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Abstract

While genome-wide association (GWA) studies have linked thousands of loci to human diseases, 

the causal genes and variants at these loci generally remain unknown. Although investigators 

typically focus on genes closest to the associated polymorphisms, the causal gene is often more 

distal. Relying on the literature to help prioritize additional candidate genes at associated loci can 

draw attention away from less-characterized causal genes. Here we describe a strategy that uses 

genome-scale ‘co-function’ networks to identify sets of mutually functionally related genes 

spanning multiple GWA loci. Using associations from ~100 GWA studies covering ten cancer 

types, this approach outperforms the common alternative strategy in ranking known cancer genes. 

The strategy’s power grows with more GWA loci, offering an increasing opportunity to elucidate 

causes of complex human disease.

Introduction

While simple (i.e. Mendelian) traits can be explained by only a few strong-effect loci, the 

modest effects at many complex trait loci complicate precise identification of causal 

variants 1. Genome-wide association (GWA) studies in large cohorts help address this issue 

by being powered to detect modest associations at multiple loci simultaneously 2. GWA 
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studies have to date detected thousands of robust associations between genomic loci and 

disease-related traits. However, rather than identifying causal genes or variants directly, 

these associations generally identify “tag” single-nucleotide polymorphisms (or “tagSNPs”), 

each representing many linked variants. Moving from these genomic ‘landmarks’ to 

individual causal genes within these loci remains challenging, and precise understandings of 

the genotype-to-phenotype relationship for most traits remain elusive 3.

To address this gap, orthogonal genomic evidence can help prioritize candidate genes found 

at disease-associated loci 3,4. Co-occurrences of gene names within PubMed abstracts, for 

example, have identified connections between candidate genes at different implicated loci 5. 

However, many genes are poorly characterized within the literature, and restricting analyses 

to ‘popular’ genes diminishes the opportunity for novelty. Likewise, protein-protein 

interactions (PPIs) have informed our mechanistic understandings of disease 6–8, but 

interaction evidence alone is limited in scope, with much of the human proteome under-

represented in high-quality databases 9 (Supplementary Fig. 1) and an even smaller fraction 

of the complete interactome having been mapped 10. Additionally, nearly half of all current 

human PPI knowledge comes from small-scale targeted studies which, like literature text-

mining, limits the opportunity for novel discovery 11.

‘Group-wise’ disease associations missed when testing SNPs in isolation can be found by 

testing sets of genes that share a common function 7,12. Assigning SNPs to functional sets, 

however, requires (i) existing assignments of SNP effects to specific genes and (ii) complete 

knowledge of function, both of which remain problematic 13.

Co-function networks (CFNs) augment curated functional annotation by connecting pairs of 

genes that share --- or are likely to share --- biological function 14 (e.g. by sharing protein 

domain annotations). ‘Guilt-by-association’ 15 methods have used CFNs to assign function 

to uncharacterized genes for S. cerevisiae 14, A. thaliana 16, M. musculus 17, and H. sapiens
18–20, amongst other species. CFNs have also contributed to fine-scale mapping of 

Mendelian disorder associations 21, and can prioritize genes not located at disease-associated 

loci (e.g. by connectivity to known “seed” causal genes 8,22).

Here we use CFNs to prioritize groups of candidate genes from multiple disease-associated 

loci on the basis of mutual functional-relatedness. We frame the problem as a constrained 

optimization task, analogous to choosing mutually compatible items from a prix fixe 

restaurant menu, with one dish from each course (cocktail, appetizer, entree, dessert, etc.). 

Combinations of genes, with one gene from each locus, are evaluated for their collective 

extent of shared function within the CFN. We find that the “prix fixe” strategy improves 

upon the ubiquitous approach of ranking candidate causal genes by their genetic distance to 

trait-associated tagSNPs. Mutually-connected gene groups can reveal disease-relevant 

pathways and prioritize candidate disease genes. This method is freely available online and 

as a downloadable R package at http://llama.mshri.on.ca/~mtasan/GrandPrixFixe.
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Results

Following a GWA scan for association, candidate genes within implicated loci may be 

selected for subsequent analysis. Often only genes overlapping or flanking the reported 

tagSNPs are considered, excluding other potentially-causal genes within the associated 

haplotype (see, for example, the “mapped genes” field in the NHGRI GWAS Catalog 23). 

Moreover, these genes are typically examined in the context of existing literature, which 

may be subject to substantial confirmation bias. For example, the on-going rate of new 

publications is significantly higher for earlier-characterized genes when compared to those 

genes more recently ‘discovered’ within the literature (Supplementary Fig. 2). This ‘rich get 

richer’ phenomenon lures us from novel discoveries towards already well-characterized 

genes.

To prioritize candidate genes from disease-associated loci while minimizing bias towards 

well-studies genes, we integrated genome-scale data and analyzed published GWA studies 

spanning 23 diverse complex diseases and traits, including auto-immune disorders, 

cognition levels, and cardiovascular & metabolic traits, as well as 10 distinct cancer types 

(Table 1). We first describe the overall method (Fig. 1), then describe each step in greater 

detail below.

After identifying tagSNPs associated with a trait, nearby genes (identified by linkage 

disequilibrium (LD)) are consolidated into disjoint gene sets. A stochastic optimization 

strategy then identifies “prix fixe menu selections”: sets of genes (with one gene per locus) 

that correspond to dense subnetworks of functional relationships. Finally, we measure each 

gene’s contribution to the top-scoring subnetworks. Top-scoring dense subnetworks yield 

sets of genes working in concert, highlighting particular processes that may contribute to 

disease etiology.

To illustrate the process, we use prostate cancer susceptibility as a case-study. Detailed 

results for all 23 diseases and traits analyzed (Table 1) are provided as Supplementary Files.

Identifying LD-ranges from associated SNPs

We systematically defined genomic boundaries for trait-associated loci using pairwise 

linkage-disequilibrium (LD) correlations (r2) between each associated tagSNP and nearby 

SNPs (Fig. 1). Genes (defined to capture cis-regulatory elements via up- and down-stream 

‘padding’) within these boundaries were then identified for each trait-associated locus 

(Online Methods).

Inferring a human co-function network

To aggregate information about functional relationships between human genes, we 

constructed a CFN covering most of the human genome (Fig. 1 and Supplementary Fig. 3). 

For this, we used (i) a method based on gene-pair features (e.g. shared protein domain 

signatures) 19, and (ii) a graph-walking strategy to find pairs of genes that are likely to share 

function 24 (Online Methods). The two networks cover nearly the full human genome, but 

are complementary (Supplementary Fig. 3), echoing earlier findings establishing that 

differing methods often each excel at inference for distinct functions 17. We merged these 
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two networks into a single CFN, providing ~107 ‘co-function’ links involving ~19,000 

genes (covering 94% of the human genome).

Identifying mutually connected prix fixe subnetworks

To find common threads connecting trait-associated loci, we searched the CFN for groups of 

candidate genes appearing to work in concert (Fig. 1). More specifically, we sought densely-

connected subnetworks such that each locus contributes a single gene to the subnetwork (i.e. 

with a ‘prix fixe’ constraint). In graph-theoretic terms, these are dense L-partite subgraphs 

for L loci, where density is a measure of mutual connectivity amongst the genes.

For most complex traits, the large number of associated loci and candidate genes make 

enumeration of all possible prix fixe subnetworks infeasible (Table 1, “PF combinations”). 

The 73 loci implicated in prostate cancer, for example, have ~1029 potential prix fixe 

subnetworks, and for height this number exceeds 1073. To tractably identify dense prix fixe 

subnetworks, we used a genetic algorithm 25 seeded with a ‘population’ of random prix fixe 

gene sets (‘individuals’). Individuals are subjected to ‘mutation’ such that, with low 

probability, two genes at a given locus are swapped. Each subnetwork ‘individual’ is 

evaluated for its ‘fitness’ (here, edge density), and pairs of individuals are randomly mated 

(preferring fitter pairs) to create new subnetworks (Online Methods). After repeated 

‘generations’ of selection, the population is enriched for dense prix fixe subnetworks (Fig. 1 

and Supplementary Fig. 4). To measure significance, we compared the final population’s 

average edge density to the same measure from 1000 trials with random input sets matching 

the true input set in terms of number of genes and connectivity (Supplementary Fig. 2, 

Online Methods).

The importance of each gene at each locus was estimated by the difference in edge densities 

in subnetworks with and without that gene. For example, a gene with no connections yields 

the same density whether included or not, implying zero importance to that subnetwork. We 

averaged the importance measurements of each gene over the final ‘fittest’ population of 

prix fixe subnetworks, obtaining a “prix fixe score” (Fig. 1) for each candidate gene (Online 

Methods).

Both the gene scores and the frequencies with which edges appear in the subnetworks 

provide clues about how candidate genes work together. Amongst the 73 prostate cancer-

associated loci, for example, at locus 6p21.33 the candidate gene POU5F1 (also known as 

OCT4) is highlighted, along with one of its frequent subnetwork partners, HNF1B (at locus 

17q12; Fig. 2). Despite being previously linked to prostate cancer 26, POU5F1 might have 

otherwise been overlooked given that four other genes are closer to the associated tagSNP. 

But both POU5F1 and HNF1B play important roles in embryonic development, and they 

boost each other’s importance. HNF1B has also recently been shown to modulate the effects 

of growth hormones and tumor progression 27.

Cancer-susceptibility gene prioritization

To broadly evaluate prix fixe-based gene prioritization, we explored GWA studies of 

multiple cancer types. We assembled 78 published GWA studies spanning ten types of 
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cancer (Table 1). For nine types (all but chronic lymphocytic leukemia (CLL)), at least one 

associated multigenic locus contained a known cancer-linked gene, as defined by the Sanger 

Cancer Gene Census (SCGC) 28.

Prioritization success was measured at multigenic loci by ranking the SCGC gene by its prix 

fixe score within each locus, and rescaling this rank from 0 to 100% (Online Methods). The 

prix fixe score successfully identified the SCGC gene as the highest-ranked gene (100% 

relative rank) for 21 out of 34 loci, with an average relative rank of 80% for SCGC genes 

(Fig. 3), significantly higher than expected for non-informative random rankings (P = 

4.9E-07, one-sided one-sample Student’s t-test). The prix fixe approach also out-performed 

the common alternative LD-based ‘closest gene’ strategy of ranking genes by tagSNP 

proximity (average relative rank 58%; P = 0.015, one-sided paired Wilcoxon signed-rank 

test, Fig. 3; Online Methods). Note that an ideal “gold standard” set of cancer genes would 

have included only genes for which germline susceptibility alleles have been observed, 

given that cancer susceptibility is the GWA trait under study. Although this more stringent 

reference standard yielded a similar effect size (average relative rank of 91%) but with only 

8 qualifying loci had insufficient statistical power (P = 0.14). However, there is strong 

overlap between somatically-mutated cancer genes and cancer genes associated with 

germline susceptibility, with half (43/81) of SCGC genes showing evidence of disease-

causing germline mutations also having somatic-mutation evidence. That cancer genes were 

significantly highly-ranked within the more complete set suggests that many of the cancer 

genes at these 34 loci that were previously known only through somatic mutations may also 

harbor germline predisposition alleles.

To further investigate our rankings, we used mRNA expression data from The Cancer 

Genome Atlas (TCGA) for both breast (BRCA) and prostate cancer (PRAD)1. The prix fixe 

scoring method ranked differentially-expressed genes significantly higher than genes 

without a marked expression difference between matched tumor and healthy tissues for both 

cancers (P = 0.03 for PRAD and P = 0.01 for BRCA; Wilcoxon rank sum test; Fig. 4a and 

Supplementary Fig. 5; Online Methods). Closest-gene rankings did not show correlation 

with cancer-dependent expression (P = 0.17 and P = 0.59; Wilcoxon rank sum test; Fig. 4a 

and Supplementary Fig. 5).

Identifying causal pathways

Commonalities amongst high-scoring candidate genes can provide insight into the processes 

contributing to disease (Fig. 1), and so for each trait, we searched for Gene Ontology (GO) 

terms that were over-represented amongst the highest-scoring genes 29 (Online Methods). 

Prix fixe-ranked prostate cancer candidate genes yielded significant enrichment for 163 GO 

terms (Supplementary File 3). The maximal enrichment for most (75%) of these terms was 

found using just the top 23 genes, indicating a high concentration of shared function 

between these highest-scoring candidates. By contrast, functional enrichment analysis with 

the complete set of genes from prostate cancer-associated loci (i.e. an “unordered” search) 

yielded no enriched terms. More surprisingly, no terms were found in an ordered functional 

1BRCA and PRAD were selected as only they had sufficient TCGA RNA-Seq data available for patient-matched tumor-vs-normal 
differential expression analysis at the time of this study.
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enrichment analysis of prostate cancer genes when ranked by the closest-gene approach. For 

all traits examined, prix fixe scoring provided more enriched terms than the closest-gene 

approach, with the latter method providing nearly the same amount of term enrichment as 

the unranked approach (Supplementary File 3).

Many enriched terms in our prostate cancer analysis have clear links to prostate function and 

development, including “androgen receptor activity”, “male genitalia morphogenesis”, and 

“prostate gland morphogenesis” (Fig. 4b). The high-scoring candidate genes AR (androgen 

receptor), FGF10 (fibroblast growth factor 10), and NKX3-1 (NK3 homeobox 1) --- found at 

Xq12, 5p12, and 8p21, respectively --- have all received considerable attention for their 

probable role in prostate cancer development, despite not yet being declared “causal” in the 

SCGC 30–32. In particular, AR and receptors of the FGF family (i.e. FGFRs) are considered 

possible therapeutic targets for inhibiting prostate tumor progression 33 and tumorigenesis 

more generally 34. AR was among the few significantly-mutated genes (SMGs) detected by a 

recent “pan-cancer” whole-genome sequencing analysis of diverse tumor samples 35 (Fig. 

4b).

Enriched terms provide the opportunity to identify new candidate genes outside trait-

associated loci. “Prostate gland morphogenesis”, for example, is associated with 30 genes 

not found within any prostate cancer-associated locus (Fig. 4b). Four of these genes are 

known to have causal roles in tumorigenesis (FGFR2, NOTCH1, HOXD13, and HOXA13), 

and four (in addition to AR) appear in the pan-cancer SMG list 35 (Fig. 4b). Thus, the prix 

fixe method systematically prioritizes candidate genes which can then serve as “seeds” to 

find additional candidates (e.g. through guilt-by-association techniques).

For nearly every trait examined, we found enriched terms that were highly relevant to that 

trait (Supplementary Table 3), e.g. “learning or memory” for cognitive performance and 

“plasma lipoprotein particle assembly” for cholesterol levels. The processes highlighted by 

our candidate gene rankings also helped identify non-obvious or environmental factors 

contributing to complex traits. For example, top prix fixe-ranked lung cancer candidate 

genes are highly enriched for associations with “behavioral response to nicotine”, capturing 

the role of smoking in lung cancer and possible gene-environment interactions.

Finally, we found terms that were commonly-enriched across a subset of traits, indicating 

diseases with shared etiology. High-scoring genes in chronic lymphocytic leukemia (CLL), 

type 1 diabetes, Crohn’s disease, ulcerative colitis, inflammatory bowel disease, and 

multiple sclerosis, for example, were all associated with functions of immunity. More 

generally, “response to stress” was over-represented for nearly half of the traits examined in 

this work, underscoring commonalities of diverse diseases and disorders. Complete results 

for all traits can be found in Supplementary File 3.

Discussion

Genes contributing to the same trait often share functional relationships 36. Here we have 

exploited this phenomenon to prioritize candidate causal genes without specifying a priori 

which functions contribute to the phenotype. We found limitations in the naïve (but 
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commonly used) closest-gene approach, which provided almost no advantage over ranking 

genes within loci uniformly at random. The extensive haplotype block structures found in 

human populations limit the utility of the closest-gene strategy. Furthermore, the use of 

CFNs built from genome-scale data permits scoring for nearly all candidate genes in 

implicated loci, reducing the knowledge bias that is coupled with literature text-mining 

approaches.

The importance-scoring step of the prix fixe strategy provides flexibility when aggregating 

results across many dense prix fixe subnetworks. As not all loci are multigenic, this scoring 

method can measure the contributions of genes even at monogenic loci. Those genes with 

strong connections to other candidate genes achieve high scores (e.g. AR at Xq12 in Fig. 2), 

while the weakly-connected genes tend to score poorly (e.g. MYEOV at 11q13.3 in Fig. 2). 

The use of multiple top-scoring subnetworks followed by importance-scoring also allows for 

similarly-connected genes within a multigenic locus to obtain similar scores. For example, 

NGFR and PHB at 17q21.32–3 are both strong prostate cancer candidates (Fig. 2), and 

selecting one at the expense of the other by selecting only a single top-scoring subnetwork 

might have conferred false confidence in a single recommended gene. Individual SNP effect 

sizes may in the future be included to augment network-based prioritization methods (e.g. by 

placing prior probability ‘weights’ on candidate genes 37), however, such analyses at large 

scale will require a (currently unavailable) catalog of annotated effect sizes for markers 

across all tested traits.

To better understand mechanisms underlying a given phenotype, candidate genes must be 

viewed in the context of biological processes and pathways 3. Ranking candidate gene sets 

by their level of collective cooperation within the cell is a principled way to simultaneously 

identify causal genes and explanatory causal pathways. In addition to those enriched 

functional annotations found for each trait, the enriched functions shared by different traits 

point to shared etiologies that might underlie co-morbidity patterns 38 and may help in 

identifying therapies for one disease that might be repurposed for another.

Using CFNs and connectivity measures to prioritize large candidate lists can be extended 

beyond GWA studies. It could also be applied, for example, to candidate disease-related 

variants found by sequencing-based mutational burden studies. Incorporating prior 

functional knowledge about these candidates will help to prioritize subsets of genes, 

possibly even in mutually exclusive combinations 39. Resulting gene sets can then be fed 

back to GWA prioritization results, tightening the net around the underlying causal 

pathways. The inclusion of large-effect rare variants may help solve the ‘missing 

heritability’ problem 40.

Thus, the use of unbiased genomic datasets and a prix fixe-constrained optimization 

procedure can identify mutual functional similarity amongst genes in trait-associated loci to 

prioritize loci, genes, and trait-associated pathways.

Taşan et al. Page 7

Nat Methods. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Online Methods

Co-function network derivation

We derived a human co-function network (CFN) from two existing CFN resources and 

published methods. The first CFN was constructed as described in Tasan et al. (2012) 19, but 

with the exclusion of Online Mendelian Inheritance of Man (OMIM) 41 data. OMIM data 

was removed specifically for this study to limit any potential source of circular logic while 

evaluating our methods. The remaining predictive data types are briefly summarized below, 

each chosen with the intent of being as free of survey bias as possible such that 

combinations of their features retained low bias while providing increased power for 

discovery.

Protein domain signatures for all genes were downloaded from InterPro 42, represented as a 

binary matrix (i.e. presence or absence of each signature for each gene), and scores were 

computed for each gene-pair using the PhenoBlast method 43. Transcription factor binding 

site (TFBS) information was acquired as UCSC Genome Browser 44 hg19 tracks for 

TRANSFAC and ENCODE ChIP-Seq data. To assign TFBSs to genes, gene boundaries 

were defined by expanding RefSeq transcripts (also mapped to UCSC hg19 coordinates) 

upstream by 5000 bp and downstream by 500 bp, and any TFBS overlapping a gene was 

then assigned to that gene. A single binary matrix was created for all TFBS data and all 

genes, and similarity between gene-pairs was scored using the PhenoBlast method 43. 

Similarity between phylogenetic profiles (downloaded from Inparanoid 45) were also scored 

using the PhenoBlast method 43. Normalized and summarized gene expression profiles 

covering normal human tissues were downloaded from BioGPS 46. These expression data 

were then log-transformed and Kendall rank correlation coefficients were computed for each 

gene-pair. Finally, a catalog of literature-curated protein-protein interactions between human 

ORFs was separated into “binary” and “all” interactions, creating two features (where binary 

interactions must come from experiments specifically testing pairs of proteins, while the 

complete data set includes interactions derived from co-complex methods, such as affinity 

purification and mass spectrometry (AP-MS) experiments).

As positive training examples of gene-pairs sharing function, we used gene-pairs sharing 

Gene Ontology (GO) Biological Process (BP) terms. To ensure specificity in our definition 

of co-function, we limited the terms used to those with fewer than 300 non-electronic (i.e. 

excluding RCA and IEA GO evidence codes) gene associations. These data were then used 

to train a random forest ensemble classifier 47, and the top 1% of scored gene-pairs were 

used as our predicted CFN. Note that gene pair scores were ‘out of bag’, in that the random 

forest used to score each gene pair excluded any tree that made use of that gene pair.

The second CFN we used was generated using a different prediction strategy also shown to 

produce high-quality inferences of shared function between genes using a label-propagation 

method 18. Pre-scored data were downloaded from GeneMANIA 24, and as disease 

annotations were not included as a source dataset, we performed no additional pruning of 

these data.
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Both strategies have been demonstrated to provide high-quality gene-function predictions 

for (amongst others) H. sapiens 19,24, M. musculus 17,48,49, D. rerio 50, and S. cerevisiae 51. 

The union of these two CFNs were then taken as the single CFN used for this study, noting 

that while gene coverage overlap was high between the two networks, the gene-pair 

predictions were largely complementary (Supplementary Fig. 3).

Gene, SNP, and LD positional data

All gene definitions used in this study were acquired from the NCBI Gene database. 

Transcripts corresponding to these genes were mapped to UCSC hg19 coordinates 44. 

Variation data from dbSNP 137 were also mapped to UCSC hg19 coordinates, and linkage-

disequilibrium (LD) data for SNP-pairs within 500 kb of each other were downloaded from 

the International HapMap Project (Phase III, CEU population) 52.

GWA study data and gene-set construction

All GWA study data used in this work were acquired from the NHGRI GWAS Catalog 23. 

As some publications report on associations to multiple distinct traits, we took each 

publication-trait pair and treated it as a distinct ‘study’. Studies were then ranked by their 

number of significantly-associated loci, and we chose to focus on complex and/or 

heterogeneous traits, generally with at least 20 reported loci per study. For our cancer 

analyses, we preferentially selected recent meta-analyses where available, but otherwise 

took the union of reported SNPs for studies addressing the same type of cancer. For our non-

cancer traits, we treated each study independently. Many of the traits we analyzed were 

associated with more than 20 loci each, indicating substantial complexity in the underlying 

biology (Table 1). Prostate cancer, for example, has been associated with 73 loci, while 

height has been associated with nearly 200 loci 53.

Each analyzed set of associated SNPs was then processed by first finding all other SNPs in 

LD with the associated markers. To this end, a genomic window was defined by taking the 

positions of the physically farthest upstream and downstream SNPs in LD, such that r2 ≥ 0.5 

between each boundary SNP and the associated SNP. Genes were defined by Refseq 

transcript boundaries, but extended 100 kbp upstream and 10 kbp downstream to include 

cis-regulatory regions. Overlapping windows (which may occur due to multiple SNPs in 

close proximity being reported for the same locus) were merged to create a set of disjoint 

genomic windows. The transcripts within these windows were mapped back to unique NCBI 

Gene IDs, creating a disjoint collection of gene sets. All PubMed IDs, dbSNP IDs, window 

coordinates, and candidate genes are available in Supplementary File 1.

LD-decay score

For each trait-associated locus, we derived a score for each candidate gene based solely on 

that locus’ local LD properties (the “r2 score”). In cases where the locus was defined by a 

single tagSNP, we used that SNP for the procedure below. When a locus had been identified 

by multiple tagSNPs (leading to locus merging, as described above), the SNP with the 

strongest reported effect size was chosen as the representative SNP for that locus. (In cases 

where no effect size was available, the SNP with the smallest reported P-value was chosen.)
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An LD-decay model for each locus was then learned using the r2 correlations between the 

representative SNP and all other in-LD SNPs in the locus. The decay was modeled using 

beta regression 54 with an inverse link function of , where x is the distance (in bp) 

between the two SNPs. This follows the theoretical relationship between LD and genetic 

distance described as  (where Ne is the effective population size and c is the 

recombination fraction between the two loci) 55,56.

Each transcript in the locus was then given an r2 “score” according to this model, where the 

r2 decay value was computed for the point along the transcript closest to the representative 

SNP (i.e. the maximal predicted r2 value along the length of the transcript). The transcripts 

were collapsed into unique genes, with the maximal score for these collapsed transcripts 

taken to represent the gene. Note that transcripts overlapping the representative SNP itself 

are assigned a score of 1, and the score monotonically decreases (towards 0) as the genes are 

farther in physical distance from the representative SNP, providing robustness to r2 

variability (seen here as “noise”) in local genomic regions. These r2 scores are available for 

all candidate genes and all traits in Supplementary File 2.

Prix fixe subnetwork enrichment

For each collection of disjoint gene-sets, we searched through the CFN to find prix fixe 

subnetworks (i.e. where each locus was represented by a single gene). Because enumerating 

all possible such subnetworks is often computationally intractable, we used a genetic 

algorithm to enrich for dense prix fixe subnetworks, where density is defined as the number 

of edges within the subnetwork. An initial “population” of 5000 random prix fixe 

subnetworks was chosen (where the gene representing each locus was chosen uniformly at 

random). Each “generation” then consisted of a mutation step and a mating step. In the 

mutation step, genes representing each locus in the prix fixe subnetworks were swapped 

with other genes from the same locus. Each locus was mutated with a 5% probability, and 

the replacement gene was chosen from the remaining available genes in that locus uniformly 

at random. The mating procedure incorporates the notion of “fitness” by preferentially 

selecting denser prix fixe subnetworks for mating (and thus propagation to the next 

generation). The density di (edge-count) of each subnetwork i was computed and (cubically) 

transformed to a selection score , which was then normalized to . Pairs of 

subnetworks were sampled (with replacement) where the probability of selecting a “parent” 

subnetwork i was equal to s*
i. Each mating resulted in a new subnetwork, where the gene 

chosen for each associated locus was randomly selected from either parent (in a 50/50 coin-

flip procedure). After 5000 such matings, each new population of subnetworks replaced the 

parental population and the procedure was repeated, starting again with the mutation step. 

The optimization cycle terminated when the newly-generated population’s average density 

failed to improve upon the previous generation’s average density by more than 0.5% (i.e. 

plateauing).

To measure the statistical significance of the final population of subnetworks, we used a 

randomization strategy intended to simulate the null case where non-informative collections 

of loci were provided in lieu of the true trait-associated loci. For a set of L loci with Gi genes 
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in locus i, we generated L “matched” random and disjoint sets of genes, again with Gi genes 

per set i. To account for possible node-degree effects within the CFN, each random gene 

was selected such that its degree approximately matches the true candidate gene’s degree in 

the CFN. We chose approximate degree-matching over precise degree matching to prevent 

frequent selection of the actual true genes in the random trials, due to possible uniqueness in 

the true genes’ degree distribution. All genes in the CFN were distributed amongst 128 

equal-sized bins based on the genes’ degrees (i.e. we used quantile-based binning of the 

degrees and associated nodes). Each original candidate gene was replaced with a random 

gene selected from the same bin, thus preserving approximate degree.

Each matched collection of random gene sets was then subjected to the genetic algorithm 

optimization method, and the average density of the final population in the random trial was 

used as a test statistic. The observed test statistic for the original loci was compared to test 

statistics for 1000 random trials (as described above), resulting in an empirical P-value 

representing the fraction of random trials producing final populations of subnetworks with 

higher average density than the average density seen with the true loci inputs 

(Supplementary Fig. 4).

Prix fixe gene-scoring

To score each candidate gene, we began with a single prix fixe subnetwork from the final 

population and modified this subnetwork one locus at at time, while keeping the subnetwork 

constant for all other loci. Consider a single prix fixe subnetwork and a locus i containing Gi 

genes (g1,g2,…,gGi), where g* represents the gene “chosen” for that locus within the 

subnetwork. During the scoring procedure, g* is “forgotten” and all Gi genes are considered, 

while the “chosen” genes for all other loci remain fixed. First, each gene gi is iteratively 

used in place of g* and the density (edge-count) for the subnetwork is recomputed. Then, the 

density of the subnetwork is recomputed in the absence of any gene for locus i (i.e. as if 

locus i were to be completely removed from the association study results): the “empty” 

locus case. The difference in densities for each gene gi and this “empty” locus case indicate 

the contribution made by gene gi to the cohesiveness of the rest of the subnetwork. Thus, if 

two genes are in locus i and have identical connectivity patterns to all other subnetwork loci 

(e.g. if the two genes are paralogs resulting from a localized duplication event), they will 

acquire the same score for this subnetwork, even if only one gene was chosen for this prix 

fixe subnetwork during the enrichment procedure described above. Genes with high 

connectivity to the other loci in the subnetwork will be assigned high scores, while genes 

with low connectivity are similar to the “empty” locus case and are given low scores. Each 

locus was similarly considered in turn, and thus all candidate genes were given a single 

score for each prix fixe subnetwork in the final population. These scores were then averaged 

over the full population of subnetworks leading to the aggregate score for each gene. Scores 

for all genes across all traits are available in Supplementary File 2. Genes at a locus but not 

found in our CFN were given “NA” scores, indicating the absence of information.

Rank-based prioritization evaluation

To evaluate gene scoring methods within a locus, we used a rank-based system seeking to 

identify the rank of a known “causal” gene (for those loci containing such a known gene). 
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Genes were first ranked according to score, and to compare ranks between loci containing 

different numbers of genes, we used a relative rank that was rescaled to lie between 0% and 

100%. For example, in a locus containing 5 genes with an SCGC gene ranked second, the 

normalized SCGC gene’s rank is 3/4 (with the bottom- and top-ranked genes having relative 

ranks of 0% and 100%, respectively).

In the GWA studies we analyzed, many of the candidate genes described in the source 

publications were selected based solely on their distance (either physical or genetic) from 

the associated tagSNP. Thus, we compared the prix fixe rankings to an alternative ‘closest 

gene’ strategy of ranking genes by tagSNP proximity (as defined by LD value). Genes were 

assigned scores based on the modeled r2 decay between the tagSNP and SNPs proximal to 

the genes (as described above). SCGC genes were ranked as top candidates by this strategy 

in 16 out of the 34 loci (compared to the prix fixe approach’s 21/34), and the average 

relative rank was 58% (compared to the prix fixe approach’s 80%; Fig. 3). The 58% relative 

rank was only slightly better than the 50% expected from uniformly random gene rankings 

(P = 0.16, one-sided one-sample Student’s t-test). Across these 34 loci, the prix fixe 

approach significantly outperformed the closest gene strategy (P = 0.015, one-sided paired 

Wilcoxon signed-rank test; Fig. 3), arguing for the incorporation of orthogonal data when 

prioritizing genes in disease-implicated loci.

While the LD-based approach alone fared poorly, we wondered if enhanced SCGC rankings 

could be achieved using a combined strategy incorporating both LD and prix fixe scores. For 

these 34 loci, we found that linear combinations of these two scores showed almost no 

improvement over the prix fixe strategy alone (results not shown), suggesting that within 

haplotype blocks, local LD structure may be of little additional use in prioritizing candidate 

disease genes. We also note that while some GWA authors may use existing literature to 

identify top candidates for a locus, this risks falling into (and contributing to) the cycle of 

confirmation bias, thus limiting the ability to identify truly novel disease genes via GWA 

studies.

Replication & parameter variation

As the prix fixe subnetwork enrichment is a stochastic process, we repeated the prix fixe 

method for all traits to assess score reproducibility. For each trait, prix fixe scores were 

recomputed and we assessed correlation between the scores resulting from our primary 

analysis (presented above) and the replicate scores (using Kendall’s τ rank correlation 

coefficient). All such correlations were found to be very high (ranging between 0.97 and 1.0; 

Supplementary Fig. 6a), verifying that the stochastic search process robustly avoids finding 

only local optima.

To assess how parameter settings may affect results, we next repeated our analysis for all 

traits using two different r2 thresholds: r2 ≥ 0.25 and r2 ≥ 0.75 (corresponding to ‘relaxed’ 

and ‘tightened’ genomic regions, respectively). Again we computed Kendall’s τ across gene 

scores for each trait with respect to the prix fixe scores for that trait’s initial analysis (where 

the LD threshold was r2 ≥ 0.50). As varying the genomic regions often forces inclusion or 

exclusion of candidate genes, correlations were computed across only those candidate genes 

shared by both analyses. For both the relaxed and tightened genomic regions, these 
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correlations were generally high (Supplementary Fig. 6b–c), indicating robustness of results 

to reasonable settings of LD. Despite resulting in varying numbers of candidate genes, 

alternative r2 parameter settings also led to continued enriched prioritization of causal 

cancer genes (Supplementary Figs. 7 and 8), although in both cases with slightly weaker 

significance levels.

We further extended our repeat analyses to include alternative CFNs. For these trials, we 

kept the LD-threshold fixed at r2 ≥ 0.50 (as it led to the best causal cancer gene 

prioritization, see above). Analyses were then repeated for all traits while using three 

different CFNs: HumanFunc (HF) only, GeneMANIA (GM) only, and the union of 

HumanFunc, GeneMANIA, and the high-confidence subset of STRING 57. Each analysis 

was then compared to the primary (i.e. as presented in the main text) analysis for a given 

trait, again using score correlations. When using either the HF or GM CFN alone, score 

correlations with the initial combined HM ∪GM CFN remain high (Supplementary Fig. 9a–

b), though generally lower than those seen while adjusting the LD-threshold parameter. This 

suggests that the prix fixe method exhibits greater sensitivity to the underlying network than 

to genomic region boundaries. For the addition of STRING data, we first re-computed 

STRING v9 scores (as described in Franceschini et al. (2013) 57) to remove the text-mining 

contribution to the final STRING score, in an attempt to prevent literature-born confirmation 

bias. Prix fixe score correlations between the primary analyses and those scores obtained 

with this augmented CFN remain very high (Supplementary Fig. 9c), but we found no 

improvement in the ability to prioritize causal cancer genes with this larger CFN.

Functional enrichment

Functional enrichment analyses were performed using the FuncAssociate tool 29. For each 

trait, we first ranked all candidate genes by their prix fixe score, independent of their genetic 

location. An “ordered” GO term enrichment analysis was then run, selecting for over-

represented GO terms with a multiple-testing-corrected P-value threshold of 0.05, and terms 

themselves were ordered by decreasing effect size (odds ratio). All over-represented GO 

terms for each trait are available in Supplementary File 3.

We note that our CFNs were constructed using shared GO terms as examples of “gold-

standard positive” co-functional links. For this reason, results should be interpreted 

primarily as answers to the question: “what types of co-function examples were useful in 

this classification process?”, and the interpretation of significance levels should account for 

this potential for circularity.

Independent replication of prix fixe results using T2D GWA

To examine the reproducibility of pathway identification across distinct GWA studies, we 

performed two type-II diabetes mellitus (T2D) analyses: one (as part of our primary set of 

analyses) with loci identified in a study from 2010 58, and one (for replication purposes) 

with loci found in two recent independent T2D GWA studies 59,60. Our primary analysis of 

T2D was based on 26 loci, and a functional enrichment analysis revealed diabetes-related 

pathways such as “glucose homeostasis”, “pancreas development”, and “insulin secretion” 

(Supplementary File 3). We then performed a new prix fixe analysis using loci from the 
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‘new’ T2D GWA studies which identified 17 loci, 8 of which being unique to these newer 

recent studies.

Despite sharing only 9 loci (amongst 26 and 17 total in the two analyses, respectively), the 

separate analyses both identified genes involved in diabetes-related biological functions, 

including “glucose homeostasis”, “insulin secretion”, and “pancreas development” 

(Supplementary Files 3 and 5). Three of the top-11 scoring genes in our independent 

replication analysis have verified causal links to T2D, as annotated in the Online Mendelian 

Inheritance of Man (OMIM) 41. These include transcription factors TCF7L2 (a.k.a. TCF4), 

which has extensive evidence of being causal in T2D 61,62, and HNF1B, which is a known 

cause of maturity onset diabetes of the young 63. Other high-ranking candidate genes have 

been identified as therapeutic targets in T2D (e.g. CTBP1 64 and LEP 65), and the high-

scoring gene HHEX has recently been shown to play a key role in islet function 66.

Cancer differential expression analysis

We used data from TCGA to estimate differential expression characteristics of genes within 

cancer-associated loci. TCGA projects using the RNASeqv2 pipeline were chosen, and we 

downloaded paired tumor-vs-normal samples. Only the breast invasive carcinoma (BRCA) 

and prostate adenocarcinoma (PRAD) projects had sufficient numbers of matched RNA 

samples processed by the RNASeqv2 pipeline, and so we downloaded “Level 3” data for 

both of these projects. All samples were paired using the TCGA participant and sample type 

barcodes (identifying patients and tissue types). Unpaired samples (i.e. normal tissue 

without tumor or vice versa) were not considered for this analysis.

The TCGA RNASeqv2 pipeline reports expected counts as produced by the RSEM 67 

program. We rounded “raw” counts to the nearest integer, and estimated differential 

expression with the edgeR R package 68 using the GLM (general linear model) functions to 

force treatment of tumor and normal samples in paired fashion. Genes were declared to be 

significantly differentially-expressed if their mean estimated fold-change in tumor-vs-

normal was greater than 2 (in either direction) and the associated FDR (false discovery rate) 

was less than 5% (using Benjamini-Hochberg FDR estimation 69).

Publication rate analysis

To measure the rates of publications referencing genes in the human genome, we used the 

gene2pubmed data available from the NCBI Gene database 70. For each gene x, the earliest 

associated publication was identified and the corresponding year t0,x was used as the “first 

publication year”. Then, the total number of publications nx associated with each gene x was 

found. The subsequent publication rate for gene x was then computed as .

Each year from 1990 to 2012 (inclusive) was then used as a first publication year threshold 

t*. Rates for all genes x with t0,x≤t* were averaged, giving the average rate of publications 

per year for all genes first described during or before year t* (Supplementary Fig. 2).
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Software availability

The methods described here are implemented and available as an R package from the 

authors and as a web application at http://dalai.mshri.on.ca/~mtasan/GranPrixFixe/html). 

Using the recommended (default) parameter settings described here, most analyses require 

only a few minutes on standard commodity computers, with minimal memory requirements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of prix fixe strategy. TagSNPs associated with disease are used to define linkage-

disequilibrium “windows”. A co-function network (CFN) is then used to identify dense 

“prix fixe” (PF) subnetworks. Dense prix fixe subnetworks are aggregated and genes are 

scored to reflect their importance in the subnetworks. High-scoring genes are then used to 

find causal pathways, processes, and additional candidate genes.
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Figure 2. 
Functional connectivity patterns in prostate cancer. Candidate genes are organized by locus 

in genomic order. Genes highlighted in yellow are members of the Sanger Cancer Gene 

Census. Red gene intensity indicates the LD (r2) value between the gene and tagSNP for that 

locus. Blue gene intensity reflects the prix fixe score. Edges represent presence in the final 

collection of dense subnetworks, with blue edge intensity reflecting the proportion of final 

dense subnetworks containing that edge.
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Figure 3. 
Rank-based analysis of Sanger Cancer Gene Census (SCGC) prioritization. Genes are 

ranked within each cancer-associated locus and normalized ranks of SCGC genes are shown 

as dots for prix fixe-based (“PF”, left) and LD-based (“r2”, right) rankings (100% is highest 

ranked, 0% is lowest). Average relative rank of SCGC genes (for both methods) within each 

locus identified by horizontal bars; number of multigenic loci shown above as “n”. Right-

most plot (“Union”) shows pooled results across all cancer-associated loci. PF SCGC ranks 

significantly outperform LD-based SCGC ranks (P = 0.015, one-sided paired Wilcoxon 

signed-rank test). CLL contained no SCGC-harboring loci in our primary analysis, and is 

thus not displayed here.
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Figure 4. 
(a) Prix fixe scores are uncorrelated with LD (r2) values. Each scatter plot point is a 

candidate breast cancer gene. Correlation is computed using Kendall’s τ rank coefficient. 

Blue genes indicate significantly differentially-expressed mRNA levels in matched case-

control TCGA prostate adenocarcinoma (PRAD) samples, while red genes indicate no 

evidence of cancer-dependent differential expression. Flanking boxplots indicate score 

distributions of differentially- and not-differentially-expressed genes. Boxplot whiskers 

extend to 1.5×IQR; outliers not shown. Boxplots compared by one-sided Wilcoxon rank 

sum tests. (b) Prix fixe rankings identify disease-relevant Gene Ontology (GO) terms for 

prostate cancer, with no a priori knowledge of disease etiology. Top-15 (by odds-ratio 

(OR)) GO terms shown using “ordered” functional enrichment analysis with significance 

(P*) corrected for multiple testing 29. Three GO terms expanded to show constituent genes 

with (if available) “PF” score, “SCGC” (Sanger Cancer Gene Census) status, and “SMG” 

(significantly-mutated gene 35) status. Full functional enrichment analysis for all traits 

provided in Supplementary File 3.
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