Table 6. Ranking of candidate models describing variables influencing frequency of cell use (i.e., spatial occurrence) over the study period for the Great Egret, White Ibis, and Wood Stork (Proc Glimmix).
GREAT EGRET MODEL | N | AICC | modelid | d_aic | weight | R2 |
Depth, Depth2, DSD, DSD2, HP, Depth*DSD, Recess*DSD | 12 | 880.59 | 5 | 0.00 | 0.74 | 0.88 |
Depth, Depth2, DSD, DSD2, Reversal, HP, Depth*DSD, Depth*Recess, Recess*DSD | 14 | 883.83 | 18 | 3.24 | 0.15 | |
Variable | N | Avg PE | SE | Importance | ||
Intercept | 27 | -0.584 | 7.48 | 1.00 | ||
Depth | 14 | -0.006 | 0.00 | 1.00 | ||
Depth2 | 14 | -0.000 | 0.00 | 1.00 | ||
Depth*DSD | 15 | 0.000 | 0.00 | 1.00 | ||
DSD2 | 15 | -0.000 | 0.00 | 1.00 | ||
HP | 14 | 0.004 | 0.00 | 1.00 | ||
DSD | 13 | 0.001 | 0.00 | 0.99 | ||
Recess*DSD | 11 | -0.000 | 0.00 | 0.99 | ||
WHITE IBIS MODEL | N | AICC | modelid | d_aic | weight | R2 |
Depth2, Recess, Recess2, Depth*DSD, Depth*Recess | 8 | 750.2 | 4 | 0.00 | 0.55 | 0.83 |
Depth2, Recess, Recess2, DSD2, Depth*DSD | 8 | 750.9 | 6 | 0.67 | 0.39 | |
Variable | N | Avg PE | SE | Importance | ||
Intercept | 27 | 1.126 | 7.79 | 1.00 | ||
Depth2 | 17 | -0.000 | 0.00 | 1.00 | ||
Recess2 | 15 | -0.012 | 0.01 | 1.00 | ||
Recess | 12 | 0.061 | 0.02 | 0.99 | ||
Depth*DSD | 16 | 0.000 | 0.00 | 0.94 | ||
Depth*Recess | 15 | 0.000 | 0.00 | 0.58 | ||
WOOD STORK MODEL | N | AICC | modelid | d_aic | weight | R2 |
Depth, Depth2, Recess2, DSD, DSD2, HP, HP2, Depth*DSD | 13 | -485.9 | 12 | 0.00 | 0.49 | 0.55 |
Depth, Depth2, Recess2, DSD, DSD2, Reversal, HP, HP2, Depth*DSD | 14 | -485.1 | 18 | 0.72 | 0.34 | |
Variable | N | Avg PE | SE | Importance | ||
Intercept | 27 | 0.987 | 0.63 | 1.00 | ||
Depth | 15 | 0.004 | 0.00 | 1.00 | ||
Depth2 | 15 | 0.000 | 0.00 | 1.00 | ||
DSD | 13 | -0.001 | 0.00 | 1.00 | ||
DSD2 | 14 | 0.000 | 0.00 | 1.00 | ||
Depth*DSD | 13 | -0.000 | 0.00 | 1.00 | ||
HP2 | 9 | -0.000 | 0.00 | 1.00 | ||
HP | 15 | 0.001 | 0.00 | 1.00 |
Models are ranked by differences in Akaike’s information criterion and only candidate models within ΔAICc d ≤ 4.0 are presented. Model selection results are followed by model averaging results for each species. The R2 represents the model fit for the estimated spatial occurrence vs. model averaged predicted values.