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Abstract

Improved understanding of the multilayer regulation of the human genome has led to a greater 

appreciation of environmental, nutritional, and epigenetic risk factors for human disease. 

Chromatin remodeling, histone tail modifications, and DNA methylation are dynamic epigenetic 

changes responsive to external stimuli. Careful interpretation can provide insights for actionable 

public health through collaboration between population and basic scientists and through 

integration of multiple data sources. We review key findings in environmental epigenetics both in 

human population studies and in animal models, and discuss the implications of these results for 

risk assessment and public health protection. To ultimately succeed in identifying epigenetic 

mechanisms leading to complex phenotypes and disease, researchers must integrate the various 

animal models, human clinical approaches, and human population approaches while paying 

attention to life-stage sensitivity, to generate effective prescriptions for human health evaluation 

and disease prevention.
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INTRODUCTION

The field of epigenetics is primed for translation of epigenetic knowledge to improve 

population health. Epigenetics is the study of DNA methylation and patterns of histone 

modifications (“histone marks”), which lead to changes in gene expression not accompanied 

by alterations in DNA sequence (see Appendix 1: Terminology for useful definitions). 

Unlike inherited genetic variation that is static through the life course, epigenetic changes 

are plastic, dynamic, and differ by tissue and disease state. This means that epigenetic 

changes may be useful as biomarkers of exposure and disease and as targets for modification 
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through preventive and therapeutic interventions. Many challenges remain in measuring and 

interpreting epigenetic changes and in achieving actionable public health applications.

To succeed in identifying epigenetic mechanisms that lead to complex phenotypes and 

diseases, public health researchers must integrate animal models with human clinical and 

population approaches, paying close attention to windows of vulnerability, environmental 

and nutritional assessment, and cell type–specific epigenetic patterns (23). Animal models, 

in which exposures are well controlled and characterized in depth, continue to inform the 

evaluation of dose-response effects on the epigenome. Animal studies can also identify 

vulnerable time periods during gestation and development and test for multi- or 

transgenerational effects (65, 86). Human clinical and population approaches have identified 

epigenetic changes as important contributors to cancers and other diseases (100), and have 

revealed epigenetic drift with age (31). In addition, animal models and clinical samples are 

often useful for proteomic and chromatin structure evaluation. Finally, animal models and 

clinical studies can be used to evaluate cell type–specific effects and can validate assays of 

peripheral tissues (e.g., blood, urine, saliva) to serve as proxy measures of epigenetic change 

in epidemiology studies.

In this review, we introduce the reader to (a) the basic measurements of epigenetics, (b) the 

concept of using epigenetics as an environmental biosensor in public health research and 

surveillance, (c) observations about bioinformatic methods for epigenomics and epigenetics, 

and (d) applications of epigenetics and epigenomics to risk assessment for public health 

protection and for personalized medicine. We present animal, human, and in vitro 

approaches to epigenetic research. We conclude with a model of how a community of 

diverse researchers can come together in a National Institute of Environmental Health 

Sciences (NIEHS)–funded center to advance the application of epigenetics to population-

based studies that address the contribution of early environmental exposures to the risks of 

adult disease.

THE BASIC MEASUREMENTS OF EPIGENETICS

The epigenome refers to all of the chemical modifications that are added to the genome to 

regulate gene expression and activity. “Epi-” is Greek for “above,” and thus we can think of 

the epigenome as the entirety of the modifications to the genome, from those modifications 

directly to DNA to modifications that attach to nucleosomes, the proteins around which 

DNA is wrapped. Although all the different cell types in the body share the same DNA 

sequence, epigenetic modifications and other regulatory mechanisms control whether cells 

become liver, lung, skin, or another organ.

The most commonly studied epigenetic modification is the addition of a methyl group to the 

cytosine of a cytosine-guanine pair (CpG), termed DNA methylation. If such methylation is 

located in close proximity to a gene, it often reduces or silences expression of that gene. 

DNA methylation is a component of the one-carbon metabolism pathway and is dependent 

upon several enzymes and dietary micronutrient cofactors, including folate, choline, and 

betaine. In mammals, the regulation of DNA methylation is more dynamic than previously 

believed (55). For example, in human embryonic stem cells, methylation of cytosine not part 

of CpG dinucleotide sites may be important to developmental homeostasis (51). As DNA 
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methylation is a stable, covalently bound mark, it is consistently measurable in fresh and 

archived tissue and biofluid samples with various polymerase chain reaction, array, and 

sequencing methods (33). High-density regions of CpG dinucleotides are found in the 

regulatory regions of about 60% of the known genes (9). Molecular epidemiologic studies 

measure CpG methylation either near specific genes or as an average global measurement 

(where high levels of methylation correlate with increased genomic stability) (100).

Epigenetic manipulation of cellular phenotypes is also driven by alteration of chromatin 

packaging via covalent histone modifications and incorporation of histone variants into 

nucleosomes (81). Chromatin is a nucleoprotein complex that packages linear DNA, 

associated histones, and other proteins into structures called nucleosomes. Posttranslational 

modifications of histone proteins are numerous and include acetylation, methylation, 

ubiquitination, phosphorylation, and ADP-ribosylation (14, 20). Histone acetylation is 

usually associated with transcriptional activation because the affinity of histone proteins for 

DNA is reduced, leading to relaxation of chromatin packaging. Histone methylation 

typically occurs on lysine residues and results in various gene expression consequences 

depending on the specific location of the modification on the tail of the histone protein (46). 

One, two, or three methyl groups can be added to each lysine, adding enormous complexity 

to the histone code (41). Chromatin may be further modified by association with linker 

histones as well as by a myriad of coregulatory proteins. Informative specific patterns have 

emerged as indicators of gene regulation (64, 102). In addition, histone modifications can 

serve as targets for interventions with drugs that inhibit histone deacetylase or demethylase 

enzymes (39, 47, 105). Chromatin immunoprecipitation (ChIP), followed by gene-specific 

analyses or genome-wide analyses via next-generation chromatin immunoprecipitation 

sequencing (ChIP-seq), allows investigators to characterize protein-DNA complexes, 

including histone modifications (67). The requirements for protein-DNA isolation and 

storage are more stringent than those for DNA; thus, these modifications have not been 

utilized widely in epidemiologic studies.

EPIGENETICS AS A BIOMARKER OR SENSOR FOR ENVIRONMENTAL EXPOSURES IN 
MOLECULAR EPIDEMIOLOGIC STUDIES

Humans are exposed to hazards throughout their life span, and the effects of these exposures 

are often not realized until decades later. This complicates traditional epidemiologic studies 

that rely on disease outcomes to identify cases and controls because exposure assessment is 

typically conducted after the likely relevant life stage has passed. However, what if 

researchers could identify epigenetic changes that are a consequence of potentially harmful 

exposures in populations and that could serve as an indicator (biomarker) of increased later-

life disease risk (Figure 1)? Molecular epidemiology is a useful approach for linking 

exposures and disease in human populations. For example, carcinogenic DNA adducts in 

smokers’ blood cells provide a mechanistic link between tobacco smoke and the risk of lung 

cancer (79). Landmark studies by Perera et al. (74, 75) found an association between DNA 

adducts in cord blood, low birth weight, and decreased head circumference in children of 

pregnant mothers highly exposed to polycyclic aromatic hydrocarbons (PAHs) in Poland. 

Epigenetic epidemiology studies are complicated in that they must be attentive to the 

population distribution of epigenetic differences; multiple studies have identified divergent 
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epigenetic profiles due to age, notably in monozygotic twins (31, 40), and with disease 

status, most commonly between cancerous and noncancerous tissues (see sidebar, Cancers: 

Epigenetic Diseases). Changes associated with modifiable environmental and lifestyle 

factors have been less clear and less consistent, confounded by differences in tissues 

examined, populations studied, and method of determining methylation status. These 

challenges are not insurmountable. Rapid advances in technology and in bioinformatics 

analyses (see below) facilitate the integration of data to identify relevant markers for 

translational studies of disease prediction and treatment in human populations.

CpG Methylation—Environmental epidemiology studies have measured both methylation 

of specific genes and global methylation over the whole genome. Tested genes are often 

limited to specific tumor suppressor genes identified as methylated in cancers, such as p16 

(CDKN2A); silencing of a tumor suppressor releases cells to proliferate. Decreased global 

methylation, measured via bisulfite sequencing of LINE-1 and Alu elements, was identified 

in cohorts of healthy individuals exposed to benzene (10), persistent organic pollutants (80), 

air pollution (black carbon, PM2.5, SO2) (6), lead exposure (103), and arsenic (43). Genes 

found to be hypermethylated in response to environmental exposures include p15, MAGE-1, 

and H19 with benzene exposure (10), ACSL3 with PAH exposure (73), and p53 and p16 

with arsenic exposure (18). One of the earliest studies of the epigenetic effects of exposure 

to an environmental toxicant examined the impact of benzene exposure on global as well as 

gene-specific promoter methylation (p15, MAGE-1, and H19) in blood from healthy 

individuals exposed to a wide range of airborne benzene concentrations (10). Benzene 

exposure was measured via a personal air monitor, and DNA methylation was determined 

via pyrosequencing. LINE-1, Alu, and MAGE-1 methylation were found to decrease with 

increasing airborne benzene exposure, whereas p15 methylation was increased with benzene 

exposure. The magnitudes of effect, however, were small, with a tenfold increase in benzene 

exposure associated with modest decreases in LINE-1, Alu, and MAGE-1 methylation, and 

increase in p15 methylation. Benzene exposure was also associated with an increase in 

methylation of the p15 and p16 promoter in a case-control study of benzene poisoning, with 

a corresponding decrease in p15 mRNA expression (55). The results from these early studies 

suggest that methylation at p15 and p16 is environmentally labile, although whether this 

region is directly modified by environmental exposures and how this methylation modifies 

disease risk are still to be determined.

In contrast to the benzene studies, where toxicant exposure was inversely associated with 

global methylation, PAH exposure was found to be positively associated with LINE-1 

methylation. In a cohort of highly exposed male Polish coke-oven workers and matched 

controls, increased urinary levels of 1-pyrenol and benzo[a]pyrene diol-epoxide DNA 

adducts were found to be associated with an increase in both LINE-1 and Alu methylation 

(71). Another study reported a similar association between exposure to prenatal tobacco 

smoke, a potential source of PAHs, and increased global DNA methylation in blood as 

measured by the [3H]-methyl acceptance assay (92). Perera et al. (73) used methylation-

sensitive restriction fingerprinting to identify specific genomic regions differentially 

methylated on the basis of PAH exposure in cord blood. They found that children who were 

exposed to higher concentrations of PAHs in utero had significantly higher methylation at 
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the promoter of ACSL3. Hypermethylation of ACSL3 at birth was found to significantly 

predict future asthmatic status, suggesting that this gene may mediate the development of 

environmentally influenced asthma in children.

Perhaps most intriguing are studies that explore associations between social or behavioral 

factors and epigenetic regulation. The molecular basis underlying the response to social and 

environmental factors is not well understood. Epigenetics, early-life experiences, and stress-

related outcomes in mice spurred an interest in the epigenetic basis of behavior in humans 

(17, 30). A study of the biological effects of shift work in a northern Italian cohort of male 

chemical plant workers found a significant increase in TNF-α promoter methylation in shift 

workers compared to day workers and an association between job seniority and Alu and 

IFN-γ hypomethylation (11). In a Scottish cohort, economically deprived individuals and 

manual laborers had significantly lower global DNA methylation in peripheral blood 

leukocytes (56). Also, increasing levels of plasma fibrinogen and IL-6 were associated with 

decreased global DNA methylation levels, suggesting a mechanistic link between systemic 

inflammation and epigenetic change in circulating cells. There is strong evidence for the 

association between antidepressant drugs and epigenetic modifications in mice (96, 97). 

Histone deacetylase inhibitors reversed epigenetic changes in schizophrenia with a 

concordant decrease in psychotic symptoms (95). These studies indicate that epigenetics 

may hold the key to a larger understanding of the social determinants of health, where early-

life events shape later susceptibility to disease.

To date, molecular epidemiology studies that incorporate epigenetic measurements have 

rarely validated the biological effects of epigenetic changes via measurements of RNA or 

protein expression. Additionally, the epigenomic profiles of sorted-cell populations within a 

tissue could be characterized to interpret results from mixed-cell populations because 

cellular differentiation is an epigenetically controlled process. Functional validation paired 

with cell type–specific epigenomic profiles can elucidate whether small differences 

measured reflect simply a shift in cell population. These studies may identify subtypes of 

cells within a tissue that are more susceptible to epigenetic mechanisms of toxicity, which 

would not be reflected in the overall epigenetic profile of the mixed-cell population. The 

technology for cell type–specific epigenetic profiling is advancing rapidly, with multiple 

groups reporting epigenomic and transcriptomic profiles from single cells (42, 90). As high-

throughput sequencing technologies become more widely available and more affordable, 

molecular epidemiologists will be able to incorporate selected cell type–specific epigenomic 

profiles into studies linking exposure and disease.

Specific Histone Marks—A few studies have investigated the influence of 

environmental exposures on global levels of specific histone modifications. These studies 

require availability of intact protein fractions, and quantification is currently not cost-

effective for large studies. An investigation into the effects of metal-rich air particle 

exposure in healthy steelworkers found significantly increased levels of histone H3 with 

dimethylation of lysine-4 (H3K4me2) and histone H3 with acetylation of lysine-9 (H3K9ac) 

in peripheral blood (16). Specifically, individuals with higher inhalational exposure to iron, 

arsenic, and nickel, as quantified by personal air monitors, had significantly higher global 

levels of H3K4me2, a histone modification associated with transcriptional activation. 
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Another study of individuals occupationally exposed to nickel found increased H3K4me3 

and decreased H3K9me2 when compared to a reference group of age- and smoking-matched 

controls (4). The use of global histone measurements in environmental epidemiology has 

been limited by the difficulty in quantifying levels of modified histones in a large sample set 

as well as by the availability of appropriate samples. As technology becomes available to 

generate data from less optimally collected samples, histone modifications will be an 

informative addition to molecular epidemiologic studies.

Studies to date may be considered illustrative of the impact of toxicants on the epigenome; 

the next step is the incorporation and integration of diverse information. Bioinformaticists 

have developed tools to integrate multiple data sources to identify dysregulated pathways in 

diseases (83, 84). It is vital that collaborative groups design efficient prospective studies that 

maximize the use of samples to measure multiple toxicants, diet, and a range of health 

outcomes. These findings will result in a better understanding of the mechanisms of disease 

development and progression, leading to improvements in diagnosis, treatment, and 

potential interventions to reduce the burden of diseases in human populations. A logical path 

forward relies on interactions between basic scientists and molecular epidemiologists to 

identify and determine the risks associated with differential epigenetic regulation of labile 

genes. Basic scientists can take advantage of animal and in vitro systems to model life span 

exposures at a range of exposure levels and then take tissue samples at biologically relevant 

time points. Examples of such translational studies are early-life exposures in the Agouti 

mouse model (24, 25) and exposures in human primary breast epithelial cells (37, 101).

EPIGENETICS AS A BIOMARKER OR SENSOR FOR ENVIRONMENTAL EXPOSURES IN 
TOXICOLOGICAL STUDIES OF ANIMAL MODELS

Animal models are a valuable resource in environmental epigenetics. Epigenetic changes 

can be mediated through diet (25) and toxicant (2, 24) exposures. Rodent models are 

complementary to human studies in that epigenetic changes can be measured in relevant 

tissues throughout the life span with controlled exposure protocols. Although approaches to 

translate epigenetic discoveries from genetically identical animal strains to heterogeneous 

human populations are far from optimized, integrative computational approaches for joint 

analyses of human and animal data are promising.

We have utilized a multipronged approach with a mouse model, human clinical samples, and 

ongoing longitudinal epidemiological studies of bisphenol A (BPA) as a representative early 

environmental exposure (see sidebar, Bisphenol A as a Representative Developmental 

Epigenetic Toxicant). BPA has been associated with epigenetic alterations following 

developmental and adolescent exposures (2, 24, 26, 35, 91, 106). In a rat model, Ho and 

colleagues (35) observed multiple changes in gene-specific DNA methylation patterns in the 

adult male prostate, including hypomethylation of Pde4d4. Using the viable yellow agouti 

(Avy) mouse model, investigators have shown that maternal dietary exposure to moderate 

levels of BPA (50 mg BPA/kg diet) resulted in decreased DNA methylation at the Avy and 

CabpIAP loci (2, 24), whereas exposure to lower doses (50 ng and 50 μg BPA/kg diet) led to 

hypermethylating effects at these candidate loci (2). Recently, Bartolomei and colleagues 

(88) reported that fetal exposure to BPA alters expression and methylation status of 
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imprinted genes in the mouse embryo and placenta. Imprinted genes and their associated 

regulatory components may be particularly sensitive to developmental environmental 

perturbations of the epigenome. In fact, individuals conceived during the Dutch hunger 

winter at the end of World War II were shown 60 years later to have altered DNA 

methylation at the imprinted IGF2 locus (33), a locus that plays an important role in growth.

These investigations of BPA's role in altering the developing epigenome have been limited 

to candidate gene-driven approaches, restricted in dose-response assessments, or confined to 

animal models. Dolinoy and coinvestigators (45) recently conducted a genome-wide 

environmental epidemiology study of BPA exposure and DNA methylation levels in 

preadolescent girls from Gharbiah, Egypt, showing that methylation profiles exhibit 

exposure-dependent trends. This work is significant because epigenetic epidemiology holds 

promise for the identification of biomarkers from previous exposures and for the 

development of epigenetic-based diagnostic strategies, including nutritional intervention 

approaches, which have been previously demonstrated in mouse models (8, 24).

NUTRITIONAL STATUS AND FOOD ADDITIVES

Epigenetics has been implicated as a mechanism linking early environmental exposures and 

nutritional status to disease risks later in life, yet studies claiming epigenetics as a 

mechanism often fail to follow individuals with well-characterized exposures beyond birth 

outcomes. Using physiologically relevant levels of dietary BPA exposure in an animal 

model, in 2012, Dolinoy and coinvestigators (2) showed that perinatal BPA exposure leads 

to dose-dependent, nonmonotonic effects on the fetal epigenome, with higher dietary 

exposure to BPA leading to hypomethylation at two candidate loci, but lower dietary levels 

were less effective at hypomethylating and led to the opposite—hypermethylating—effects. 

The same lab next demonstrated that perinatal exposure to BPA is associated with 

hyperactive and lean phenotypes in females, with improved hormone and free fatty acid 

profiles (3). These observations of hyperactivity and lean body mass following 

developmental BPA exposure are in contrast to cross-sectional epidemiological studies 

associating BPA with higher body weight and increased obesity (49, 94). The human studies 

may be confounded by food consumption practices and altered BPA metabolism associated 

with body composition. Ongoing studies are now closing the loop between perinatal 

exposure and phenotypes of the offspring by evaluating epigenome-wide methylation and 

chromatin profiles to understand the mechanism(s) linking early BPA exposure to later-in-

life disease risks.

Folate supplementation has been a great success in the prevention of neural tube defects. 

However, in utero exposure to a maternal diet supplemented with methyl donors may also 

have unexpected effects, such as allergic airway disease. Mice born to mothers whose diets 

were supplemented with folic acid, vitamin B12, methionine, zinc, betaine, and choline 

experienced significantly higher rates of allergic airway disease caused by an alteration in T 

lymphocyte maturation (36). Additionally, DNA methylation differences, including 

hypermethylation of Runx3, a regulator of T lymphocyte differentiation, were observed in 

exposed pups (36). Epidemiologic studies have identified an association between perinatal 

folic acid supplementation and increased risk of wheezing at 18 months of age (32). These 
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findings suggest that dietary interventions at key developmental time points can lead to 

unintended adverse consequences.

OBSERVATIONS ABOUT BIOINFORMATICS METHODS FOR EPIGENOMICS AND 
EPIGENETICS

The term epigenomics refers to genome-wide analyses of CpG methylation and/or histone 

modifications, whereas epigenetics refers to changes to individual genes or sets of genes. 

Epigenomics was revolutionized when microarray technology, originally used for 

genotyping and gene expression profiling, was adapted to measure epigenetic marks. Now 

massively parallel deep sequencing can measure genome-wide DNA methylation and 

histone marks after fragmentation and short-read DNA sequencing (48). These approaches 

can generate terabytes of data per experiment, leading to storage and processing challenges 

far beyond that of microarrays; research on how best to deal with and interpret such a deluge 

of data is critical.

Bioinformatics methods and tools are often developed with data arising from a specific 

technology, and then they are adopted by a different biomedical research community for a 

related use. Two examples are (a) gene set enrichment testing methods, developed for gene 

expression microarray data, now used for deep-sequencing applications, such as RNA-Seq 

and ChIP-Seq (89, 108), and (b) ChIP-Seq peak-finding software developed for identifying 

transcription factor binding sites, now adopted for detection of DNA methylation sites or 

regions with a certain histone modification (22, 104, 109). With many approaches currently 

available for assessing genome-wide epigenetic marks, multiple bioinformatics methods are 

required to fit the properties of the respective data types. For example, if using reduced-

representation bisulfite sequencing to assess genome-wide DNA methylation, methods for 

preprocessing and identifying CpG site-specific differentially methylated regions are 

required (1).

As epigenomic deep-sequencing studies become mainstream, more population-based and 

context-specific studies are being performed, requiring novel bioinformatics algorithms and 

tools to properly and effectively analyze and interpret the data. For example, Sartor and 

coinvestigators developed PePr (meaning peak prioritization) (https://code.google.com/p/
pepr-chip-seq/), which takes into account variability among biological replicates in the 

analysis of ChIP-Seq data, allowing the identification of consistent differences between 

exposed and unexposed individuals or animals. Another is ChIP-Enrich, which allows one to 

bridge from a list of genomic regions (for example, from a genome-wide histone 

modification study) to the targeted biological functions and pathways (http://chip-
enrich.med.umich.edu). We applied one such tool, LRpath, to identify common pathways 

dysregulated via DNA methylation across cancer types (44). For a review of the available 

sequencing technologies and bioinformatics methods for performing, analyzing, and 

interpreting epigenomics studies, as well as integrative approaches for understanding the 

epigenetics in the context of the genome and transcriptome, see Sartor et al. (82).
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SNYDEROME: INTEGRATED PERSONAL OMICS PROFILING: LONGITUDINAL ANALYSIS 
TO BRIDGE FROM OMICS TO PHENOTYPES

Multiple levels of omics data can be integrated with physiological, environmental, 

behavioral, and clinical information to traverse between genome and phenome (69). 

Longitudinal data gathering and analysis on selected individuals is highly complementary to 

population-based cross-sectional studies. Such repeated analyses have been performed and 

reported by Snyder, a pioneer in proteomics and functional genomics, and coworkers (19). 

They present integrated personalized omics profiling as a way to reveal dynamic molecular 

and clinical phenotypes, linking omics information with regular monitoring of physiological 

states and clinical symptoms. For example, because an unsuspected propensity to develop 

type 2 diabetes mellitus was recognized from genomic analysis and common laboratory 

tests, Snyder responded by modifying his diet, exercise, and monitoring practices to reduce 

his risk profile.

The methods used in this initial paper (19) include whole-genome sequencing (using both 

the Complete Genomics and Illumina technology platforms), exome sequencing (with three 

different technologies), transcriptomics with microarrays and deep RNA sequencing, 

proteomics (with shotgun methods and with targeted analysis of cytokines), autoantibody 

profiling, and metabolomics. Snyder and coinvestigators are now performing whole-genome 

bisulfite sequencing, which will then be integrated and analyzed with the other data types. In 

addition, alternative splicing and differential expression of splice variants was documented; 

splicing will become important in the analysis of deep RNA-sequencing and proteomics data 

sets, as illustrated by Liu et al. (52) for our collaborative studies of chromosome 17 as part 

of the Human Proteome Project (54).

ENCYCLOPEDIA OF DNA ELEMENTS

A mammoth, highly coordinated project called the Encyclopedia of DNA Elements 

(ENCODE) has generated a tremendous array of data sets, including epigenomics data sets, 

comprehensively examining the organization and genome-wide control of expression of the 

genome (27, 107). Thirty-seven initial copublished ENCODE-related papers can be explored 

online via the Nature ENCODE explorer (http://www.nature.com/encode/#/threads), a 

specially designed visualization tool that allows users to access the linked papers and 

investigate topics that are discussed in multiple papers via interesting thematically organized 

threads. The wide spectrum of 125 cell and tissue types covered by this data greatly expands 

the horizons of cell-selective gene regulation analysis, enabling the recognition of 

systematic long-distance regulatory patterns and previously undescribed phenomena, such as 

mutation rate variation in normal versus immortal or pluripotent cells.

The histone information from ENCODE needs to be integrated with CpG methylation, the 

other main hallmark of epigenomics. This approach has been successfully used to interpret 

findings from genome-wide association studies that test the relationship between millions of 

single-nucleotide polymorphisms (SNPs) and human phenotypes. Integration of these 

population-level data with ENCODE has led to functional annotation of 80% of the SNPs 

reported to be associated with various phenotypes in humans (85). Mapping these SNPs to 

elements defined by ENCODE shows significant overall enrichment for regulatory function 
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in SNP-disease-associated regions. These types of integrated approaches will be valuable in 

identifying regulatory regions of the genome for investigation in epidemiologic studies with 

carefully measured exposure data. Thus, it is crucial that population scientists collect 

biologic samples appropriate for the measurement of histone modifications for both 

validation and epigenetic discovery in informative populations.

APPLICATION OF EPIGENETICS AND EPIGENOMICS TO RISK ASSESSMENT FOR PUBLIC 
HEALTH PROTECTION AND FOR PERSONALIZED MEDICINE

Molecular epidemiology has become a major input for risk assessment, addressing evidence 

of exposure, of individual variation in susceptibility to particular exposures, or of early 

effects of toxic agents. Reports from the National Research Council of the National 

Academies (61, 62) and the Presidential/Congressional Commission on Risk Assessment 

and Risk Management (77) have contributed to a useful scientific and regulatory framework 

for hazard identification, risk assessment, risk management, and risk communication. Risk 

communication is particularly important in public health practice. An ideal situation is when 

mechanistic research feeds directly into risk assessments and when critical data uncertainty 

for assessment, management, and communication of risks drive the agenda for research. A 

more encompassing term than risk assessment, which is often equated with quantitative risk 

assessment, is risk characterization, which also addresses the following qualitative 

questions: What is the nature of the adverse effects in a given population? Are they 

reversible? How robust is the evidence? How certain is the evaluation? Have susceptible 

populations been identified? Is there a relevant mode of action? What are the uncertainties? 

(See Figure 2.)

As epigenomics and epigenetics reveal distinctive patterns of changes in DNA methylation 

and histone modification associated with particular toxic agent exposures, those findings 

will be highly useful in exposure assessment for qualitative and quantitative risk assessment. 

Such biomarkers will also enable comparison of exposures to and effects from structurally 

related chemicals, as well as enable the monitoring of responses to preventive and 

therapeutic interventions.

At present, experimental findings are often complex and inconsistent. For example, the 

nongenotoxic carcinogen arsenic produces both hypomethylation and hypermethylation, 

with overall greater hypomethylation genome wide, but results in hypermethylation of 

certain key promoter sites (such as for p53 and Ink4/Arf) (78). Deficiency of vitamins and 

substrates that generate S-adenosyl-methionine enhances the hypomethylation from arsenic. 

Arsenic also alters histone patterns (21). Similarly, Perera & Herbstman (72) reported 

combined general hypomethylation and specific hypermethylation of genes associated with 

in utero exposures to BPA, PAHs, arsenic, phthalates, and tobacco smoke; they highlighted 

transgenerational persistent changes and associated traits and diseases.

The validation and application of short-term in vitro assays of cultured cells can provide 

information about mechanisms of action of effects and typically are inexpensive and fast, 

especially compared with lifetime animal bioassays. The societal costs of relying on such in 

vitro tests for carcinogenicity, for example, with false positives (noncarcinogens classified 

as carcinogens) and false negatives (true carcinogens not detected), are the subject of the 
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Lave-Omenn value-of-information model (50, 70). Meanwhile, lifetime rodent bioassays are 

no longer black-box studies to count tumors; numerous molecular assays, such as 

epigenomic assays, are also incorporated in these studies. In general, results in rodents can 

point to likely risk in humans; in several cases, however, the findings in rodents do not occur 

in humans, and the mechanisms for those differences are well characterized [see Faustman 

& Omenn (28), table 4-4]. Omics analyses also facilitate systems-based understanding of 

exposures, responses, and disease, moving risk assessment away from a linear single-event-

based concept, and improve the biological plausibility of epidemiological associations (63).

THE UNIVERSITY OF MICHIGAN CENTER FOR LIFE-STAGE EXPOSURES AND ADULT 
DISEASE

The authors of this review are all members of the NIEHS Michigan Center for Life-Stage 

Exposures and Adult Disease at the University of Michigan. Epigenetics, life-stage 

environmental and nutritional evaluation, and bioinformatics are core elements of this 

center, organized by Dr. Howard Hu and now led by Dr. Rita Loch-Caruso. The goals are 

well matched to multiple features of the Annual Review of Public Health, Volume 34, 

symposium on “Developmental Origins of Adult Disease” (13, 34, 68, 76). The authors of 

these articles emphasized environmental, behavioral, socioeconomic, and dietary 

contributors to different risk profiles for later-in-life diseases. Center activities emphasize 

cross-disciplinary studies and activities that focus on exposures in vulnerable stages of life 

that represent critical windows of susceptibility. These activities span bioinformatics to 

epigenomics to bidirectional communication between center scientists and our regional 

community via a stakeholder advisory board.

We facilitate the integration of information through the development and use of new 

bioinformatics methods and tools for analyzing multidimensional data from these complex 

studies (44, 84). These approaches allow a broad range of research that spans studies of 

preterm birth to Alzheimer's disease. Early-life trauma, such as complications from preterm 

birth, are associated with later-life chronic health conditions (7). Projects led by the 

Michigan Center for Life-Stage Exposures and Adult Disease core center members John 

Meeker, Marie O’Neill, and Rita Loch-Caruso are linking specific environmental 

contaminants, including phthalates and air pollutants, with preterm birth (58, 66, 93). Other 

center members are gaining insights into how DNA methylation and other epigenetic 

mechanisms mediate environmentally driven risk for later development of certain 

neurological disorders, such as Alzheimer's disease, attention deficit-hyperactivity disorder, 

and amyotrophic lateral sclerosis.

CONCLUDING REMARKS

For all types of toxicology and epidemiology studies and for public health actions, credible 

quantitative assessment of relevant exposures is critical. The use of multiple levels of omics 

analyses represents a rapidly emerging new generation of capabilities for exposure 

assessment or “the exposome.” Challenges remain in adapting emerging epigenetic 

technologies to epidemiology studies to identify mechanisms associated with exposure and 

disease. Well-characterized exposure data, especially for earlier-life exposures, are critical to 

identify important and functionally relevant case-control epigenetic differences. Especially 
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with budgetary pressures on project costs, it is essential to carefully plan cohort studies that 

have the ability to biobank relevant samples and consider the types of samples that will be 

useful for exposure assessment in future studies. It will also be useful to develop and apply 

biomarkers of lifetime exposure to environmental toxicants, such as the measurement of 

heavy metals in primary teeth (5) or lead in bone (38), for an accurate modeling of exposure 

status throughout the life course in late-life diseases.

Another challenge is the recognition that epigenetic changes associated with environmental 

exposures or with disease outcomes have typically been small in magnitude. Although a 1–

2% shift in global methylation as measured by LINE-1 may represent what appears to be a 

minor change, LINE-1 elements represent approximately 14% of the entire genome and may 

be functionally relevant. With an array of global methylation measurements to choose from, 

how to interpret results from a study that finds a statistically significant association between 

an exposure and Alu methylation, but not LINE-1, or vice versa, remains to be clarified, as 

with multiple measures in classical epidemiological studies.

Despite these challenges, the field of epigenetics will continue to make the crucial links 

between environmental and nutritional risk factors and human disease. The continued 

collaboration among basic scientists, bioinformaticists, and population researchers clarifies 

the biological relationship between exposures and epigenetics, facilitating risk assessment 

strategies in human populations. All of these factors lead to an exciting time in public health, 

as we realize our ability to link life-stage exposures and later disease to improve population 

health.
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APPENDIX 1: TERMINOLOGY

Bisulfite conversion: a laboratory technique to analyze DNA methylation using the 

resistance of the conversion of a methylated cytosine to uracil compared with an 

unmethylated cytosine. Following PCR amplification, a methylated cytosine will appear as a 

cytosine (C), whereas a converted unmethylated cytosine will appear as a thymine (T).

Chromatin immunoprecipitation (ChIP): a procedure with protein-specific antibody to 

determine whether a given protein is localized to a particular DNA sequence. This technique 

helps characterize the interactions between histone marks and DNA.

Chromatin: a complex of genetic material and proteins (mostly histones) that condense to 

form chromosomes during cell division.
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Cytosine–guanine pair: also known as a “CpG dinucleotide,” this is the primary site for 

DNA methylation.

DNA adduct: results when a cancer-causing chemical, such as a polycyclic aromatic 

hydrocarbon (PAH), chemically reacts with DNA. This affects the DNA replication 

machinery and leads to mutations.

DNA methylation: primarily a stable repressive mark found at cytosines in CpG 

dinucleotides, where the phosphate (P) indicates directionality (5′–CG–3′).

Epigenetics: literally means “on top of or in addition to genetics”; the study of DNA 

methylation and patterns of histone modifications (“histone marks”) which lead to changes 

in gene expression not accompanied by alterations in DNA sequence.

Epigenome: the global pattern of epigenetic marks that may distinguish or be variable 

among cell types.

Exome sequencing: DNA sequencing restricted to the sequences coding for proteins.

HDAC inhibitor (histone deacetylase): a drug that targets the epigenome through 

inhibition of enzymes that alter the histone proteins.

Histones: family of proteins that act like spools around which DNA is wrapped to assist in 

condensing DNA into structures called nucleosomes.

Pluripotent cell: a cell that can differentiate, or become, most cell types in the body, 

induced by specific transcription factors.

Proteomics: the analysis of many, potentially all, the proteins in a specimen.

Reduced representation bisulfite sequencing (RRBS): a procedure that analyzes DNA 

methylation in a large subset of the genome.

Regulatory regions: regions in genes that are important to the initiation of transcription. 

These are usually in the 5′ areas of genes and are called the “promoters” but can also be in 

the early exon regions of the gene.

Transcriptomics: analysis of all (not including rRNA) of the messenger RNA in the cell, or 

the message from the DNA to guide production of proteins.

Whole-genome bisulfite sequencing (WGBS): DNA sequencing that can identify the CpGs 

that are methylated in the genome.
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CANCERS: EPIGENETIC DISEASES

Although numerous disease phenotypes have been associated with epigenetic etiology, 

including neurological dysfunction and metabolic syndrome, carcinogenesis remains the 

most actively studied disease category. Cancers are a heterogeneous set of diseases, 

displaying both genetic and epigenetic etiologies. Methylation profiles differ between 

cancer types; in general, however, the epigenome is widely hypomethylated compared to 

normal tissue, with the exception of hypermethylation in genic regions, notably tumor 

suppressor genes (29). Animal and cell line models of specific pathways of 

carcinogenesis serve as critical tools to understand the mechanisms of these diseases. The 

integration of laboratory and epidemiological approaches aims to translate findings to 

human clinical and population approaches to better prevent and treat cancers.
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BISPHENOL A AS A REPRESENTATIVE DEVELOPMENTAL EPIGENETIC 
TOXICANT

The epigenome is vulnerable to environmental factors during embryogenesis because the 

DNA synthetic rate is high, and the elaborate DNA methylation patterning required for 

normal tissue development is established at this time. An increasing number of animal 

and human studies now demonstrate that prenatal exposures to environmental conditions, 

including chemical and/or nutritional factors, increase the risk of developing adult-onset 

diseases. One of the routinely used chemical compounds in food and beverage containers, 

baby bottles, dental composites, and receipt paper is bisphenol A (BPA) (98). 

Accumulating work suggests that early exposure to endocrine-active compounds, such as 

BPA, increases susceptibility for adverse outcomes via epigenetic mechanisms.

BPA is a high-production-volume monomer used in the manufacture of polycarbonate 

plastic and epoxy resins. Several studies have reported detectable levels of total urinary 

BPA in a large proportion of populations around the world (15, 60, 110), and a recent 

study of human fetal liver samples indicated that there is considerable exposure to BPA 

during pregnancy (59). BPA exposure results in a variety of pathophysiological changes 

implicated in breast and prostate cancer, reproductive dysregulation, and behavioral 

abnormalities (53, 99). Epidemiology studies have associated increased BPA levels with 

cardiovascular disease risk, decreased semen quality, altered childhood behavior, and 

recurrent miscarriages (12, 49, 57, 87).

Owing to the uncertainty surrounding BPA's safety for humans, especially in young 

children, there was a sizeable consumer backlash against BPA in the United States and 

elsewhere. Companies such as Toys “R” Us and Walmart banned the sale of BPA in baby 

and water bottle products. In 2012, the US Food and Drug Administration banned BPA in 

baby bottles and children's drinking cups. Yet, BPA is still widely used in a number of 

other consumer goods, such as canned food and receipt paper. Thus, moving forward, the 

application of epigenetics and epigenomics to risk assessment for public health protection 

and for personalized medicine will be tremendously important for identifying potential 

developmental epigenetic toxicants.
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Figure 1. 
Translating epigenetic and genetic markers of environmental exposure to public health 

interventions. (a) Environmental exposures throughout the life course induce genetic and 

epigenetic alterations, particularly in susceptible populations. (b) Genomic and epigenetic 

changes serve as molecular biosensors of environmental exposures’ toxic effects, and these 

effects can be quantified within populations. (c) Genetic and epigenetic changes could 

presage observable phenotypes, including both disease phenotypes and biomarkers 

indicative of disease. (d) At risk individuals and subpopulations identified by molecular 

sensors and biomarkers can be targeted for public health interventions.
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Figure 2. 
Risk assessment/risk management framework. This framework shows, under the red 

highlighting, the four key steps of risk assessment: hazard identification, dose-response 

assessment, exposure assessment, and risk characterization. It shows an interactive, two-way 

process where research needs from the risk assessment process drive new research, and new 

research findings modify risk assessment outcomes. This figure is reprinted with permission 

from Faustman & Omenn (28).
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