap between disc area and glaucoma is small, but the direction of 

the significant risk scores (P threshold < 0.1 and higher) might suggest that a larger disc area 

increases the risk of glaucoma. There is a strong genetic overlap between the cup area and 

glaucoma: 2.1% and 3.2% of the variance of glaucoma is explained by the most significant 

SNPs for cup area in two independent glaucoma case–control studies (ANZRAG and 

NEIGHBOR, respectively). This is mostly explained by the known genes CDKN2B-AS1 and 

SIX6, but SNPs in other genes explain also 1.0% of the variance, based on a polygenic risk 

score comprising all SNPs associated at P < 0.1 with cup area. The loci that are associated 

with cup area are also associated with VCDR (Supplementary Table S9). The region on 

chromosome 22 (with the top SNP rs5756813) contains the CARD10 gene that was 

previously reported to be associated with disc area. However, it seems that the TRIOBP gene 

is responsible for the association with cup area. Its protein interacts with trio, which is 

interesting because of the role of trio in neural tissue development [Seipel et al., 2001]. The 

nearest gene to the top SNP on chromosome 14 (rs10130566) is DDHD1, but the association 

might be explained by the BMP4 gene. This gene is a member of the bone morphogenetic 

protein family, which is part of the transforming growth factor-beta superfamily. Another 

member of this family is BMP2, which is also associated with VCDR [Springelkamp et al., 

2014]. While the top SNP on chromosome 15 is located near to the ASB4 gene, the 

ADAMTS17 in this region may contribute more to disease susceptibility. This gene belongs 

to the same family of ADAMTS8, which is associated with VCDR [Springelkamp et al., 

2014]. Furthermore, ADAMTS17 is already linked to some forms of (syndromal) glaucoma 

[Morales et al., 2009]. Pathway analysis implicated that cell growth and death is an 

important mechanism associated with cup area.

Figure 3 shows the overlap between the different optic nerve head area parameters. Overall, 

most loci were only associated with disc area or cup area. ATOH7 was associated with disc 

and cup area as well as with glaucoma [Ramdas et al., 2011]. SIX6 and CDKN2B-AS1 were 

associated with cup area and glaucoma [Burdon et al., 2011; Wiggs et al., 2012]. The figure 

shows only genome-wide significant SNPs, but it is likely that other SNPs affect also more 

than one trait, including rs11129176 (RARB), which is genome-wide significant in disc area 

and reached a P-value of 1.12 × 10−5 in the cup area analysis.

In summary, we found 20 new loci associated with optic nerve head area and/or cupping 

which explain a further proportion of the missing heritability of glaucoma. These results 

showed that investigation of more refined measurements of optic nerve head morphology, 

especially the cup area, is a fruitful approach to discover new glaucoma-related loci, in 

addition to the crude VCDR linear measurement commonly used in clinical practice and 

previously investigated [Springelkamp et al., 2014]. The new loci contain many genes with 

different functions, and while there appears to be one strong candidate causal gene in some 

regions, there are several possible candidate genes in others. Further research including 

exome sequencing and functional studies is necessary to unravel the causative associations 
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in the gene-dense regions and the mechanism of these genes in the pathophysiology of 

glaucoma. Our findings are an important step toward a better understanding of the disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot of the GWAS meta-analysis for disc area in the combined analysis (n = 

24,089 subjects of European and Asian ancestry). The plot shows −log10-transformed P-

values for all single nucleotide polymorphisms. The red dotted horizontal line represents the 

genome-wide significance threshold of P < 5.0 × 10−8; the blue dotted line indicates P-value 

of 1 × 10−5. Gene loci in bold have been previously associated with disc area.
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Figure 2. 
Manhattan plot of the GWAS meta-analysis for cup area (adjusted for disc area) in the 

combined analysis (n = 23,831 subjects of European and Asian ancestry). The plot shows 

−log10-transformed P-values for all single nucleotide polymorphisms. The red dotted 

horizontal line represents the genome-wide significance threshold of P < 5.0 × 10−8; the 

blue dotted line indicates P-value of 1 × 10−5. Gene loci in bold have been previously 

associated with cup area.
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Figure 3. 
Overlap between the different optic nerve head parameters. Genes that reached genome-

wide significance are shown. VCDR = vertical cup-disc ratio, * = genes that have been 

previously associated with glaucoma. All SNPs associated with cup area, are also associated 

with VCDR (Supplementary Table S9).
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