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Abstract

Existing predictive models of risk of disease progression in chronic hepatitis C (CHC) have 

limited accuracy. The aim of this study was to improve upon existing models by applying novel 

statistical methods that incorporate longitudinal data. Patients in the Hepatitis C Antiviral Long-

term Treatment Against Cirrhosis (HALT-C) trial were analyzed. Outcomes of interest were: 1) 

fibrosis progression (increase of ≥2 Ishak stages) and 2) liver-related clinical outcomes (liver-

related death, hepatic decompensation, hepatocellular carcinoma, liver transplant, or increase in 

Child-Turcotte-Pugh score to ≥7). Predictors included longitudinal clinical, laboratory, and 

histologic data. Models were constructed using logistic regression (LR), and two machine learning 

(ML) methods [random forest (RF) and boosting] to predict an outcome in the next 12 months. 

The control arm was used as the training dataset (n= 349 clinical; n=184 fibrosis) and the 

interferon arm for internal validation. The area under the receiver operating characteristic curve 

(AUROC) for longitudinal models of fibrosis progression was: 0.78 (95%CI 0.74-0.83) using LR, 

0.79 (95%CI 0.77-0.81) using RF, and 0.79 (95%CI 0.77-0.82) using boosting. The AUROC for 

longitudinal models of clinical progression was: 0.79 (95%CI 0.77-0.82) using LR, 0.86 (95%CI 

0.85-0.87) using RF, and 0.84 (95%CI 0.82-0.86) using boosting. Longitudinal models 

outperformed baseline models for both outcomes (p<0.0001). Longitudinal ML models had 

negative predictive values of 94% for both outcomes.

Conclusions—Prediction models that incorporate longitudinal data can capture the non-linear 

disease progression in CHC and thus outperform baseline models. ML methods can capture 

complex relationships between predictors and outcomes, yielding more accurate predictions. Our 

models can help target costly therapies to patients with most urgent need, guide intensity of 

clinical monitoring required, and provide prognostic information to patients.
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The marked improvement in efficacy and side effect profile of the direct-acting antiviral 

agents has dramatically altered the approach to treatment decision making for chronic 

hepatitis C (CHC).(1, 2) The availability of short courses of well tolerated all oral therapy 

with sustained virologic response rates more than 90% has prompted recommendations that 

all patients with CHC should be considered for treatment. There has simultaneously been a 

focus on improving hepatitis C virus (HCV) infection outcomes at the public health level. 

The Centers for Disease Control and Prevention, the Institute of Medicine, and the United 

States Preventive Services Task Force have advocated for HCV screening as well as 

treatment as a means of disease prevention.(3-5) The high prevalence of CHC in the United 

States paired with the high cost of direct-acting antiviral agents has created notable logistical 

and financial barriers to universal treatment of patients with CHC. The barriers are even 

more pronounced in resource-limited countries, many of which have much higher 

prevalence of CHC than in western countries.(6)

If clinicians were better able to predict which patients are at the highest risk for disease 

progression, these costly therapies could be targeted to patients who have the most urgent 

need for treatment. Risk prediction models for disease progression would also provide 

clinicians with valuable information to help guide intensity of clinical monitoring required 

and meaningful prognostic information irrespective of treatment decision making. Most 

published predictive models for disease progression in CHC are based on data of a few 

variables collected at baseline with a small number of models incorporating selected data at 

a single follow-up time point.(7) These rigid models do not mirror clinical practice where 

assessments of risk of disease progression incorporate a patient's test results over time. In 

addition, models with only baseline variables cannot distinguish between patients with 

similar initial data but who go on to have distinct disease courses and outcomes. As such, 

the aim of this study was to improve upon existing models by incorporating longitudinal 

data that captures the nonlinear nature of disease progression in CHC. Data from the 

Hepatitis C Antiviral Long-term Treatment Against Cirrhosis (HALT-C) trial was used for 

this purpose. We believe that our approach is applicable to other areas of medicine as most 

chronic diseases do not progress at a linear rate and it is important for physicians to be able 

to utilize longitudinal data to refine prognostication as we follow patients so we can adapt 

our management plan.

Patients and Methods

Study Population and Data Collection

The design of the HALT-C trial has been described in detail previously.(8) To briefly 

summarize, the trial enrolled patients with CHC with Ishak fibrosis score ≥3 on liver biopsy 

and prior non-response to interferon (IFN) therapies. Patients with a prior history of hepatic 

decompensation or hepatocellular carcinoma (HCC) were excluded. Patients were 
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randomized to maintenance therapy with pegylated-IFN or to no treatment for the next 3.5 

years. Following completion of the randomized phase, patients were followed without 

treatment until October 2009. For this analysis, we included patients randomized to no 

treatment in the training set. This selection criterion was decided given that IFN therapy can 

have an effect on laboratory results which in turn may impact their predictive value. Liver 

biopsies were performed at baseline and repeated at 1.5 and 3.5 years. All biopsy specimens 

were reviewed for fibrosis, inflammation, steatosis and iron by a panel of hepatic 

pathologists. Patients were seen every 3 months during the randomized phase of the trial and 

every 6 months thereafter. During each visit blood tests were performed and patients were 

assessed for clinical outcomes.

Definition of Outcomes

Outcomes of interest included: 1) histologic progression and 2) liver-related clinical 

outcomes. Histologic progression was defined as ≥2 stage increase in Ishak fibrosis score 

from baseline liver biopsy. Any patient with Ishak >4 at baseline was excluded from this 

part of the analysis. Liver-related clinical outcomes included any of the following: liver-

related death, hepatic decompensation (variceal bleeding, ascites, spontaneous bacterial 

peritonitis, or hepatic encephalopathy), HCC or presumed HCC, liver transplant, or increase 

in Child-Turcotte-Pugh (CTP) score to ≥7 points on 2 consecutive time points 3 months 

apart.(8) Diagnostic criteria were established for each clinical outcome and an Outcomes 

Review Panel adjudicated each outcome report as per the HALT-C study protocol. Only the 

first clinical outcome for each patient was included in the analysis.

Predictor Variables

A detailed description of the variables assessed is listed in Table 1. Predictors evaluated 

included demographics, viral characteristics, clinical characteristics (including relevant 

comorbidities), laboratory test results and histology. In order to capture the extensive 

longitudinal data, for each predictor, we created 5 variables: mean, max, mean of 

differential, max of differential, and mean of acceleration. These variables were defined as 

follows: mean was defined as the mean of the observed values; max was defined as the 

maximum of the observed values; mean of the differential was defined as the mean of the 

difference between sequential observed values divided by the sequential observation time; 

max of the differential was defined as the maximum of the difference between sequential 

observed values divided by the sequential observation time; and mean of acceleration was 

defined as the mean of the difference between sequential differential observed values 

divided by the difference between sequential differential observation time (Δ(x01E8B)/Δt). 

Results of all predictors until 12 months prior to time of prediction were included. For 

fibrosis progression, outcomes could only be assessed at the fixed intervals of year 1.5 and 

3.5 when biopsies were obtained per study protocol.

A second condensed clinical outcomes prediction model was also created. The predictor 

variables included in the condensed clinical model were chosen based on their availability in 

clinical practice, and taking into account the results of the variable importance graphs 

generated from the comprehensive clinical model and the results of our systematic review of 

the literature on predictors of clinical outcomes.(7)
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Development of Regression Model

We first developed a predictive logistic regression (LR) model for both outcomes within the 

next 12 months. We generated a model using baseline variables only and a model that 

included baseline and longitudinal data. Because regression models do not converge when 

the number of predictors is large, we used a lasso technique to limit the predictor variables 

to those with the highest predictive value.(9) A 10-fold cross validation was performed by 

dividing the data into 10 roughly equal smaller datasets (folds). The model (including 

variable selection) is then run 10 times with the data in each fold being held out in each run. 

The cross-validation was then repeated 50 times to give an estimate of the performance 

characteristics.

Development of Machine Learning Models

An in-depth description of the ML algorithms and model construction is provided in the 

Supplemental Methods section. Briefly, we used two machine learning (ML) methods, 

random forest (RF) analysis and boosting, to build prediction models.(10-12) Random forest 

and boosting are two decision tree-based ensemble statistical methods that can build 

classification and regression prediction models. As compared to the commonly used 

predictive models, these two ML methods are able to incorporate many predictor variables 

without compromising the accuracy of the risk prediction.

In RF, as each decision tree is built, only a random subset of the predictor variables are 

considered as possible splitters for each binary partitioning. The predictions from each tree 

are used as “votes” in classification, and the outcome with the most votes is considered the 

dichotomous outcome prediction for that sample. Using this method, multiple decision trees 

were constructed to create the final classification prediction model and to determine overall 

variable importance. Variable importance identifies the most important variables based on 

their contribution to the predictive accuracy of the model. The most important variables are 

identified as those that most frequently result in early splitting of the decision trees. 

Boosting, in comparison to RF, is an iterative process that focuses on the misclassified data 

such that each tree is based on weighted average of the data points and the weights are 

calculated based on the previous model in the iterative process. The ML methods were also 

validated using a 10-fold cross validation and 50 times replication approach.

Assessing and Comparing Model Performance and Internal Validation

We compared the performance of the ML models and the classic LR model for both fibrosis 

progression and clinical outcomes with area under the receiver operating characteristic curve 

(AUROC) analysis and 95% confidence intervals (CI). We then compared the longitudinal 

models with models built on baseline predictors alone for each outcome. We performed 

internal validation of the longitudinal prediction models using the maintenance pegylated-

IFN treatment arm of the HALT-C trial. The ROC curves were used to identify optimal risk 

cut-offs to maximize the model sensitivity and specificity and define a high-risk and a low-

risk group. We assessed the ability of each model to differentiate the risk of fibrosis 

progression or clinical outcomes among low-risk and high-risk patients. Brier scores which 

capture both calibration and discrimination were also reported as an overall measure of 

model performance. Brier scores can range from 0-1, with lower scores being consistent 
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with more accurate and better model performance. In order to assess the performance of our 

longitudinal ML model in the setting of missing data as may occur in the clinical setting, we 

then applied the model using imputation for missing predictors. The MissForest method of 

imputation for missing laboratory data was used.(13)

All ML methods were performed using the statistical language, R (version 3.0.2), with the 

package randomForest, Adaboost and gbm by Y.Z. and J.Z.(11, 12, 14) Additional analyses 

were conducted using STATA statistical software. Two-sided p values <0.05 were 

considered statistically significant.

Results

Predicting Fibrosis Progression

A total of 274 patients in the no-treatment arm had an Ishak score of <5 on the baseline 

biopsy and at least one of the two subsequent protocol follow-up liver biopsies. For this 

analysis, we included 184 patients who did not have any missing data for any of the 

predictor variables. At baseline biopsy, 22 patients had Ishak fibrosis stage 2, 105 had Ishak 

stage 3, and 57 had Ishak stage 4. Fifty (27.1%) patients had fibrosis progression. Baseline 

characteristics of patients who did and those that did not have a ≥ 2 point increase in Ishak 

score are shown in Table 2. These findings were similar to those of the larger cohort that 

included patients with missing data (Supplement Table 1).

The AUROC results for the three separate prediction models created using either baseline or 

longitudinal data to differentiate patients with fibrosis progression are displayed in Figure 

1A. For models with longitudinal data, the AUROCs were 0.78 (95%CI 0.74-0.83) using 

LR, 0.79 (95%CI 0.77-0.81) using RF, and 0.79 (95%CI 0.77-0.82) using boosting. The 

difference between the longitudinal AUROCs of the two ML models and the LR model, 

calculated using the 50 times replication approach, were statistically significant (p=0.002 for 

RF, p=0.0006 for boosting). Each of the three longitudinal models had statistically higher 

AUROCs than their respective models with baseline data alone (p= <0.0001).

The variable importance graph for the RF ML longitudinal model is shown in Figure 2A. 

The most important variables in differentiating patients who developed fibrosis progression 

and those who did not were as follows: mean aspartate aminotransferase (AST), mean and 

differential mean AST to platelet ratio index (APRI), mean alanine aminotransferase (ALT), 

and baseline model of end stage liver disease (MELD) score.

Predicting Clinical Outcomes

A total of 533 patients were assessed for clinical outcomes. For this analysis, we included 

the 349 patients who did not have any missing data for any of the predictor variables. A total 

of 100 patients (28.6%) met predefined criteria for the combined clinical outcome. Baseline 

characteristics of those patients who did and those that did not have a clinical outcome are 

shown in Table 2.

The AUROC results for the three separate prediction models created using baseline or 

longitudinal data to differentiate patients who did or did not develop a clinical outcome are 
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displayed in Figure 1B. For models with longitudinal data, the AUROCs were 0.79 (95%CI 

0.78-0.82) using LR, 0.86 (95%CI 0.85-0.87) using RF, and 0.84 (95%CI 0.82-0.86) using 

boosting. The ML models had significantly better discriminative accuracy than the LR 

model for clinical outcomes (p <0.0001). The longitudinal models outperformed the related 

baseline models for all three methods (p < 0.0001).

The variable importance graph for the longitudinal RF ML model in predicting clinical 

outcomes is shown in Figure 2B. The most important independent variables in 

differentiating patients who developed clinical outcomes and those who did not were as 

follows: mean APRI, maximum baseline and mean platelet count, and mean albumin. To 

assess whether our models were more accurate at predicting any of the 5 combined clinical 

outcomes, additional sensitivity analyses were performed by removing one clinical outcome 

from the combined clinical outcome at a time. Neither the AUROC nor the variable 

importance results significantly changed. Of note, removing HCC as one of the combined 

clinical outcomes did not significantly alter the AUROC or the variable importance 

(Supplement Figure 1).

Performance of Prediction Models in the Internal Validation Cohort

Validation of the prediction models was performed using data from the treatment arm of the 

HALT-C trial. The baseline characteristics of the patients in the treatment arm are displayed 

in Supplement Table 2. A total of 183 patients in the IFN treatment arm had no missing data 

for any of the predictor variables and were included in this analysis for histologic and 

clinical outcomes. 46 (25.1%) patients in the internal validation cohort had fibrosis 

progression and 31 (17%) had a clinical outcome. The features associated with developing 

an outcome on univariate analysis in the internal validation cohort were similar though not 

identical to results in the control arm of the HALT-C study (Supplement Table 2).

In the internal validation cohort, the longitudinal fibrosis progression models had the 

following AUROCs: 0.79 (95% CI 0.71-0.87) using LR, 0.88 (95% CI 0.83-0.93) using RF, 

and 0.86 (95% CI 0.80-0.91) using boosting (Figure 3A). The longitudinal predictive models 

for clinical outcomes had the following AUROCs in the internal validation cohort: 0.76 

(95% CI 0.67-0.86) using LR, 0.81 (95% CI 0.73-0.90) using RF, and 0.80 (95% CI 

0.70-0.90) using boosting (Figure 3B). An additional analysis was performed using the 

entire validation cohort including patients with missing data for the predictors which yielded 

similar results.

The proportion of patients correctly classified as high vs. low risk and the associated Brier 

score is displayed in Table 3 and illustrated in Figure 4. For fibrosis progression, the ML 

models were 85% sensitive, 71-77% specific with a negative predictive value (NPV) of 

94%. For clinical outcomes, the ML models had a sensitivity of 74-81%, a specificity of 

70-78% and also had a NPV of 94%.

Performance of the Condensed Clinical Prediction Model

The results of the more condensed clinical prediction model built with only variables 

routinely available in clinical practice yielded similar results (Figure 5A). Once again, the 

longitudinal models outperformed the related baseline models for all three methods 
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(p=<0.0001). The variables that contributed most to the predictive accuracy of the 

condensed model were similar to the comprehensive model and were as follows: mean 

APRI, maximum mean and baseline platelets, and mean albumin (Supplement Figure 2). In 

the internal validation cohort, the results of the condensed longitudinal clinical progression 

models were essentially unchanged as compared to the more comprehensive models (Figure 

5B). The proportion of patients correctly classified as high vs. low risk were also very 

similar though slightly less accurate as compared to the original comprehensive model. For 

clinical outcomes, the condensed longitudinal ML models had a sensitivity of 76-78%, a 

specificity of 66-70%, and the NPV of the ML models remained high at 94% (Supplement 

Table 3).

Discussion

Recent advances in the treatment of CHC have revolutionized the approach to treatment 

decision making and reinvigorated the public health initiatives to identify patients with 

CHC. The pool of potential treatment candidates is expected to continue to expand, and the 

economic impact of these highly efficacious but extremely costly therapies could potentially 

cripple health care budgets. With over 3.2 million of the U.S. population estimated to have 

CHC, and a single 12 week course of therapy with sofosbuvir priced at $84,000, universal 

treatment would cost over $268 billion not accounting for cost of other medications and any 

of the associated costs.(15) In this context, our data related to improving prediction models 

of disease progression for patients with CHC provide clinically relevant and valuable tools. 

These models can help target HCV therapies to patients with the most urgent need for 

treatment until such time that the logistic and financial solutions allow universal treatment. 

Our model also provides important prognostic information that can help inform patients and 

tailor intensity of clinical monitoring required.

In this study, we demonstrated that prediction models that incorporate longitudinal data 

outperform models restricted to baseline data alone. Moreover, we demonstrated that ML 

techniques can overcome limitations of the classic forms of statistical analyses by virtue of 

their ability to incorporate large numbers of predictor variables without compromising the 

accuracy of the risk prediction. For fibrosis progression, the AUROCs of our longitudinal 

models of 0.86-0.88 were notably higher than those in prior studies of 0.66.(16) Our ML 

longitudinal prediction models also yielded very high NPVs of 94%, thus very few patients 

classified as low risk of fibrosis progression ultimately developed an outcome. Our findings 

confirm the utility of liver enzymes and other non-invasive markers of liver fibrosis, 

specifically APRI, particularly when results of these tests are used in aggregate.(17-21) 

From a clinical practice and health policy standpoint the results of our clinical outcome 

prediction models are even more relevant. Our models were able to accurately discriminate 

high vs. low risk patients with a sensitivity of 74%, specificity of 78% and NPV of 94%. As 

expected, the variables that contributed most importantly to the predictive capability of the 

model were longitudinal laboratory markers of advanced liver disease including changes in 

platelet count, APRI, and albumin. Of interest, when removing HCC/presumed HCC from 

the composite clinical outcomes, neither the AUROC nor the variable importance 

significantly changed. This is somewhat surprising given that other studies have identified 

different predictors for hepatic decompensation and HCC.(22, 23)
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The major strength of our study is the application of novel statistical approaches to analyze 

longitudinal data which improved the accuracy of prediction estimates; however, there are 

several limitations to our findings. These stem from the constraints on the generalizability of 

our results given the enrollment criteria for the HALT-C study which only enrolled patients 

with advanced fibrosis and prior HCV treatment failure. Moreover, the HALT-C cohort was 

primarily composed of middle-aged Caucasian men with genotype 1 infection and thus 

represents only a portion of the overall population of patients with CHC. Future studies 

would benefit from evaluating cohorts that include more diverse ranges of baseline liver 

disease, demographic characteristics as well as other HCV genotypes. In addition, our 

endpoint of interest was a composite of liver-related clinical outcomes and our models may 

not be as accurate for prediction of individual outcomes. Sensitivity analyses did show that 

our models performed equally well when each outcome was removed one at a time.

In conclusion, our findings build upon the existing tools by providing novel approaches to 

analyze individual patient's results over time in order to more accurately assess one's risk of 

disease progression from CHC. Machine learning methods of analysis have long been 

successfully applied in other fields such as business and marketing, and as demonstrated 

here, provide significant opportunity for application in clinical settings.(24) In our proposed 

models, we demonstrate that accurate risk predictions can be made based on data routinely 

available in clinical practice. In its present form, our model can easily be implemented into 

existing electronic medical records (EMR) as a clinical decision tool. Developing our model 

as a universally accessible web-based tool would further increase its accessibility and uptake 

in clinical practice and is an ultimate goal from an implementation standpoint. Similar to our 

prediction models in inflammatory bowel disease, we anticipate a tool which would pull 

data from an individual patient's EMR or a web-based platform where physicians will input 

and store serial laboratory results from individual patients and an update of the prediction of 

high or low risk for an outcome in the next 12 months can be run at each clinic visit.(25) 

This result can then be discussed with patients by the clinician to help inform decisions 

regarding treatment initiation and intensity of clinical monitoring (such as frequency of 

clinic visits and outpatient testing). In the current era of highly efficacious therapy for CHC, 

ideally we would treat all patients who do not have an absolute contraindication to therapy. 

Unfortunately, until society can solve the logistic and financial barriers, clinicians and 

policy makers are faced with the arduous task of trying to target these therapies to patients 

with most urgent need. Herein we illustrate that it is possible to create predictive models of 

risk of disease progression that accurately identify those patients at highest risk for adverse 

outcomes. Offering immediate treatment to patients identified as high risk for clinical 

outcomes would reduce the immediate cost burden of HCV treatment without jeopardizing 

the outcomes of other patients as long as they continue to be monitored and risk assessments 

updated at each clinic visit. Future studies are needed to externally validate our results in 

broader patient populations. Ultimately, we hope treatment will be affordable and accessible 

to all patients with CHC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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List of Abbreviations

CHC chronic hepatitis C

HCV hepatitis C virus

HALT-C Hepatitis C Antiviral Long-term Treatment Against Cirrhosis

IFN interferon

HCC hepatocellular carcinoma

CTP Child-Turcotte-Pugh

BMI body mass index

AFP alpha-fetoprotein

INR international normalized ratio

MELD model of end-stage liver disease

AST aspartate aminotransferase

APRI AST to platelet ratio index

LR logistic regression

ML machine learning

RF random forest

AUROC area under the receiver operating characteristic curve

CI confidence interval

ALT alanine aminotransferase

NPV negative predictive value
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Figure 1. 
A. AUROC for Fibrosis Progression in Training Cohort 
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B. AUROC for Clinical Outcomes in Training Cohort 
AUROC, area under the receiver operating characteristic curve
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Figure 2. 
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A. Longitudinal Random Forest Variable Importance for Fibrosis Progression: 
Training Cohort 
B. Longitudinal Random Forest Variable Importance for Clinical Outcomes: Training 
Cohort 
Accel, acceleration AFP, alpha-fetoprotein; ALT, alanine aminotransferase; Alk Phos, 

alkaline phosphatase; ANC, absolute neutrophil count; APRI, AST to platelet ratio index; 

AST, aspartate aminotransferase; CTP, Child-Turcotte-Pugh; Diff, differential; HOMA2 IR, 

homeostatic model assessment of insulin resistance; INR, international normalized ratio; 

MELD, model of end stage liver disease; WBC, white blood cell count
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Figure 3. 
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A. AUROC of Longitudinal Models for Fibrosis Progression: Internal Validation 
Cohort 
B. AUROC of Longitudinal Models for Clinical Outcomes: Internal Validation Cohort 
AUROC, area under the receiver operating characteristic curve; RF, random forest
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Figure 4. Outcome Incidence by Risk Strata: Internal Validation Cohort
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Figure 5. 
A. AUROC for Clinical Outcomes in Training Cohort: Condensed Model 
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AUROC, area under the receiver operating characteristic curve

B. Longitudinal AUROC for Condensed Clinical Outcomes Model: Internal Validation 
Cohort 
AUROC, area under the receiver operating characteristic curve; RF, random forest
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Table 1
Predictor Variables Assessed

Comprehensive Model

Baseline Variables Demographics: Age, gender, race

Viral characteristics: HCV genotype, IL28B genotype, HCV RNA, prior HCV treatment regimens, estimated 
duration of HCV infection

Clinical characteristics: alcohol use (lifetime drinks and current use), tobacco use, BMI, waist circumference, 
history of diabetes, presence and grade of esophageal varices on upper endoscopy, beta-blocker use, anti-
hypertensive use, evidence of portal hypertension

Labs: WBC with differential, hemoglobin, platelets, AST, ALT, AST/ALT, total bilirubin, albumin, alkaline 
phosphatase, APRI, AFP, INR, MELD, creatinine, BUN, glucose, triglycerides, insulin, HOMA2 IR, iron level, 
iron saturation, total iron binding capacity, ferritin

Histology: Ishak score, histologic activity index, steatosis score, biopsy length, biopsy fragmentation, iron score

Longitudinal Variables Viral characteristics: HCV RNA

Clinical characteristics: BMI

Labs: WBC with differential, hemoglobin, platelets, AST, ALT, AST/ALT, alkaline phosphatase, total bilirubin, 
albumin, INR, AFP,APRI, MELD, CTP score (for fibrosis progression model only), BUN, creatinine, eGFR, 
urinary protein, glucose, triglycerides, iron, total iron binding capacity, ferritin,

Histology: Ishak score, histologic activity index, steatosis score, biopsy length, biopsy fragmentation, iron score

Condensed Model

Baseline Variables Demographics: Age, gender, race

Viral characteristics: HCV genotype, HCV RNA

Clinical characteristics: BMI, history of diabetes

Labs: WBC, hemoglobin, platelets, AST, ALT, AST/ALT, total bilirubin, albumin, alkaline phosphatase, APRI, 
AFP, INR, MELD, creatinine, BUN, glucose

Longitudinal Variables Clinical characteristics: BMI

Labs: WBC, hemoglobin, platelets, BUN, creatinine, glucose, AST, ALT, AST/ALT, alkaline phosphatase, total 
bilirubin, albumin, INR, AFP, APRI, MELD, CTP score (for fibrosis progression model only)

AFP, alpha-fetoprotein; ALT, alanine aminotransferase; APRI, AST to platelet ratio index; AST, aspartate aminotransferase; BMI, body mass 
index; BUN, blood urea nitrogen; CTP, Child-Turcotte -Pugh; eGFR, estimated glomerular filtration rate; HAI, histologic activity index; HCV, 
hepatitis C virus; HOMA2 IR, homeostatitc model assessment of insulin resistance; IL, interleukin; INR, international normalized ratio; MELD, 
model of end stage liver disease; RNA, ribonucleic acid; WBC, white blood cell
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