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Abstract

This paper describes a novel methodology for predicting fault prone modules. The methodology is 

based on Dempster-Shafer (D-S) belief networks. Our approach consists of three steps: First, 

building the Dempster-Shafer network by the induction algorithm; Second, selecting the predictors 

(attributes) by the logistic procedure; Third, feeding the predictors describing the modules of the 

current project into the inducted Dempster-Shafer network and identifying fault prone modules. 

We applied this methodology to a NASA dataset. The prediction accuracy of our methodology is 

higher than that achieved by logistic regression or discriminant analysis on the same dataset.

1. Introduction

Software developers have a keen interest in software quality models, which automatically 

predict fault prone modules and subject them to more rigorous verification activities. 

Accurate predictions enable verification experts to concentrate their attention and resources 

at problem areas in the system under development.

Many modeling techniques have been developed and applied to software quality prediction, 

such as: logistic regression [1], discriminant analysis [11], the discriminative power 

techniques [13], optimized set reduction [2], neural networks [7], fuzzy classification [3], 

and classification trees [14]. The prediction accuracy of those models does not vary 

significantly. Generally, there exists a trade off between the defect detection rate and the 

overall prediction accuracy.

In this paper, we introduce a novel software quality prediction methodology, based on the 

Dempster-Shafer (D-S) belief networks [4]. The methodology is general and not restricted to 

particular metrics or research objectives. Furthermore, it is fully objective, highly automatic 

and computationally efficient. The prediction accuracy of our methodology is higher than 

that achieved by logistic regression or discriminant analysis on the same dataset. In addition, 
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the methodology is more effort economic for determining which modules to inspect than 

another defect module detector, ROCKY [16].

This paper is organized as follows. Section 2 describes Dempster-Shafer networks. Section 3 

introduces the dataset and measurement parameters. Section 4 outlines major steps of the 

methodology. Section 5 describes the experiments. Section 6 evaluates our results and 

Section 7 concludes the paper.

2. Dempster-Shafer Belief Networks

The Dempster-Shafer Belief Network is a complete formalism of evidential reasoning for 

computing and propagating evidential support through the network. Dempster-Shafer (D-S) 

belief Networks were first built by Liu et al. [9]. We developed an alternative algorithm in 

[4]. This induction algorithm is based on prediction logic [6] and is applicable for 

implication rules in general.

The induced D-S network is a directed graph. Nodes in D-S networks are connected by 

implication rules. When evidence from distinct sources is observed for certain node, it is 

combined by the Dempster-Shafer scheme [15]. Beliefs for the corresponding nodes are 

updated and propagated through the network by the algorithm from [9].

Dempster-Shafer networks may not be singly connected. In order to prevent circular 

traversal of the graph, each node in the network is updated only once when an observation is 

made. Therefore, different order of observations may result in different results, since 

different paths might be traversed.

3. Datasets and Measurements

The dataset used in the case studies is a NASA project, referred to as KC2. KC2 contains 

over 3,000 modules (a module is equivalent to a C function). NASA developers built 520 

modules. The remaining modules are COTS. Out of the 520 modules, 106 were found to 

have between 1 to 13 faults. KC2 modules have the average size of 37 lines of code (LOC), 

while the largest module has 1,275 LOC.

The dataset contains twenty-one metrics, including McCabe [10], Halstead [5], line counts 

and branch counts. KC2 dataset contains additional three fields: Error Rate (number of 

defects in the module), Defect (whether or not the module has any defects), and Defect 

Density (number of defects per LOC).

In this study, we are interested in predicting whether or not the module contains any defects, 

instead of how many defects it contains. Software metrics serve as predictors. The predicted 

variable is Defect. Figure 1 presents a defect prediction sheet.

Specificity is used to define the rate of the defect module detection. In the literature, it is also 

referred to as Probability of Detection (PD) [16]:
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Similarly, Sensitivity is defined as the portion of the correct classification of non-fault prone 

modules:

The overall prediction accuracy is measured by Acc:

Another parameter is Probability of False alarm (PF). It represents the ratio of non-fault 

prone modules predicted as fault prone modules:

Effort is defined to represent the resources required for the inspection of faulty modules 

[16]:

where LOCNP = LOCNP1 + LOCNP2.

4. The Methodology

4.1 Primary Data Treatment

KC2 is numerical continuous dataset. Since Dempster-Shafer networks deal with discrete 

datasets, we discretized the original dataset into binary one by AWK programs. We partition 

the dataset using the mean value or the median in each field. If the data value is greater than 

the mean (median) of the corresponding field, it is assigned 1; otherwise, it is 0. The 

predicted variable, Defect, is 1 if the module contains fault(s), or 0 if it is fault free.

4.2 Selecting the Predictors

There are 21 predictors in the datasets. Some of them are highly correlated. In order to 

down-select the best predictors, we applied a logistic regression procedure in SAS [12] to 

the discretized datasets.

The logistic regression procedure in SAS generates 20 score tables of the candidate 

predictors within a second. It ranks the Chi-Square scores for each combination of the 
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predictors. The number of the predictors in the score tables increases from 1 to 20. For 

example, score table 1 contains best single predictors; score table 2 contains best 

combinations of 2 predictors, etc. The top 5 combinations from each score table were picked 

as the candidate predictor sets to the Dempster-Shafer networks.

4.3 Empirical Validation

We used 10-fold cross-validation to evaluate the prediction of fault prone modules. The 

dataset was randomly partitioned into 10 bins of equal size. The D-S network is trained and 

tested 10 times. Each time 9 bins were picked to build the Dempster-Shafer network by the 

induction algorithm. Belief revision algorithm was applied to the remaining bin. The 

experiment was complete when all the 10 bins were validated. Cross validation was run at 

least 60 times in each experiment. The result with the least variance was finally selected.

The predictors picked by the logistic procedure were used by the inducted Dempster-Shafer 

networks. Since the order of the observations matters, different sequences of the predictors 

were tried, and the best sequences were recorded. In addition to the sequence, there are five 

other tuning parameters in the D-S networks. For example, to achieve maximal Specificity 

(PD) and Acc, or to use minimal Effort while achieving maximal PD, the system can be 

tuned to output the optimal results. The optimal results for each set of criteria are selected by 

dominant rule, which first sorts the results in order and then discards the results dominated 

by others. For example, if the measurement parameters of interest are Acc and PD, we use r 

=< Acc; PD > to represent each result. Suppose we have r1 =< 0.6; 0.7 >, r2 =< 0.5; 0.8 >, 

r3 =< 0.6; 0.6 >.

Since r3 is dominated by r1, it is discarded. Therefore, the optimal results are r1 and r2.

5. Experimental Results

The original KC2 dataset was discretized into two binary datasets, KC2a and KC2b 

generated by partitioning with the mean and median values, respectively. Each of the 

datasets was input to the LOGISTIC procedure in SAS to generate the candidate predictors. 

We tuned the system to meet two sets of real-world requirements: maximize Acc and 

Specificity (PD); and minimize Effort while maximizing PD.

The prediction results tuned for maximal Acc and Specificity are depicted in Figure 2. 

Experiments 1–10 are the results from KC2a and 11–13 are the results from KC2b. Fig. 2 

indicates that different data treatments give different range of prediction accuracy. Data 

partitioned by the mean values have higher overall accuracy Acc, while data partitioned by 

the median tend to give higher defect detection rate, up to 91.5%.

The prediction tuned for minimal Effort and maximal PD for KC2b is depicted in Figure 3. 

We could detect 91.5% of defects by reading 71.8% of the lines in source code. On the 

average, PD is higher than Effort by 18.2% on KC2b.

From the record of the best sequences of the predictors, we found that, generally, using 2 to 

4 predictors results in optimal prediction for KC2 project. The best combinations generally 

come from the top three candidates from the score tables.
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6. Evaluation

6.1 DS Networks vs. Logistic Regression

For comparison, the LOGISTIC procedure in SAS was used as the classifier to predict fault 

prone modules for KC2. In order to compare our prediction accuracy with that of logistic 

regression, we picked the data points within the same range from the results of both 

methods. Figure 4 shows the comparison of software quality predictions obtained by these 

two methodologies.

The prediction by the D-S networks has overall higher accuracy. The defect detection rate 

(specificity) of the D-S networks is 1.9% to 5.7% higher than that of logistic regression. On 

the average, the defect detection rate of the D-S networks is 4.0% higher than that of logistic 

regression, while the overall accuracy Acc is 2.3% higher.

6.2 DS Networks vs. Discriminant Analysis

The DISCRIM procedure in SAS (linear discriminant function) was used as the classifier on 

the KC2 dataset. The best predictors were selected by STEPDISC procedure in SAS 

(stepwise discriminant analysis).

The optimal prediction of discriminant analysis is compared with that of the D-S networks 

in Figure 5. These two methods have the same accuracy of 83.1%. However, the defect 

detection rate (Specificity) of the D-S networks is 4.7% higher than that of discriminant 

analysis. Considering that the cost to release a defect into the later phase of the software life 

cycle caused by imprecise prediction of fault-prone modules is higher than the cost of 

software inspection, the D-S networks do have an advantage over discriminant analysis.

6.3 DS Networks vs. ROCKY

ROCKY is a defect detector toolset experimentally used for the selection of modules for 

software inspection at NASA IV&V facility [16]. Its main purpose is to facilitate minimal 

inspection effort (recommend inspecting the minimal number of code lines) while achieving 

as good as possible defect detection rate PD.

Compared with the optimal performance of ROCKY, we notice several advantages of D-S 

networks. For ROCKY, Effort is generally higher than PD, except for one or two data 

points. For D-S networks, Effort is generally lower than PD for the entire data range. 

Especially significant advantage of D-S networks can be seen in Figure 3 depicting the 

effort on KC2b. As mentioned earlier, inspecting approximately 72% of the code (LOC) 

would expose over 91% of the fault prone modules. In contrast, it required ROCKY to read 

94% of code to discover 91% of fault prone modules. The comparison of the Effort resulting 

from D-S predictions and ROCKY toolset predictions are shown in Figure 6. Based on the 

available data [16], ROCKY predictions lead to higher levels of effort than D-S network 

predictions.
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7. Conclusions and Future Work

This paper contributes a novel methodology to the theoretical framework of software quality 

prediction. This methodology is based on the Dempster-Shafer belief networks. It is a 

general framework for prediction under uncertainty and can be applied to other research 

areas. In our case studies, its prediction accuracy is higher than logistic regression and 

discriminant analysis. It is also more effort economic than another software defect detector, 

ROCKY.

The methodology presented in this paper is meaningful for real-world applications in 

software quality prediction. It has a unique aspect that it can be tuned to meet different 

optimization criteria, such as to achieve maximal Acc and PD, or to use minimal Effort 

while achieving maximal PD. D-S networks can be tuned to meet new optimization 

requirements.

In this study, we observed that the sequence of the predictors taken into the D-S networks 

has effect on optimal network inference, which is consistent with the observation presented 

in [8]. Currently, we do not have an algorithm to identify the “magic” sequence. One 

possible research direction is to explore the relationship between the sequence of the 

predictors and the entropy (the measure of uncertainty) of the D-S network. If each time the 

predictor taken into the D-S network is the one that is most likely to reduce the entropy of 

the entire network, the algorithm to decide the sequence of the predictors is then an 

optimization algorithm. Another direction for improvement would be the discretization of 

the dataset into a multivariate, rather than binary variables.

Currently, we continue to compare our methodology with other software quality models and 

machine learning algorithms, and perform statistical significance tests on the comparisons as 

well.
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Figure 1. 
A defect prediction sheet
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Figure 2. 
Prediction of fault prone modules by the DS networks
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Figure 3. 
Prediction of fault prone modules by the DS networks on KC2b
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Figure 4. 
DS networks vs. logistic regression
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Figure 5. 
DS networks vs. discriminant analysis
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Figure 6. 
DS networks vs. ROCKY
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