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Introduction
Duchenne muscular dystrophy (DMD) is the 
most commonly inherited pediatric muscle disor-
der. It is an X-linked genetic progressive and 
degenerative myopathy characterized by muscle 
wasting and weakness, which can lead to loss of 
motor functions in puberty, cardiac and respira-
tory involvement, and premature death [Mercuri 
and Muntoni, 2013]. The disease is one of a num-
ber of types of myopathies that differ depending 
on the degree of severity and the affected muscle 
types [Emery, 2002]. DMD occurs at a rate of 
approximately 1:3500 male births and arises due 
to spontaneous mutations in the dystrophin gene 
(locus Xp21.2); 65% of causative mutations are 
intragenic deletions, 6–10% are intragenic dupli-
cations and 30–35% are point mutations (along 
with other sequence variations) [Nallamilli et al. 
2014]. The disease is caused by a deficiency of 
dystrophin or the synthesis of functionally impo-
tent dystrophin, a critical protein component of 
the dystrophin glycoprotein complex (DGC) act-
ing as a link between the cytoskeleton and the 
extracellular matrix in skeletal and cardiac mus-
cles [Braun et al. 2014].

A consequence of DGC inefficiency is muscle 
fragility, contraction-induced damage, necrosis 
and inflammation [Lapidos et al. 2004]. As a 
result, fibrous and fatty connective tissue over-
takes the functional myofibers. A majority of 

patients are restricted to a wheelchair in their 
early teens, succumbing to cardiac/respiratory 
failure in their twenties [Bach and Martinez, 
2011].

Another problem seen in children with DMD is 
neurodevelopmental delay, which is observed 
from the first months or years of life. Cognitive 
and behavioral difficulties have been identified in 
approximately a third of DMD patients and are 
more frequent in patients with mutations after 
exon 44, affecting Dp140 (the short isoforms of 
distrophin expressed in the brain) and are com-
pounded further in boys with mutations after 
exon 63 affecting the shortest Dp71 (the isoform 
of distrophin expressed at high levels in the brain) 
[Pune et al. 2012; Cyrulnik and Hinton, 2008; 
Hinton et al. 2007; Pane et al. 2013]. These iso-
forms are structural components of neurons, glial 
cells and Schwann cells.

Diagnosis and appropriate therapy consisting  
of pharmacotherapy, rehabilitation, and surgical 
management can preserve the child’s ambulation 
and prolong their functional independence, and 
should be started as early as possible, ideally 
before clinical signs, muscle pathology and motor 
delay have progressed more severely [Pane et al. 
2013; Muntoni, 2010]. This management strat-
egy aims at reducing the early inflammatory pro-
cess and slowing muscle necrosis.
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In searching for an effective therapy for DMD, 
only steroids have been shown to produce a slow-
ing in the declining course of the disease [Ricotti 
et al. 2013].

Medical research has been searching for alterna-
tive therapeutic approaches for patients with 
muscular dystrophies. New advances in the man-
agement of DMD use exon skipping, gene ther-
apy and cellular therapy to alter the disease 
process and slow its progression [Sharma et al. 
2014]. Exon skipping refers to skipping the 
genetic abnormality that leads to an incomplete 
but potentially better functioning protein 
sequence [Arechavala-Gomeza et al. 2012]. Gene 
therapy aims at introducing the absent dystrophin 
gene using various vectors and adeno-associated 
virus vectors are used; they do not cause human 
disease and are able to persist for years [Braun 
et al. 2014]. However, several practical difficulties 
have so far prevented gene therapy from being a 
clinically feasible and viable option [Konieczny 
et al. 2013].

The aim of this review is to present current thera-
peutic methods used to treat DMD based on sci-
entific articles published in English mainly in the 
period between 2000 and 2014. We focused on 
stem cell therapies, in particular, which have the 
potential to treat muscular dystrophies. We also 
used the PubMed database to review the most 
important clinical studies related to muscular 
dystrophies. The search period covered 1 January 
2010 to 31 December 2014; all articles were pub-
lished in English. We used the following Medical 
Subject Headings (MeSH): muscular dystrophy, 
children, stem cell, hematopoietic stem cells, sat-
ellite cells, embryonic stem cells, epidermal stem 
cells, autologous stem cells, pluripotent cells, and 
muscle stem cells.

Stem cell based therapies
Stem cell based therapy is considered to be one of 
the most promising methods for treating muscular 
dystrophies. Stem cells are defined by certain fea-
tures and, foremost, an ability for long-term  
self-renewal and the capacity to differentiate into 
multiple cell lineages. ‘Self-renewal’ refers to the 
ability to undergo cycles of mitotic division while 
maintaining the same undifferentiated state as  
the parent cell [Huan-Tng et al. 2012]. Stem cells 
are responsible for the development and mainte-
nance of tissues and organs [Price et al. 2007]. A 
stem cell may be: (i) pluripotent (totipotent), that 

is, able to give rise to endodermal, ectodermal, and 
mesodermal lineages of cells, e.g. embryonic stem 
cells (ESCs); (ii) multipotent, that is, able to give 
rise to all cells in a particular lineage, e.g. hemat-
opoietic stem cells (HSCs), neural stem cells 
(NSCs) and epidermal stem cells (EpSCs); and 
(iii) unipotent and thus able to give rise to only one 
cell type, e.g. keratinocytes [Parkinson, 1992].

Isolation of stem cells can be from embryonic or 
adult tissues. In regard to anatomical location, 
small quantities of adult stem cells exist in most tis-
sues throughout the body, where they remain qui-
escent for long periods prior to being activated in 
response to disease or tissue injury. They can be 
found in hematopoietic [Osawa et al. 1996], neural 
(dentate gyrus of the hippocampus and the lateral 
ventricle wall of the olfactory bulb [Goritz and 
Friesen, 2012; Galli, 2000], dermal [Toma et al. 
2001], muscle [Qu-Petersen et al. 2002; Young, 
2001] and hepatic [Shafritz et al. 2006] systems. 
These locations are often loosely referred to as 
‘niches’ but, strictly speaking, the name has a much 
stronger emphasis on the surrounding micro-envi-
ronment and its constituent supporting and regula-
tory cells, from which extrinsic signals are derived 
that can strongly influence the functions of the 
residing stem cells [Huan-Tng et al. 2012]. Adult 
stem cells give rise to cell types of the tissue from 
which they originated [Price, 2007], but according 
to scientific reports, they can differentiate into line-
ages other than their tissue of origin, e.g. trans-
planted bone marrow or enriched HSCs were 
reported to give rise to cells of the mesoderm [Orlic 
et al. 2001; Jackson et al. 2001], endoderm [Theise 
et al. 2000] and ectoderm [Mezey et al. 2000].

Based on these scientific discoveries, the terms 
‘stem cell medicine’ and ‘regenerative medicine’ 
have been created. The use of stem cells has been 
reported in therapies related to Parkinson’s dis-
ease [Ourednik et al. 2002], spinal cord injury 
[Teng et al. 2002], multiple sclerosis [Pluchino 
et al. 2003], amyotrophic lateral sclerosis 
[Clement et al. 2003], stroke [Liu et al. 2009], 
retinal degeneration [Li et al. 2006], Alzheimer’s 
disease [Barnham et al. 2004] and myocardial 
infarction [Jackson et al. 2001] among others. The 
protective stem cell property is mediated mostly 
through the release of specific trophic factors that 
modulate the survival capabilities of the sur-
rounding neurons [Carletti et al. 2011]. 
Nevertheless, the goal is to achieve the develop-
ment of safe and effective stem cell therapies 
[Huan-Tng et al. 2012].
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Muscle stem cells
The formation of skeletal muscle begins during 
the fourth week of embryonic development, as 
specialized mesodermal cells called myoblasts 
begin rapid mitotic division [McLean et al. 
2012]. By month 5, the muscle fibers are accu-
mulating protein filaments important in muscle 
contraction. As the growth of muscle fibers con-
tinues, aggregation into bundles occurs and, by 
birth, myoblast activity has ceased. Muscle con-
traction on a subcellular level is a complex pro-
cess in the sarcomere involving an influx of 
calcium ions into the muscle fiber and an inter-
action between myosin, actin, and the proteins 
troponin and tropomyosin.

Stem cell based therapies for the treatment of 
DMD can proceed via two strategies. The first is 
autologous stem cell transfer involving cells from 
a patient with DMD that are genetically altered in 
vitro to restore dystrophin expression and are sub-
sequently re-implanted [Mendell and Clarke, 
2006]. The second is allogenic stem cell transfer, 
containing cells from an individual with func-
tional dystrophin, which are transplanted into a 
dystrophic patient [Partridge, 2004].

Skeletal muscle damaged by injury or by degen-
erative disease, such as muscular dystrophy, is 
able to regenerate new muscle fibers. 
Regeneration depends mainly on satellite cells 
(SCs), myogenic progenitors localized between 
the basal lamina and the muscle fiber membrane, 
but other cell types outside the basal lamina, 
such as pericytes, also have myogenic potency 
[Tedesco et al. 2010]. Because of the proprieties 
of SCs, there have been several clinical trials 
since the early 1980s involving the transplant of 
SCs by intramuscular injections of these cells 
into several locations of a single muscle or at 
most a few muscles [Miller et al. 1997; Skuk et al. 
2006]. Although results in treating DMD 
patients have been encouraging, this method has 
been limited by: (i) the necessity of a huge num-
ber of injections; (ii) immune responses toward 
injected SCs; and (iii) the rapid death of most of 
the SCs in the first 72 hours following injection 
[Fan et al. 1996; Guerette et al. 2007]. Other 
studies indicate that 90% of donor cells are 
cleared within the first hour following transplan-
tation by cell-mediated immune response 
[Maffioletti et al. 2014; Sku and Tremblay, 
2013], resulting in the impossibility of delivering 
myoblasts systematically via circulation.

Bone marrow cells
Two main types of stem cells usually derived from 
adult bone marrow are HSCs and mesenchymal 
stem cells (MSCs). They can sometimes be obtained 
from fat, skin, periosteum, synovial membrane and 
muscle as well. MSCs are multipotent and capable 
of differentiating into several connective tissue types 
including osteocytes, chondrocytes, adipocytes, ten-
ocytes and myoblasts [Bongs and Lee, 2005]. They 
can also impose an additional anti-inflammatory 
and paracrine effect on differentiation and tissue 
regeneration via cytokine pathways, have anti-apop-
totic features [Meirelles and Nardi, 2009; Keating, 
2012; Uccelli et al. 2011] and can produce extracel-
lular matrix molecules [Meng et al. 2010]. These 
genetically determined pluripotent cells may be eas-
ily isolated from bone marrow because they have 
membrane proteins (marker CD34+ and specific 
marker STRO-I). Compared with pluripotent ESCs 
or induced pluripotent stem cells (iPSCs), MSCs 
have a greater biosafety profile and lower risk of 
tumorigenicity, and perhaps that is why numerous 
MSC-based therapies have made it to the clinical 
trial stage [Huan-Tng et al. 2012; Ra et al. 2011].

Granulocyte colony-stimulating factor
Granulocyte colony-stimulating factor (G-CSF) 
– glycoprotein – was initially identified as a hemat-
opoietic cytokine and has been used in research 
and clinical studies for the mobilization of HSCs 
from the bone marrow into the peripheral blood 
[Demetri and Griffin, 1999; Metcalf, 2008]. It is 
used to treat neutropenia after cytostatic therapy. 
Recent studies have suggested that G-CSF also 
plays a role in cell differentiation, proliferation and 
survival [Harada et al. 2005; Zaruba et al. 2009]. It 
has a wide variety of actions including reducing 
apoptosis, driving neurogenesis and angiogenesis, 
and attenuating inflammation [Schneider et al. 
2005; Kawada et al. 2006] and acts positively on 
the process of peripheral nerve regeneration dur-
ing the course of muscular dystrophy [Simões 
et al. 2014]. As recently demonstrated, alterations 
exist in the muscle interface with the nervous sys-
tem, caused by the chronic muscular degeneration 
process that retrogradely affects the spinal cord 
micro-environment, specifically the alpha motor-
neurons [Simões and Oliveira, 2010], and that 
also causes deficits in peripheral nerve regenera-
tion in the course of DMD [Simões and Oliveira, 
2012]. It was also demonstrated that G-CSF can 
potentially re-establish homeostasis in the spinal 
cord micro-environment of MDX mice (mouse 
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strain for DMD research). It was observed that 
G-CSF, as well as stem cells, induces the produc-
tion of growth factors such as insulin-like growth 
factor 1, hepatocyte growth factor, epidermal 
growth factor, transforming growth factors, plate-
let-derived growth factors, and cytokines. The 
effect of its activity is the proliferation of satellite 
cells, with subsequent transformation into myo-
tubes and muscle fibers, regulation of myoblast 
proliferation and differentiation, and promotion of 
muscle regeneration and repair [Ruozi et al. 2012]. 
Positive effects of muscle regeneration were 
observed in several studies, including the above 
mentioned experiments on mice [Simões et al. 
2014], following muscle injuries [Stratos et al. 
2007; Hara et al. 2011] and after acute myocardial 
infarction [Harada et al. 2005; Okada et al. 2008].

A clinical trial was performed on a 15-year-old boy 
with facioscapulohumeral dystrophy (FSHD). 
G-CSF 5 μg/kg was given subcutaneously daily for 
5 days in the same month, four times in one year. 
The patient reported increased muscle strength in 
the upper and lower limbs after 2 months of 
G-CSF treatment. We confirmed the increase in 
muscle force of the upper and lower extremities in 
an objective assessment using a dynamometer for 
upper limbs and in leg tensor apparatus for lower 
limbs. Before the study, the patient was able to 
walk 380 meters within 6 minutes, 420 meters 
after 3 months, 450 meters after 6 months, and 
480 after 12 months. The patient did not report 
any side effects following G-CSF administration 
[Sienkiewicz et al. (In press)]. All clinical reports 
published to date agree on the long-term safety of 
G-CSF, in that an increased risk for any of the 
observed outcome parameters was never observed 
[Mueller et al. 2012].

Clinical and case reports
There have been different attempts to repair mus-
cle damage in DMD and there are different ways 
to transplant bone marrow cells in a patient’s body. 
Previous trials have concentrated on the delivery of 
myogenic stem cells to the sites of muscle lesions 
via systemic circulation [Farini et al. 2009; Jin et al. 
2005]. However, intravenously injected cells may 
become trapped in other organs (e.g. liver, spleen, 
lungs), resulting in only a small portion entering 
the muscle microvasculature and migrating into 
dystrophic muscles [Chen et al. 2001].

Another method was established to develop cel-
lular therapy for muscle tissues. The authors used 

arterial route delivery and observed widespread 
distribution of donor stem cells throughout the 
muscle capillary network. The cells entered the 
circulatory system and migrated within dys-
trophic muscles after serial passages within the 
capillaries of the injected area. The environment 
of the dystrophic muscle made it possible to 
recruit the transplanted cells from the vessels fol-
lowing the secretion of specific cytokines and 
other inflammatory molecules [Farini et al. 2012].

To date, in the years from 2010 to 2014, no con-
trolled or randomized clinical trial on cell therapy 
in patients with DMD has been published (Table 
1). In an open study, Sharma and colleagues 
demonstrated the efficacy of autologous bone 
marrow mononuclear transplantation by intrathe-
cally intramuscularly to patients with DMD, 
BMD and lower gird dystrophy [Sharma et al. 
2013]. However, they did not provide the molec-
ular diagnosis of these dystrophies. No significant 
adverse events were noted. An increase in trunk 
muscle strength was seen in 53% of the cases, 
48% showed an increase in upper limb strength, 
59% showed an increase in lower limb strength 
and approximately 10% showed improved gait. 
Of 150 patients, almost 87% had functional 
improvement upon physical examination and 
electromyogram (EMG) studies after 12 months.

Périé and colleagues conducted an open phase I/IIa 
clinical study using autologous myoblast transplan-
tation in 12 adult patients with oculopharyngeal 
muscular dystrophy (OPMD) [Périé et al. 2014]. 
OPMD can be an autosomal dominant neuromus-
cular disease or autosomal recessive which appears 
in early middle age (fifth decade). Progressive ptosis 
and weakness of the extraocular muscles is the ini-
tial clinical finding. Dysphagia (swallowing difficul-
ties) begins with food but, as the condition worsens, 
liquids become difficult to swallow as well. Proximal 
limb weakness develops later on in the disease and 
usually occurs near the center of the body, particu-
larly muscles in the upper legs and hips. This condi-
tion progresses slowly over time and individuals 
may need assistance of a cane or walker, but rarely 
will they need a wheelchair [Chien, 2012].

The feasibility and safety endpoints of autologous 
myoblast (178 million) transplantation in the phar-
yngeal muscles were assessed by video endoscopy 
in addition to physical examinations. Therapeutic 
benefits were also assessed through video endos-
copy and video fluoroscopy of swallowing, quality-
of-life score, dysphagia grade and a drink test. 
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Short- and long-term (2 years) safety and tolerabil-
ity were observed in all patients, with no adverse 
effects. There was an improvement in the quality-
of-life score for all patients and no functional deg-
radation in swallowing was observed for 10 
patients.

In case reports, Sharma and colleagues and Hogrel 
and colleagues demonstrated beneficial effects of 
autologous bone marrow mononuclear and myo-
blast transplantation in patients with DMD 
[Sharma et al. 2014; Hogrel et al. 2013]. Sharma 
and colleagues demonstrated increased muscle 
strength in clinical examination [Sharma et al. 
2014]. Furthermore, magnetic resonance imaging 
(MRI) showed no increase in fatty infiltration until 
the end of the follow-up period. An EMG study 
showed improvement in the vastus medialis mus-
cles 9 months after the first transplantation, which 
was maintained after 3 years. Hogrel and col-
leagues reported the unique situation of a sympto-
matic female DMD patient who was transplanted 
with myoblasts received from her asymptomatic 
monozygotic twin sister 20 years ago [Hogrel et al. 
2013]. Dynamometry was performed to detect the 
long-term effects of this cell therapy, and the long-
term safety of myoblast transplantation was estab-
lished by this exceptional case.

In theory, ideal stem cells used to treat DMD 
should fulfil several criteria, including: (i) be 
expandable in vitro without losing stem cell propri-
eties; (ii) be immuno-privileged; (iii) differentiate 
into muscle fibers either to repair damaged fibers 
or to replace fibers that have already been lost; (iv) 
reconstitute the satellite cell pool with functional 
stem cells, so that when a fiber or part of a fiber 
undergoes necrosis in the future, satellite cells 
capable of producing dystrophin are present to 
repair and maintain the fiber; and (v) lead to 
improvement in muscle strength so that the treated 
patient experiences an improved quality of life 
[Meng et al. 2011].

Gene therapy
Gene therapy for DMD requires the delivery of a 
new dystrophin gene to all muscles of the body, 
which make up greater than 40% of the body 
mass. The gene therapy approach is directed at 
restoring the contractile capacity of the skeletal 
muscle by introducing a functional copy of DMD 
in muscle fibers. The main challenge is the large 
size of dystrophin cDNA (13 kb of sequence) 

[Mendell et al. 2012]. However, the presence of 
very mild cases of DMD characterized by a con-
served reading frame and loss of a major portion 
of the central ‘rod domain’ led to the design of 
mini and micro dystrophins that can fit in viral 
vectors (retroviruses and lentiviruses). The best 
results were observed in younger animals: muscle 
biopsy detected increased trans gene expression 
in 65% of the fibers. Furthermore, the muscle 
was more resistant to contraction and able to gen-
erate greater strength [Kobinger et al. 2003].

A clinical trial was recently carried out in six patients 
with DMD. Low and high doses of a recombinant 
adeno-associated virus serotype 2 carrying a mini-
dystrophin were injected into the biceps muscle 
[Mendel et al. 2010]. Muscle biopsies were per-
formed 42 days after administration in four patients 
and after 90 days in two patients, and compared 
with a sample of contralateral untreated muscle.  
All the samples contained the DNA vector. 
Lymphocyte infiltration suggested an unpredictable 
T-cell immune response against the viral vector.

According to Konieczny and colleagues, the immu-
nogenicity of lenti and adenoviruses as vectors pre-
cludes them from use in systemic administration 
due to the danger of producing a life-threatening 
systemic immune response [Konieczny et al. 2013].

In addition to viral gene therapy, several nonviral 
replacement and repair approaches have been 
studied for treatment of DMD, for example, 
delivery of unencapsidated plasmids, changing 
the mRNA splicing, and ribosomal read through 
of premature stop codons.

Exon skipping and suppression of stop codons are 
promising approaches in increasing dystrophin 
expression in patients with DMD.

Exon skipping
Most mutations in the dystrophin gene of patients 
with DMD are deletions that disrupt the open 
reading frame. The length and structural charac-
teristics of dystrophin, which contains repetitive 
domains, suggest the possibility of excluding dis-
ruptive exons from mRNA during splicing, par-
tially preserving protein function. It is suggested 
that dystrophin levels of 30–60% may preserve 
muscle function and have been hypothesized to 
ensure the preservation of muscle strength 
[Muntoni and Wells, 2007].
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Based on this evidence, exon skipping is being 
heavily researched for the treatment of DMD 
where the muscular protein dystrophin is prema-
turely truncated, which leads to a nonfunctioning 
protein. In molecular biology, exon skipping is a 
form of RNA splicing used to cause cells to ‘skip’ 
over faulty or misaligned sections of genetic code, 
leading to a truncated but still functional protein 
despite the genetic mutation. Exon skipping is 
used to restore the reading frame within a gene 
[Touznik et al. 2014].

Currently, clinical trials are designed to promote 
exon 51 skipping in DMD patients, expecting an 
improvement in their clinical phenotype to at least 
a BMD-like phenotype. The choice of exon 51 was 
based on two considerations: (i) in-frame deletions 
of this portion of the gene are generally associated 
with mild BMD phenotypes; and (ii) out-of-frame 
mutations that could benefit from exon 51 skip-
ping account for at least 20% of DMD mutations 
[Helderman-van den Enden et al. 2010].

Modulation of splicing is achieved with antisense 
oligonucleotides (AONs), DNA molecules capa-
ble of binding intronic and exonic mRNA sites, 
and modifying splicing events.

Patients with genotypes suitable for applying this 
multiple skipping approach represent 63% of 
DMD patients. Skipping exons 45–55 is also sug-
gested, considering that individuals with this 
deletion present with an exceptionally mild BMD 
phenotype [Aoki et al. 2012].

Exon skipping recently gained interest because of 
optimistic results in clinical trials. Systemic admin-
istration of the antisense oligonucleotide 
PRO051showed dose-dependent molecular effi-
cacy in patients with DMD, with a modest improve-
ment in the 6-minute walking test after 12 weeks of 
extended treatment [Goemans et al. 2011].

Ambulation improvements in a population of 
patients with early stage DMD are encouraging, 
but need to be confirmed in larger studies. Exon 
skipping provides a mutation-specific, and thus 
potentially personalized, therapeutic approach for 
patients with DMD.

Suppression of stop codons
Ataluren (formerly known as PTC124) is a novel, 
orally administered small molecule compound for 
the treatment of patients with genetic disorders 

due to a nonsense mutation; it is in clinical devel-
opment for the treatment of DMD caused by a 
nonsense mutation. The safety and tolerability of 
ataluren were confirmed in a phase IIa study, 
which recruited 38 ambulant and non-ambulant 
boys older than 5 years of age. Muscle biopsy 
samples taken after 28 days of treatment revealed 
a mean 11.1% increase in dystrophin expression. 
A significant reduction in creatine kinase (CK) 
levels was also recorded. A phase IIb double-
blind, placebo-controlled clinical trial with ata-
luren valuated the safety and efficacy of 
administering the drug for 48 weeks in 174 
patients with DMD/BMD patients [ClinicalTrials.
gov identifier: NCT00592553. Patients older 
than 5 years of age who were able to walk unas-
sisted for at least 75 meters during the 6-minute 
walking test. The primary outcome was improved 
ambulation as assessed by the 6-minute walking 
test (the aim was an increase of 30 meters in the 
final distance compared with placebo). However, 
the study was stopped because the primary out-
come was apparently not reached. However, a 
more detailed analysis of the data revealed that 
patients receiving low-dose ataluren exhibited 
better performances in the walking test than 
patients receiving placebo (29.7 meters more 
than placebo at the end of the study period) and 
less of a decline in timed function tests [Finket et 
al. 2010].

Corticosteroids in DMD
Daily corticosteroids are the gold standard treat-
ment for ambulant patients with DMD. The use 
of corticosteroids leads to an improvement in the 
muscle strength of patients affected with DMD 
[Bushby et al. 2004].

Long-term therapy delays the loss of ambulation 
(by several years), reduces the need for vertebral 
surgery, improves cardiopulmonary function, 
postpones non-invasive ventilation and generally 
improves life expectancy and quality [Shapiro 
et al. 2014]. Starting treatment before the plateau 
in motor skills (4–6 years of age) is strongly rec-
ommended, whereas therapy is not indicated in 
patients younger than 2 years of age [Bushby et al. 
2010].

Introducing treatment after the loss of ambula-
tion appears to preserve upper limb strength, 
reduce the progression of scoliosis, and delay 
pulmonary and cardiac decline [Moxley et al. 
2010].
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The key mechanisms of action of corticosteroids 
are still poorly defined, but are probably related to 
the modulation of cellular events, including apop-
tosis, inflammation, regulation of calcium con-
centration and myogenesis.

Conclusion
Treating DMD has been palliative in nature for 
decades. With discoveries involving stem cells and 
their features, along with the possibility of obtain-
ing therapeutic applications as well as factors of 
their release, new treatment methods for the most 
common progressive pediatric myopathy and 
other diseases have emerged. However, such dis-
coveries are still in the very early stages and this 
method of therapy requires further careful, in-
depth studies and observations (Table 2).

In our opinion, gene therapy including exon skip-
ping and suppression of stop codons offers prom-
ising approaches for increasing dystrophin 
expression in patients with DMD. As a genetic 
disorder, logically DMD must be cured by the 
correction of an invalid gene. However, there are 
different mutations, so such therapies must be 
individualized. Because DMD is a progressive dis-
ease, it would be logical to introduce gene therapy 
during the first year of the lives of these patients.
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