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Abstract

In the development of risk prediction models, predictors are often measured with error. In this 

paper, we investigate the impact of covariate measurement error on risk prediction. We compare 

the prediction performance using a costly variable measured without error, along with error-free 

covariates, to that of a model based on an inexpensive surrogate along with the error-free 

covariates. We consider continuous error-prone covariates with homoscedastic and heteroscedastic 

errors, and also a discrete misclassified covariate. Prediction performance is evaluated by the area 

under the receiver operating characteristic curve (AUC), the Brier score (BS), and the ratio of the 

observed to the expected number of events (calibration). In an extensive numerical study, we show 

that (i) the prediction model with the error-prone covariate is very well calibrated, even when it is 

mis-specified; (ii) using the error-prone covariate instead of the true covariate can reduce the AUC 

and increase the BS dramatically; (iii) adding an auxiliary variable, which is correlated with the 

error-prone covariate but conditionally independent of the outcome given all covariates in the true 

model, can improve the AUC and BS substantially. We conclude that reducing measurement error 

in covariates will improve the ensuing risk prediction, unless the association between the error-

free and error-prone covariates is very high. Finally, we demonstrate how a validation study can 

be used to assess the effect of mismeasured covariates on risk prediction. These concepts are 

illustrated in a breast cancer risk prediction model developed in the Nurses’ Health Study.

Keywords

risk prediction; probit regression; logistic regression; measurement error; ROC-AUC; Brier score

1. Introduction

Risk prediction models are used to translate research findings into valuable tools to assist 

prognostic assessment, screening algorithms, and clinical decision making. Several widely 
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used prognostic tools have been developed from epidemiologic data [1]–[3]. In 

epidemiology, key risk factors are often measured with error [4]-[15] and a great variety of 

statistical and epidemiological literature has dealt with correcting bias in relative risk 

estimators caused by measurement error [16]–[18]. However, little attention has been paid to 

the impact of measurement error on prediction, and a small number of papers, that 

considered influence of measurement error on prediction, analyzed it in terms of effect on 

risk estimates [19]-[21]. Some discussion of methods and problems in prediction in the 

presence of measurement error can be found in [17]–[18]. What appears to be the prevailing 

view was expressed by Carroll et al. ([17], Sec. 2.6): “Generally, there is no need for the 

modeling of measurement error to play a role in the prediction problem. If a predictor X is 

measured with error and one wants to predict a response based on the error-prone version W 

of X, then except for a special case, it rarely makes any sense to worry about measurement 

error. The reason is quite simple: W is error-free as a measurement of itself!” This means 

that a regression model fitted with noisy covariates can be a valid prediction model. A valid, 

or perfectly calibrated, model is unbiased in the sense that, on average, there is perfect 

agreement between the observed outcomes and predictions. For example, if the model 

predicts that 10% of those at risk will develop a certain disease, the observed frequency of 

the disease will be, on average, 10%. Formally, a model is perfectly calibrated, or unbiased, 

if E(p̂i) = E(Yi|Xi, Zi), where p̂i is the estimated conditional probability of {Yi = 1} given the 

covariates. An exception noted by Carroll et al. [17] occurs when the prediction model is 

estimated from a study with a given amount or form of covariate error but is to be applied to 

a population where the amount or form of covariate error is different. That is, when 

measurement error is not “transportable”, a risk prediction model perfectly calibrated to a 

population with one underlying error structure, will not be well calibrated to a population 

with another underlying error structure. This problem was recently addressed for replicated 

covariates measured under an independent additive error model [22].

Although mismeasured covariates may provide valid predictions, sometimes their respective 

costly error-free measures are, or could be, available. The main goal of this paper is to 

investigate the potential gain in prediction performance from using the error-free covariates. 

For example, in the Nurses’ Health Study (NHS) [23], a risk prediction model for 20-year 

breast cancer incidence was considered given a set of well known risk factors, some of 

which are error-free while others are error-prone. Risk factors in this model include age, age 

at menarche, age at first birth, family history of breast cancer, number of past breast 

biopsies, as in [2] and in [24]-[26], and could potentially be enhanced by data on alcohol 

intake [27, 28] and α−carotene intake [14, 29]. Here, the main study consists of 68,555 

female nurses whose alcohol and α−carotene intake were assessed through a self-

administered 131-item food frequency questionnaire (FFQs) at baseline in 1986. The FFQ 

measures dietary intake with moderate to substantial error [4]-[14], [30]. The validation 

study was conducted in NHS in 1986 [14] among 191 NHS cohort members by the 

corresponding values obtained two 7-day of weighed diet records for dietary intake assessed 

by FFQ. Using the methodology developed in this paper, we compared two risk prediction 

models, one using the surrogate intake measures obtained from the FFQs and the other using 

the gold standards from diet records, to assess the potential gain in risk prediction 

performance due to the availability of perfectly measured predictors.
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Among the generalized linear regression models for binary outcomes, logistic and probit are 

the two most widely considered link functions. Cox and Snell ([31], pp. 23) argued that 

although the two models produce different parameter estimates, these estimates usually end 

up with similar standardized impacts of the covariates; Greene ([32], p. 875) concluded that 

“in most applications, it seems not to make much difference”; Gill ([33], p. 33) indicated 

that they “provide identical substantive conclusions”; and similar conclusions appears 

regularly in the discussions comparing between the logit and probit models (e.g. [34]- [37]). 

Since the probit model provides analytically tractable expressions, in contrast to the logit 

model, we focus on probit models.

This paper investigates the effect of measurement error on risk prediction and demonstrates 

how a validation study can be used to assess the effect of mismeasured covariates on risk 

prediction. Specifically, we consider a probit regression model to predict a binary outcome 

based on error-free and error-prone covariates; linear measurement error models with 

homoscedastic and heteroscadastic error; and varied degrees of measurement error between 

the error-free and error-prone covariates. The case of a misclassified binary covariate is 

studied as well. The settings with heteroscadastic error variance or misclassified covariates 

are no longer follow the probit model. Hence, in these scenarios we use also the generalized 

additive model (GAM) of Hastie and Tibshirani [38].

The performance of the risk prediction models is evaluated in terms of the following three 

criteria [39]: discrimination,prediction accuracy, and calibration. Discrimination is assessed 

using the area under the receiver operating characteristic curve (AUC). Prediction accuracy 

(overall performance) is assessed using the Brier score (BS). Calibration is assessed by 

examining the ratio between the overall observed number of events and the expected number 

of events under the model. Although the AUC and BS are closely related quantities and 

under certain assumptions have an explicit relationship [40]-[41], since both are commonly 

used to evaluate model prediction quality and because the magnitude of comparisons differ 

between these two measures, we report results for both of them. For clarity of presentation 

of the effect of measurement error on risk prediction, we assume that the true values of the 

probit models parameters are available.

This article is organized in five sections. Section 2 defines the probit outcome model and the 

two measurement error models we consider in this paper, and several common measures to 

be used for comparing the performance of various prediction models to be examined. 

Section 3 provides a detailed description of the numerical study conducted for investigating 

the impact of measurement error on the performance of the prediction models. This 

investigation includes homoscedastic and heteroscedastic error models for a continuous 

covariate, and also models with a misclassified binary covariate . This section concludes 

with a summary of the results from the numerical study. In Section 4, we demonstrate the 

use of a validation study to assess the effect of mismeasured covariates on risk prediction, 

through a breast cancer risk prediction model in the Nurses’ Health Study [23]. Finally, 

Section 5, summarizes the practical implications of this work.
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2. Models and methods

2.1. The models

Consider a regression model relating a binary response variable Y to a true predictor X and 

an error-free predictor Z. Let W denote the error-prone value corresponding to X. We define 

the binary outcome Y in terms of a continuous latent random variable Y0. Specifically, let Y 

= I(Y0 ≥ 0), with

(1)

where α, β and γ are unknown regression coefficients and η is a normal random variable 

with zero mean and unknown variance ω2. In addition, we assume that (Y0, X, Z) is 

multivariate normally distributed with expectation (α, 0, 0)T, and the following variance-

covariance components: ; and 

. This model is known in quantitative genetics as a liability 

model (see for example [42]). The liability model assumes that a normal random variable Y0 

is related to the discontinuous trait Y by a threshold, providing a convenient methodological 

framework, as here. However, we note that the results provided in this paper are based on 

the model (1). For more general conclusions, further numerical studies are needed.

Next, we assume that W is a surrogate for X, i.e. the conditional distribution of Y given (X, Z, 

W ) equals the conditional distribution of Y given (X, Z). In addition, we assume the linear 

regression measurement error model W = c + dX + ε, where ε is independent of X and is 

normally distributed with mean zero. This measurement error model is an established model 

in the measurement error modeling literature [17, 43, 44]. The special case c = 0 and d = 1 

yields the classical additive measurement error model W = X + ε. Under the homoscedastic 

measurement error model, it is assumed that ε has constant variance . The 

heterosocedastic setting will specify a conditional normal distribution of ε given the true 

covariate X such that the conditional variance of ε is a function of X.

Let Φ denote the cumulative distribution function of the standard normal distribution. The 

true and surrogate probit prediction models are based on (Y, X, Z) and (Y, W, Z), 

respectively. Then,

(2)

and under the linear regression measurement error model and the multivariate distribution of 

(Y0, X, Z) described above
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(3)

Based on the attenuation matrix ([17], p. 53, Eq. (3.12), [43]-[45]), , ,  and  can be 

explicitly written as a function of α, β, γ, ρX,Z, c, d, , , and . The exact form of 

 for the scenarios considered in this paper will be given in Section 3.

2.2. Performance measures

Let ϕ denote the density of the standard normal distribution, fS(·) the density of S = α + βX + 

γZ, and fS0(·) and fS1(·) the conditional densities of S given the events {Y = 0} and {Y = 1}, 

respectively. Then, by Bayes rule we obtain fS0(s) = fS(s) Pr(Y0 ≤ 0|S = s)/ Pr(Y0 ≤ 0) and 

fS1(s) = fS(s) Pr(Y0 > 0|S = s)/ Pr(Y0 > 0). Hence, 

 and 

, where 

. Since, AUC(X, Z) = P (S0 < S1) [48], it can be shown that 

under the probit model (2),

(4)

The AUC varies between 0.5 and 1.0 with higher value indicating a better discriminative 

model.

The Brier Score (BS) [46] quantifies the overall model performance and consists of the 

squared distance between the actual binary outcome, Y , and the estimated conditional 

probability of {Y = 1} given the covariates, denoted by p̂. The Brier Score is defined as 

BS(X, Z) = E{(Y − p̂)2}. Under the probit model (2), it is easy to verify that

(5)

The smaller the BS is, the better the prediction.

The AUC and BS of the surrogate model (3), under homoscedastic measurement error 

AUC(W, Z) and BS(W, Z), can be derived similarly. All of the above integrals can be 

calculated using numerical quadrature routines, which are available in variety of software 

packages. However, these calculations are time consuming.

Alternatively, the AUC and BS can be calculated through Monte Carlo simulation. 

Specifically, a large random sample of (Y01, X1, Z1), . . . , (Y0n, Xn, Zn) is generated from the 

multivariate normal distribution described above. Let Yi = I(Y0i ≥ 0), i = 1, . . . , n; p̂i be the 

estimated conditional probability of {Yi = 1} given the covariates; ; and 

n0 = n − n1. A nonparametric estimator of the AUC ([47], p. 493) for predicting the event {Y 

= 1} is defined by
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(6)

where U(a, b) = I(a > b) + 0.5I(a = b). A natural empirical estimator of BS [39] is given by

(7)

In a series of settings, we contrasted the theoretical AUC and BS (4)-(5) calculated by 

numerical quadrature to the Monte Carlo simulation approach using the above estimators 

(6)-(7) and a very large sample size. As expected, we found that these methods produced 

almost identical results. Hence, to save computing time, from now on we will use the 

simulation-based approach.

Calibration performance was evaluated by the ratio of the observed and the expected number 

of events  [39]. If the model is well calibrated, we expect O/E to be 

close to 1. Since Carroll et al. [17] argued that a surrogate model is valid but omitted a 

formal proof, we present one by showing that the expected number of events under the true 

and the surrogate models are equal:

(8)

The third equality holds due to the surrogacy assumption, and the explanation of the last 

transition is presented below

If the true model of Pr(Y = 1[notdef]W, Z) is used, numerical studies of calibration in the 

presence of measurement error in X are not needed since perfect calibration is established 

theoretically above. However, in the presence of binary covariate misclassification and in 

the presence of heteroscedastic error in continuous X, the linear model in the probit link will 

be mis-specified, thereby might leading to imperfect calibration of some degree to be 

determined below.

3. Numerical study

The main goal of this section was to study the difference in prediction performance of the 

true model based on (Y, X, Z) compared to the surrogate model based on (Y, W, Z). Results 

from the homoscedastic error setting are given in Section 3.1. Several heteroscedastic error 
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settings and a binary covariate subject to misclassification are described in Sections 3.2 and 

3.3, respectively.

3.1. Homoscedastic error model

The relationships among Y0, X and Z will have a critical impact on the differences in 

performance between the true and surrogate models. The following parametrization allows 

one to systematically explore a wide range of associations among the variables. Let

where φ ∈ [0, π], p∈ (0, 1), R2 = 1 − ω2, ω2 = var( ), so that R2 equals the proportion of the 

total variation in Y0 explained by the linear regression model with (X, Z). Here, the 

expectations of X, Z and W were set to 0 and the variances of X and Z were set to 1. Then, Y0 

is normally distributed with mean α and variance 1; φ describes the relative importance of X 

and Z as predictors of Y0; and the parameter p satisfies p = Pr(Y = 1). It can be shown that 

the parameters of the surrogate model (3) are

(9)

(10)

(11)

and

(12)

Since sin2 φ + cos2 φ = 1 and sin(2φ) = 2 sin φ cos φ, τ2 = R2 and AUC(X, Z) and B(X, Z) 

are constant functions of ρX,Z. Obviously this is not the case for AUC(W, Z) and BS(W, Z), as 

will be demonstrated in Section 3.4.

In this numerical study, we focused on the classical measurement error model W = X + ε, 

i.e., the special case c = 0 and d = 1. We considered the following values for the parameters: 

R2 = 0.1, 0.3, 0.5, 0.7, 0.9, p = 0.05, 0.15, 0.3, 0.5, φ = 0, π/36, 2π/36, ..., π, ρX,Z = −0.9, 

−0.5, −0.3, 0, 0.3, 0.5, 0.9 and . The values of  are motivated by the NHS 

validation data where  is about 1.7 times the variance of the error-free X in the case of α-

carotene and about 0.4 times the variance of the error-free X in the case of alcohol intake 

(see Table 5). The simulation results are based on one sample of size of 1,000,000 

observations for each configuration. The sample size is big because the purpose of this 
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simulation study is calculating the values of the performance measures under different 

models, and not to study their finite sample properties.

In addition, we investigated the possible improvement in prediction performance in a 

surrogate model in which an auxiliary variable (AV) is added to the mean for the regressor 

X. An AV (also known as an instrumental variable) is one that is associated with X but not 

with Y0 given X and Z [17]. Hence, we defined the AV, denoted by V , as V = ρX,V X + ξ 

where ξ is a zero-mean normally distributed random variable with variance , and ξ 

is independent of all other random variables in the model. We considered ρX,V = −0.9, −0.5, 

−0.3, 0.3, 0.5, 0.9 and compared the prediction performance of the true model with 

regressors (X, Z) to models with regressors (W, Z) and (V, W, Z).

For each scenario, we estimated the AUC, BS and O/E in five models: (i) with X as a single 

covariate; (ii) with Z as a single covariate; (iii) with (X, Z) as covariates; (iv) with (W, Z) as 

covariates; and (v) with (V, W, Z). The results are presented in Section 3.4.

3.2. Heteroscedastic error model

The heteroscedastic error models were modifications of the models in Section 3.1, such that 

ε given X is a zero-mean normally distributed random variable with variance that depends 

on X. Three models for heteroscedastic error were studied: (I) var(ε|X) = 1.3|X|; (II) var(ε|X) 

= exp(0.2X); (III) var(ε|X) = 1.7| sin(2X)|. Similar scenarios were considered in [20]. In each 

of these models, the marginal error variance equaled 1, i.e. , and ρX,Z = 0. Figure 1 

illustrates the association of X and the error variate ε under the above heteroscedastic error 

models.

In contrast to the homogeneous error variance setting, P (Y = 1|W, Z) no longer follows the 

probit model. Hence, we used also the generalized additive model (GAM) of Hastie and 

Tibshirani [38], as a flexible approximation to the true model. Our use of the GAM approach 

is motivated by the idea that if heteroscedasticity were present, the analyst building the 

prediction model would notice departures from linearity on the probit scale and would 

therefore fit a more flexible model. The generalized additive model incorporates this 

flexibility into the setting of generalized linear models. We carried out the GAM fitting 

using the “gam” function in the R package “mgcv” [49]-[50]. The function “gam” was 

applied with the default parameters, using penalized regression splines with smoothing 

parameters selected by the generalized cross validation criterion [51].

3.3. Binary covariates with misclassification

For the case of a dichotomous predictor, we denote the true binary error-prone exposure by 

X̃, its binary surrogate as W̃ , and an error-free binary covariate Z̃, such that X̃ = I(X > 0) and 

Z̃ = I(Z > 0), with X and Z independently normally distributed with means zero and 

variances 1. The latent variable Y0 was defined as , where η is zero-mean 

normally distributed random variable with variance 1. We considered the case with α = −1, 

and β = γ = 1. Denote the misclassification probabilities as Pr(W̃ = 1|X̃ = 0) = q10 and Pr(W̃ = 

0|X̃ = 1) = q01. The results presented in the section that follows are with q10 = q01 = q and q 

= 0.05, 0.15, 0.25 or 0.5. In this case, the probit model for Pr(Y = 1|W, Z) is misspecified, 
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since in fact Φ−1{Pr(Y = 1|W, Z)} is not linear in Z. The misclassification rates are designed 

to cover the entire range, and the high misclassification rates are motivated by previous 

analysis of FFQ data [29], where q was close to 0.5. As previously, the results are based on 

probit models.

3.4. Main results

Table 1 presents the AUC(X, Z) and BS(X, Z) for various values of R2 and p = Pr(Y = 1), as it 

is well-known that prediction performance measures depend on the prevalence of the event 

of interest in the population [52]. As expected, the AUC value decreases and the BS value 

increases as R2 decreases and also as p increases. The last finding is due to fact that α is an 

increasing function of p, α = Φ−1(p), and as α increases the harder it is for the covariates (X, 

Z) to discriminate between events and non-events.

To exemplify the general pattern of the prediction performances as a function of the 

regression coefficients, we present the cases with R2 = 0.5 and p = 0.5 in Figures 2-4, and 

the AUC and BS results for cases with R2 = 0.1, 0.3 and p = 0.1 are presented in the 

Supporting information, Figures S1-S4. The results for the AUC and BS in the 

homoscedastic setting are given in Figures 2 and 3, respectively. Each figure provides the 

results for various values of ρX,Z. The horizontal axis of each plot represents φ, which 

defines the relative importance of X and Z in model (1). For ease of interpretation we added 

in the horizontal axes the respective values of β and γ. Each plot consists of AUC(X, Z), 

AUC(Z), and AUC(W, Z) with . As expected, AUC(Z) ≤ AUC(W, Z) ≤ AUC(X, Z) 

and AUC(W, Z) decreased as  increased for fixed β and γ. Under ρX,Z = 0, the minimal 

values of AUC(W, Z) and AUC(Z), for a given  are attained at γ = 0, namely, when Z 

makes no contribution to the prediction model. When ρX,Z ≠= 0, the minimal values of 

AUC(W, Z) and AUC(Z) are attained at different values of φ due to the effect of the 

correlation between X and Z. With a strong association such as ρX,Z = −0.9, the maximum 

differences between AUC(X, Z) and AUC(W, Z) could be large and are attained only when β 

and γ are approximately equal. For example, if , φ = 45°, AUC(X, Z) − AUC(W, Z) = 

0.256. As the differences between β and γ increased, the differences between the various 

AUCs decreased. In particular, when β = γ− ≈ 0.36, the differences between the AUCs are 

almost zero. As the association of X and Z decreased, the differences between the AUCs 

were substantial under a wide range of φ, namely, under wide ranges of β and γ. In 

particular, under ρX,Z = 0.3, , AUC(X, Z) − AUC(W, Z) is at least 0.15 for all φ∈ [70°, 

120°], where 0.15 is a substantial decrease in the AUC due to error.

For the BS results (Figure 3), similar patterns as found for the AUC were observed, BS(X, Z) 

≤ BS(W, Z) ≤ BS(Z). When X and Z were at most moderately associated (i.e. ρX,Z ≤ 0.5), the 

accuracy loss due to the mismeasured W was substantial under almost the entire range of φ. 

For example, with ρX,Z = 0.3 and , BS(W, Z) − BS(X, Z) was as high as 0.07.

In summary, when the measurement error was of small magnitude, the discrimination and 

accuracy of the prediction was decreased minimally. However, with moderate or severe 

measurement error, the decline in AUC and BS from using (W, Z) instead of (X, Z) was 

Khudyakov et al. Page 9

Stat Med. Author manuscript; available in PMC 2016 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dramatic. It should be again noted that because the probit model in (W, Z) was perfectly 

specified, these observed declines in the quality of the prediction were due exclusively to 

increased variability in the prediction and not to an increase in bias.

The contribution of the AV, V , to the prediction model performance, under the 

homoscedastic measurement error model with R2 = 0.5 and p = 0.5 is given in Figure 4, in 

terms of AUC. The results of BS are presented in the Supporting information Figure S5. 

Since the AUC and BS are symmetric for ρX,Z and −ρX,Z, and since the results are the same 

for ρX,V and −ρX,V , we present only the case where ρX,Z > 0 and ρX,V > 0. The left and right 

columns of Figure 4 are with correlation coefficient of X and V of 0.9 and 0.5, respectively 

(ρX,V = 0.3 is omitted). As expected, for any , AUC(W, Z, V ) ≥ AUC(W, Z). Contrasting 

AUC(W, Z, V ) with AUC(W, Z), revealed that adding an AV to the model could 

considerably improve the AUC and BS under moderate or substantial measurement error, as 

long as there was at most a moderate association of X with Z. When |ρX,Z| was high, the 

added value of including V in the model was very small. For example, for ρX,V = 0.9, ρX,Z = 

0.9,  and φ = 45°, we get AUC(W, Z) = 0.825, AUC(W, Z, V ) = 0.829, BS(W, Z) = 

0.171 and BS(W, Z, V ) = 0.169; and for a similar scenario but with ρX,Z = 0.3 and φ = 80°, 

we get AUC(W, Z) = 0.662, AUC(W, Z, V ) = 0.801, BS(W, Z) = 0.198 and BS(W, Z, V ) = 

0.173.

The results from the heteroscedastic settings with R2 = 0.5, p = 0.5, and ρX,Z = 0 are 

presented in Tables 2-3. It is apparent that the AUC and BS values from Scenarios (I)-(III) 

were very close to their respective AUC and BS values from the corresponding 

homoscedastic error models with ρX,Z = 0 and . The conclusions from the 

homoscedastic and heteroscedastic settings were the same, in the sense that, for example, 

AUC(Z) ≤ AUC(W, Z) ≤ AUC(X, Z) and AUC(W, Z) decreased as  increased for fixed β 

and γ. Moreover, in Tables 2-3 we contrasted the GAM and probit models in terms of AUC 

and BS. The similarity between these results indicates that in all the settings considered, 

misspecifying the form of the prediction model had little impact.

The results of probit model with binary regressors in the misclassification setting are 

summarized in Table 4. As with continuous predictors, AUC( Z̃
) ≤ AUC(W̃ , Z̃) ≤ AUC(X̃, Z̃). 

As expected, AUC(W̃ , Z̃) decreased and BS(Z̃, W̃ ) increased as q increased. Also, for q = 

0.5, AUC( W̃ , Z̃) = AUC( Z̃), because here W̃ contains no information about X̃. As before, 

the gain in prediction performance due to the use of X̃ instead of the mismeasured W̃ was 

substantial, especially when X and Z were moderately or weakly associated. For example, 

with ρX,Z = 0.7 and q = 0.25, AUC(X̃, Z̃) − AUC( W̃ , Z̃) = 0.019 and with ρX,Z = 0.3 and q = 

0.25, AUC(X̃, Z̃) − AUC(W̃, Z̃) = 0.047. An improvement of AUC of approximately 0.05 is 

more than a modest improvement [53]–[54].

Under the homoscedastic, heteroscedastic and misclassification error models, the ratio of the 

observed and expected number of events were always close to one (between 0.9994 and 

1.0003), for all prediction models considered. Under the homoscedastic settings, the results 

are as expected, given (8). The results from the other settings, when the probit model is mis-
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specified, imply that, asymptotically, the surrogate model is approximately valid even when 

the prediction model is mis-specified and is being approximated by a probit model or GAM.

4. An illustrative example

In this example, we illustrate how to calculate the extent to which the prediction would be 

improved if X were available rather than the surrogate measurement, W . We evaluated 

prediction models in the Nurses’ Health study (NHS) [23] for breast cancer incidence using 

the error-prone covariates for alcohol (g/day) [27, 28] and α-caratenoid consumption (mg/

day) [29] and an error-free covariate, the Gail score [2]. With data from the NHS dietary 

validation studies [14] and the theory presented in this paper, we compared the AUC and BS 

from the model with surrogate dietary measurements to the possible values that we could 

have obtained if the measurements had been available in the main study.

The NHS was established in 1976, when 121,700 female U.S. registered nurses between the 

ages of 30 and 55 years responded to a mailed study questionnaire on medical history and 

lifestyle. Subsequent questionnaires have been mailed every 2 years. Further details on the 

study, including information on disease confirmation, have been published elsewhere [23]. 

We restricted our analyses to the 20-year period from 1986 to 2006, and excluded women 

with a history of cardiovascular disease or cancer, including lobular or ductal breast 

carcinoma in situ at baseline. We were then left with a cohort of 66,346 women aged 40-71 

years in 1986, within which 3,065 women developed invasive breast cancer within 20 years 

of the return date of their 1986 questionnaire. The validation study assessed consumption 

from a self-administrated food frequency questionnaire and two 7-day diet records 

completed approximately 6 months apart (for more details see [14]).

We considered the effects of the error-prone predictors in various scenarios: (i) α-carotene 

alone, (ii) alcohol consumption alone and (iii) α-carotene and alcohol consumption, and 

analyzed models containing the error-prone covariates alone and together with the error-free 

covariate, the Gail score. In total, we studied six models. The Gail score was calculated from 

the algorithm and parameters of Gail et al.'s model [2]. The means and variances of the 

regressors based on the validation study are given in the top part of Table 5. The Pearson 

correlation between the Gail score and α-carotene was 0.124; between the Gail score and 

alcohol was -0.036; and between α-carotene and alcohol was 0.030. The estimated 

regression coefficients of the models using the main study are given at the bottom of Table 

5.

The main results of this analysis are given in Table 6. We randomly split the main study into 

two datasets of equal sizes. One set was used for estimating the regression parameters, and 

the other for estimating the AUC and BS based on (6)-(7). We compared the surrogate 

performance measures of probit, logit and GAM models. It is evident that the AUCs and 

BSs of the probit and logit models are very similar, and as expected, the AUC and BS are 

insensitive to the choice of the logit or probit link function. Also the -2log-likelihood (-2LL) 

measures of the probit and logit models are very similar. Moreover, the AUCs and BSs of 

the probit and logit models are fairly close those of the probit model. These results suggest 

that very similar findings would be obtained using either the logit or the probit link function. 
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Based on the regression coefficients estimated in the main study (Table 5), the estimated 

distribution of (X, Z) and the estimates of the measurement error model parameters from the 

validation data, we back-calculated the regression coefficient to be expected in the 

corresponding model with no measurement error, using the attenuation matrix ([17], p. 53, 

Eq. (3.12); [43]-[45]). Finally, (4)-(5) were used to obtain the AUC and BS of each error-

free probit model. These results are given in the last two columns of Table 6. By using the 

error-free measurements, the discrimination of the prediction model based on alcohol would 

likely be improved by 5.0% and the accuracy improved by 4.5%, while for the model based 

on α−carotene, alcohol and Gail score, discrimination would not be improved but accuracy 

would likely be improved by 6.8%.

5. Summary

This paper examined the influence of measurement error on the performance of risk 

prediction models. We showed that measurement error in covariates, while not affecting 

calibration, can dramatically reduce the AUC and increase the BS. Thus, when it is possible 

to reduce the measurement error in predictors included in risk prediction models, the quality 

of the risk prediction could be improved substantially.

We also showed that the deterioration of the AUC and BS increases with measurement error. 

When the error-free determinants of the outcome are strongly positively correlated with the 

error-prone variable, and the error-free and error-prone covariates have similar correlations 

with the outcome, the measurement error reduces the AUC and increases the BS only 

slightly. The same is true when the error-free determinants of the outcome are strongly 

negatively correlated with the error-prone variable and the error-free and error-prone 

covariates have markedly different correlations with the outcome. The same is also true if 

auxiliary variables are available that are strongly correlated with the error-prone variable. 

We therefore recommend including in prediction models all easily obtained variables which 

are correlated with error-prone covariates, while avoiding overfitting by including too many 

parameters relative to the number of observations.

In addition, in the motivating example, we demonstrated how a validation study can be used 

to evaluate the impact of mismeasured covariates on risk prediction. This method can be 

used to evaluate the benefit of observing expensive but accurate data instead of the 

mismeasured data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

1. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of 
coronary heart disease using risk factor categories. Circulation. 1998; 97(18):1837–1847. [PubMed: 
9603539] 

2. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ. Projecting 
individualized probabilities of developing breast cancer for white females who are being examined 
annually. Journal of the National Cancer Institute. 1989; 81:1879–1886. [PubMed: 2593165] 

Khudyakov et al. Page 12

Stat Med. Author manuscript; available in PMC 2016 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS, Feng Z, Parnes HL, 
Coltman CA. Assessing Prostate Cancer Risk: Results from the Prostate Cancer Prevention Trial. 
Journal of the National Cancer Institute. 2006; 98(8):529–534. [PubMed: 16622122] 

4. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE. 
Reproducibility and validity of a semiquantitative food frequency questionnaire. American Journal 
of Epidemiology. 1985; 122(1):51–65. [PubMed: 4014201] 

5. Chasan-Taber S, Rimm EB, Stampfer MJ, Spiegelman D, Colditz GA, Giovannucci E, Ascherio A, 
Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire for 
male health professionals. Epidemiology. 1996; 7(1):81–86. [PubMed: 8664406] 

6. Feskanich D, Rimm EB, Giovannucci EL, Colditz GA, Stampfer MJ, Litin LB, Willett WC. 
Reproducibility and validity of food intake measurements from a semiquantitative food frequency 
questionnaire. Journal of the American Dietetic Association. 1993; 93:790–796. [PubMed: 
8320406] 

7. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and 
validity of an expanded self-administered semiquantitative food frequency questionnaire among 
male health professionals. American Journal of Epidemiology. 1992; 135(10):1114–1126. 
[PubMed: 1632423] 

8. Salvini S, Hunter DJ, Sampson L, Stampfer MJ, Colditz GA, Rosner BA, Willett WC. Food-based 
validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. 
International Journal of Epidemiology. 1989; 18(4):858–867. [PubMed: 2621022] 

9. Wolf A, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano K, Corsano KA, Rosner BA, 
Kriska A, Willett WC. Reproducibility and validity of a self-administered physical activity 
questionnaire. International Journal of Epidemiology. 1994; 23:991–999. [PubMed: 7860180] 

10. Colditz GA, Stampfer MJ, Willett WC, Stason WB, Rosner BA, Hennekens CH, Speizer FE. 
Reproducibility and validity of self-reported menopausal status in a prospective cohort study. 
American Journal of Epidemiology. 1987; 126(2):319–325. [PubMed: 3605058] 

11. Troy LM, Michels KB, Hunter DJ, Spiegelman D, Manson JE, Colditz GA, Stampfer MJ, Willett 
WC. Self-reported birthweight and history of having been breastfed among younger women: an 
assessment of validity. International Journal of Epidemiology. 1996; 25(1):122–127. [PubMed: 
8666479] 

12. Hunter DJ, Manson JE, Colditz GA, Chasan-Taber L, Troy L, Stampfer MJ, Speizer FE, Willett 
WC. Reproducibility of oral contraceptive histories and validity of hormone composition reported 
in a cohort of US women. Contraception. 1997; 56(6):373–378. [PubMed: 9494771] 

13. Tomeo CA, Rich-Edwards JW, Michels KB, Berkey CS, Hunter DJ, Frazier AL, Willett WC, Buka 
SL. Reproducibility and validity of maternal recall of pregnancy-related events. Epidemiology. 
1999; 10(6):774–777. [PubMed: 10535796] 

14. Willett, WC. Reproducibility and Validity of Food-Frequency Questionnaires. Second Edition.. 
Oxford University Press; New York: 1998. Nutritional Epidemiology. Chapter 6.

15. Chasan-Taber S, Rimm EB, Stampfer MJ, Spiegelman D, Colditz GA, Giovannucci E, Ascherio A, 
Willett WC. Reproducibility and validity of a self-administered physical activity questionnaire for 
male health professionals. Epidemiology. 1996; 7(1):81–86. [PubMed: 8664406] 

16. Fuller, WA. Measurement Error Models. John Wiley&Sons; New York: 1987. 

17. Carroll, RJ.; Ruppert, D.; Stefanski, LA.; Crainiceanu, CM. Measurement Error in Nonlinear 
Models. Chapman & Hall; London: 2006. 

18. Buonaccorsi, JP. Measurement Error: Models, Methods, and Applications. Chapman & Hall (CRC 
Interdisciplinary Statistics); 2010. 

19. Carroll RJ, Spiegelman CH, Lan KKG, Bailey KT, Abbott RD. On errors-in-variables for binary 
regression models. Biometrika. 1984; 71(1):19–25.

20. Carroll RJ, Wand MP. Semiparametric Estimation in Logistic Measurement Error Models. Journal 
of the Royal Statistical Society, Series B (Methodological). 1991; 53:573–585.

21. Li W, Mazumdar S, Arena VC, Sussman N. A resampling approach for adjustment in prediction 
models for covariate measurement error. Computer methods and programs in biomedicine. 2005; 
77(3):199–207. [PubMed: 15721649] 

Khudyakov et al. Page 13

Stat Med. Author manuscript; available in PMC 2016 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Carroll RJ, Delaigle A, Hall P. Nonparametric prediction in measurement error models. Journal of 
the American Statistical Association. 2009; 104:993–1014. [PubMed: 20448838] 

23. Colditz GA. The Nurses' Health Study: a cohort of US women followed since 1976. Journal of the 
American Medical Women's Association. 1994; 50(2):40–44.

24. Colditz GA, Rosner B. Cumulative risk of breast cancer to age 70 years according to risk factor 
status: data from the Nurses' Health Study. American Journal of Epidemiology. 2000; 152(10):
950–964. [PubMed: 11092437] 

25. Spiegelman D, Colditz GA, Hunter D, Hertzmark E. Validation of the Gail et al. model for 
predicting individual breast cancer risk. Journal of the National Cancer Institute. 86:600–607. 
[PubMed: 8145275] 

26. Rockhill B, Spiegelman D, Byrne C, Hunter DJ, Colditz GA. Validation of the Gail et al. model of 
breast cancer risk prediction and implications of chemoprevention. Journal of the National Cancer 
Institute. 2001; 93:358–366. [PubMed: 11238697] 

27. Garland M, Hunter DJ, Colditz GA, Spiegelman D, Manson JE, Stampfer MJ, Willett WC. 
Alcohol consumption in relation to breast cancer risk in a large cohort of US women. Cancer 
Epidemiology, Biomarkers and Prevention. 1999; 8:1017–1021.

28. Smith-Warner SA, Spiegelman D, Yaun S-S, Adami H-O, van den Brandt PA, Folsom A, 
Goldbohm RA, Graham S, Howe GR, Marshall JR, Miller AB, Potter JD, Speizer FE, Willett WC, 
Wolk A, Hunter DJ. Alcohol and breast cancer in women: a pooled analysis of cohort studies. 
JAMA. 1998; 279:535–540. [PubMed: 9480365] 

29. Zhang X, Spiegelman D, Baglietto L, Bernstein L, Boggs DA, van den Brandt PA, Buring JE, 
Gapstur SM, Giles GG, Giovannucci E, Goodman G, Fraser G, Hankinson SE, Helzsouer KJ, 
Horn-Ross PL, Inoue M, Jung S, Khudyakov P, Larsson SC, Lof M, McCullough ML, Miller AB, 
Neuhouser ML, Palmer JR, Park Y, Robien K, Rohan TE, Ross JA, Schouten LJ, Shikany JM, 
Tsugane S, Visvanathan K, Weidarpass E, Wolk A, Willett WC, Zhang SM, Zeigler RG, Smith-
Warner SA. Carotenoid intakes and risk of breast cancer defined by estrogen receptor and 
progesterone receptor status: a pooled analysis of 18 prospective cohort studies. The American 
Journal of Clinical Nutrituion. 2012; 95(3):713–725.

30. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and 
validity of an expanded self-administered semiquantitative food frequency questionnaire among 
male health professionals. American Journal of Epidemiology. 1992; 135(10):111426. discussion 
1127-36. 

31. Cox, DR.; Snell, EJ. Analysis of Binary Data. Chapman & Hall/CRC Monographs on Statistics & 
Applied Probability; 1989. 

32. Greene, WH. Econometric Analysis. 3rd ed.. Prentice-Hall; Upper Saddle River, NJ: 1997. 

33. Gill, J. Generalized Linear Models: A Unified Approach. Sage; Thousand Oaks, CA: 2001. 

34. Long, JS. Regression Models for Categorical and Limited Dependent Variables. Sage; Thousand 
Oaks, CA: 1997. 

35. Powers, DA.; Xie, Y. Statistical Methods for Categorical Data Analysis. Academic Press; San 
Diego: 2000. 

36. Fahrmeir, L.; Tutz, G. Multivariate Statistical Modelling Based on Generalized Linear Models. 2nd 
ed.. Springer; New York: 2001. 

37. Hardin, J.; Hilbe, J. Generalized Linear Models and Extensions. Stata Press; College Station, TX: 
2001. 

38. Hastie, T.; Tibshirani, R. Generalized Additive Models. Chapman and Hall; London: 1990. 

39. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan 
MW. Assessing the performance of prediction models: a framework for traditional and novel 
measures. Epidemiology. 2010; 21:128–138. [PubMed: 20010215] 

40. Ikeda M, Ishigaki T, Yamauchi K. Relationship between Brier score and area under the binormal 
ROC curve. Computer Methods and Programs in Biomedicine. 2002; 67:187–194. [PubMed: 
11853944] 

41. Hernández-Orallo J, Flach P, Ferri C. A unified view of performance metrics: translating threshold 
choice into expected classification loss. The Journal of Machine Learning Research. 2012; 13(1):
2813–2869.

Khudyakov et al. Page 14

Stat Med. Author manuscript; available in PMC 2016 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



42. Falconer, DS.; Mackay, TFC.; Mackay, TFC.; MacKay, TF. Introduction to Quantitative Genetics. 
4th edition. Longman Group Ltd. Assessment, and Prevention; New York: 1996. 

43. Rosner B, Spiegelman D, Willett WC. Correction of logistic regression relative risk estimates and 
confidence intervals for measurement error: the case of multiple covariates measured with error. 
American Journal of Epidemiology. 1990; 132(4):734–745. [PubMed: 2403114] 

44. Spiegelman D, McDermott A, Rosner B. Regression calibration method for correcting 
measurement-error bias in nutritional epidemiology. American Journal of Clinical Nutrition. 1997; 
65:1179–1186.

45. Rosner B, Spiegelman D, Willett WC. Correction of Logistic Regression Relative Risk Estimates 
and Confidence Intervals for Random Within-Person Measurement Error. American Journal of 
Epidemiology. 1992; 136(11):1400–1413. [PubMed: 1488967] 

46. Brier GW. Verification of forecasts expressed in terms of probability. Mon Wea Rev. 1950; 78:1–
3.

47. Harrell Jr, F. Regression Modeling Strategies. Springer; NY: 2001. 

48. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic 
(ROC) curve. Radiology. 1982; 143:29–36. [PubMed: 7063747] 

49. Wood, S. Package mgcv. R package version 1.7-29. 2014. http://cran.r-project.org/web/packages/
mgcv/mgcv.pdf

50. Wood SN. mgcv: GAMs and generalized ridge regression for R. R news. 2001; 1(2):20–25.

51. Wood SN. Modelling and smoothing parameter estimation with multiple quadratic penalties. 
Journal of the Royal Statistical Society, Series B. 2000; 62:413–428.

52. Sharma D, McGee D, Golam Kibria BM. Measures of explained variation and the base-rate 
problem for logistic regression. American Journal of Biostatistics. 2011; 2(1):11–19.

53. Gail MH. Discriminatory accuracy from single-nucleotide polymorphisms in models to predict 
breast cancer risk. Journal of the National Cancer Institute. 2008; 100:1037–1041. [PubMed: 
18612136] 

54. Wacholder S, et al. Performance of common genetic variants in breast-cancer risk models. New 
England Journal of Medicine. 2010; 362:986–993. [PubMed: 20237344] 

Khudyakov et al. Page 15

Stat Med. Author manuscript; available in PMC 2016 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cran.r-project.org/web/packages/mgcv/mgcv.pdf
http://cran.r-project.org/web/packages/mgcv/mgcv.pdf


Figure 1. 
Scatter plots of X versus ε under the heteroscedatic settings (I)-(III).
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Figure 2. 
AUCs of the homoscedastic error model, R2 = 0.5, p = 0.5, and various values of ρX,Z = 

corr(X, Z)
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Figure 3. 
BSs of the homoscedastic error model, R2 = 0.5, p = 0.5, and various values of ρX,Z = 

corr(X, Z)
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Figure 4. 
The effect of AV on AUC: the homoscedastic error model, R2 = 0.5, p = 0.5, and various 

values of ρX,Z = corr(X, Z) and ρV,X = corr(V, X)
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Table 1

AUC(X, Z) and BS(X, Z) as a function of R2 and p = Pr(Y = 1)

AUC(X, Z) BS(X, Z)

p = Pr(Y = 1) p = Pr(Y = 1)

R 2 0.05 0.15 0.3 0.5 0.05 0.15 0.3 0.5

0.02 0.588 0.568 0.567 0.565 0.046 0.127 0.207 0.247

0.04 0.624 0.600 0.592 0.591 0.047 0.124 0.204 0.244

0.06 0.652 0.626 0.613 0.609 0.046 0.125 0.203 0.241

0.08 0.668 0.641 0.630 0.626 0.047 0.125 0.200 0.238

0.10 0.692 0.661 0.651 0.641 0.046 0.122 0.197 0.235

0.12 0.705 0.681 0.663 0.655 0.047 0.120 0.195 0.231

0.14 0.721 0.695 0.676 0.671 0.045 0.119 0.193 0.228

0.16 0.734 0.704 0.690 0.681 0.045 0.118 0.189 0.225

0.18 0.749 0.720 0.701 0.696 0.045 0.116 0.188 0.220

0.20 0.762 0.734 0.712 0.706 0.045 0.115 0.185 0.217

0.30 0.819 0.781 0.761 0.754 0.042 0.109 0.172 0.201

0.40 0.863 0.824 0.803 0.796 0.042 0.102 0.158 0.184

0.50 0.900 0.862 0.841 0.836 0.038 0.093 0.143 0.166
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Table 2

AUC(W, Z) under homoscedastic and heteroscedastic scenarios as a function of φ, , ρX,Z = 0, p = 0.5 and 

AUC(X, Z) = 0.834

heteroscedastic

homoscedastic Probit scenario (I) scenario (II) scenario (III)

φ β γ GAM Probit GAM Probit GAM Probit

0° 0.000 0.707 0.834 0.833 0.832 0.834 0.834 0.833 0.833

15° 0.183 0.683 0.827 0.827 0.826 0.826 0.827 0.827 0.827

30° 0.354 0.612 0.810 0.809 0.812 0.811 0.812 0.810 0.810

45° 0.500 0.500 0.785 0.785 0.785 0.782 0.785 0.784 0.784

60° 0.612 0.354 0.758 0.758 0.758 0.753 0.756 0.761 0.761

75° 0.683 0.183 0.738 0.737 0.738 0.735 0.736 0.739 0.740

90° 0.707 0.000 0.729 0.727 0.725 0.729 0.729 0.730 0.730

105° 0.683 −0.183 0.739 0.736 0.740 0.737 0.738 0.738 0.738

120° 0.612 −0.354 0.759 0.759 0.762 0.756 0.759 0.761 0.762

135° 0.500 −0.500 0.784 0.785 0.785 0.782 0.785 0.786 0.786

150° 0.354 −0.612 0.810 0.810 0.809 0.806 0.808 0.809 0.810

165° 0.183 −0.683 0.827 0.828 0.827 0.824 0.825 0.826 0.826

180° 0.000 −0.707 0.834 0.834 0.832 0.833 0.833 0.832 0.832
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Table 3

BS(W,Z) under homoscedastic and heteroscedastic scenarios as a function of φ, , ρX,Z = 0, p = 0.5 and 

BS (X,Z) = 0.168

heteroscedastic

homoscedastic Probit scenario (I) scenario (II) scenario (III)

φ β γ GAM Probit GAM Probit GAM Probit

0° 0.000 0.707 0.168 0.168 0.168 0.166 0.166 0.167 0.167

15° 0.183 0.683 0.170 0.170 0.170 0.170 0.170 0.170 0.170

30° 0.354 0.612 0.178 0.177 0.177 0.178 0.177 0.178 0.178

45° 0.500 0.500 0.189 0.187 0.187 0.191 0.189 0.189 0.189

60° 0.612 0.354 0.199 0.197 0.197 0.204 0.200 0.198 0.198

75° 0.683 0.183 0.207 0.203 0.203 0.211 0.208 0.206 0.206

90° 0.707 0.000 0.210 0.206 0.206 0.214 0.210 0.209 0.208

105° 0.683 0.183 0.207 0.204 0.204 0.210 0.207 0.206 0.206

120° 0.612 0.354 0.200 0.197 0.197 0.202 0.199 0.198 0.198

135° 0.500 0.500 0.189 0.187 0.187 0.191 0.189 0.188 0.188

150° 0.354 0.612 0.178 0.178 0.178 0.180 0.179 0.178 0.178

165° 0.183 0.683 0.169 0.170 0.170 0.171 0.171 0.170 0.170

180° 0.000 0.707 0.168 0.168 0.168 0.167 0.167 0.167 0.167
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Table 5

NHS data: descriptive statistics from validation study and parameter estimates of probit models for breast 

cancer outcome from main study

Validation study α-carotene Alcohol Gail Score

Mean of error-free measure 583.3 9.2 −2.3

Variance of error-free measure 142280.3 138.4 0.023

Intercept and slope from measurement error model (c, d) (507.1,0.844) (1.393,0.645)

Error variance - σε
2 246909.6 53.7 -

Correlation between error-prone variable and its surrogate 0.540 0.721 -

Main study Regression coefficients (standard error)

Probit regression model intercept α-carotene (mg/day) Alcohol (g/day) Gail Score

α-carotene −1.693(0.013) 1.37e-05(1.37e-05) - -

α-carotene+Gail Score 0.322(0.124) −9.86e-06(1.43e-05) - 0.888(0.054)

Alcohol −1.702(0.010) - 0.003(0.001) -

Alcohol+Gail Score 0.278(0.122) - 0.003(0.001) 0.879(0.054)

α-carotene+Alcohol −1.715(0.014) 1.67e-05(1.37e-05) 0.003(0.001) -

α-carotene+Alcohol+Gail Score 0.289(0.124) −6.99e-06(1.43e-05) 0.003(0.001) 0.882(0.055)
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