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Abstract

Background—The continued development of targeted therapeutics for cancer treatment has 

required the concomitant development of more expansive methods for the molecular profiling of 

the patient’s tumor. We describe the validation of the JAX Cancer Treatment Profile™ (JAX-

CTP™), a next generation sequencing (NGS)-based molecular diagnostic assay that detects 

actionable mutations in solid tumors to inform the selection of targeted therapeutics for cancer 

treatment.

Methods—NGS libraries are generated from DNA extracted from formalin fixed paraffin 

embedded tumors. Using hybrid capture, the genes of interest are enriched and sequenced on the 

Illumina HiSeq 2500 or MiSeq sequencers followed by variant detection and functional and 

clinical annotation for the generation of a clinical report.

Results—The JAX-CTP™ detects actionable variants, in the form of single nucleotide variations 

and small insertions and deletions (≤50bp) in 190 genes in specimens with a neoplastic cell 

content of ≥10%. The JAX-CTP™ is also validated for the detection of clinically actionable gene 

amplifications.

Conclusions—There is a lack of consensus in the molecular diagnostics field on the best 

method for the validation of NGS-based assays in oncology, thus the importance of 

communicating methods, as contained in this report. The growing number of targeted therapeutics 

and the complexity of the tumor genome necessitates continued development and refinement of 

advanced assays for tumor profiling to enable precision cancer treatment.
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Introduction

The increased prevalence of molecularly targeted cancer therapeutics has expanded the 

utility of multi-gene sequencing panels for detecting somatic mutations in cancers. 

Commonly used single-gene tests, such as for EGFR and BRAF, and small multiplexed 

“hotspot” panels1 detect very specific targetable mutations, but clinical research studies have 

led to an increasingly complex array of genomic alterations, either in isolation or in 

combinations, that influence sensitivity or resistance to targeted cancer therapeutics 2, 3. For 

example, TP53 mutations alone have been reported to increase progression-free survival 

upon bevacizumab treatment 4, but if a patient also has a KRAS mutation, the response to 

bevacizumab may be diminished or counter balanced 5. The development of next generation 

sequencing (NGS) and associated target sequence enrichment technologies has enabled the 

development of clinical cancer panels that detect molecular alterations in a large number of 

genes in a single multiplexed assay 6-8. This disruptive technology is the impetus for the 

healthcare shift from a one gene/one drug paradigm to a multi-gene/many drugs 

perspective 9.

While the number of molecular diagnostic laboratories that have developed cancer panel 

assays has quickly grown10, the analytical and post-analytical methods, as well as the 

approaches to validation, vary substantially, and no standard has been set. The validation of 

assays, such as ours that are designed to accurately detect variants at allele frequencies 

<10% across >1Mb of target sequence present significant challenges, and many different 

approaches have been utilized in similar assays 6, 7, 11-15. Communication and critique of the 

different approaches that have been utilized will help in the development of standard 

practice in the validation of such complex molecular diagnostics.

We describe the design and validation including the limit of detection, analytical sensitivity 

and specificity and accuracy of the JAX Cancer Treatment Profile™ (JAX-CTP™), an 

NGS-based assay for the detection of potentially clinically actionable alterations in 190 

different genes (reportable range gene list in supplementary table S1) from formalin fixed 

paraffin embedded (FFPE) clinical specimens. “Actionable” is defined as genes with 

molecular alterations associated in peer-reviewed literature with a therapy approved for a 

diagnosis, approved in another diagnosis, or associated directly or by mechanism of action 

with an investigational drug. The JAX-CTP™ accurately detects single nucleotide 

polymorphisms (SNPs), small insertions and deletions (indels; up to 50-bp long) and gene-

level amplifications (copy number variations (CNVs)) in clinical specimens with a 

sensitivity that is sufficient for samples with significant cellular heterogeneity. We have also 

developed an automated bioinformatic pipeline that ensures accurate and sensitive detection 

and clinical annotation of actionable mutations. The result is a comprehensive, clinically 

interpretable molecular profile of the patient tumor.

Materials and Methods

DNA Extraction

H&E slides are assessed for areas of high neoplastic cell content by a pathologist before 

macrodissection of FFPE specimens and require at least 50% tumor purity. The DNA is 
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extracted with the QIAamp DNA FFPE Tissue Kit (Qiagen) from at least ten sections, each 

containing a 10 μm FFPE tumor section. The DNA quality is evaluated using the NanoDrop 

2000 (Thermo Scientific) and run on an E-Gel EX Agarose Gel, 1% (Invitrogen). The DNA 

quantity is analyzed with the Qubit® Fluorometer (Life Technologies). The passing QC 

metrics to proceed to library preparation are the following: DNA yield > 200ng, OD260/280 

> 1.4, and average MW > 400bp.

Library Preparation

Libraries are constructed using Agilent’s (Santa Clara, CA) 1 ug DNA sample preparation 

method (SureSelectXT Target Enrichment System for Illumina Paired-End Sequencing 

Library: Version 1.6, October 2013). Library yields were improved by a modification of the 

Agilent protocol to include the addition of an on-bead clean up method using a 20% PEG 

8000/2.5 M NaCl solution. Solution hybridization is performed using an Agilent 

SureSelectXT custom designed bait. The cancer panel oligonucleotides or “baits” are 120 bp 

biotinylated RNA baits used to target 1.351 Mbp. Agilent’s standard SureSelectXT protocol 

is used for the hybridization with several modifications. The first modification affects the 

hybridization set-up, where a master mix is created containing “Hybridization Buffer” and 

“SureSelect Capture Library” in order to reduce pipette transfers leading to less evaporation 

at 65°C. Excessive evaporation will yield more off-target reads. The second modification is 

to use a plate-based method when washing the hybridized DNA. After the 16 - 24 hour 

incubation, the RNA bait – DNA hybrids are retrieved from the solution with streptavidin-

coated magnetic beads, which are washed in bulk and distributed in a 96-well tall chimney 

PCR plate (Fisher Scientific). The off-target DNA is removed by washing each well 2 times 

with 250 μL “Wash 1 Buffer” at room temperature and 6 times with 200 μL “Wash 2 

Buffer” at 65°C. The RNA is digested, leaving behind the target-captured DNA to be 

amplified with the addition of an 8 bp indexing barcode. The final library is then purified 

and quantitated by the Qubit®. The average fragment length is determined using the Agilent 

2100 Bioanalyzer. All libraries are normalized to 2 nM and pooled for sequencing. DNA 

sequencing is performed on the Illumina (San Diego, CA) HiSeq 2500 or MiSeq, each with 

150 bp, paired end sequencing.

Bioinformatic methods

The FASTQ files generated from CASAVA (version 1.8.0) are submitted to the Clinical 

Genomics Analytical (CGA) pipeline, developed at The Jackson Laboratory, comprised of 

tools (see below) to perform read quality assessment, alignment, and variant calling.

Read quality filtering and alignment—Reads are quality trimmed to remove low 

quality bases (Q < 30) from the 3’-end of reads, and reads with more than 30% low-quality 

(Q < 30) bases overall were filtered out. The resulting reads are aligned to the February 2009 

release of the human reference genome (hg19) from UCSC using BWA-mem16 (http://bio-

bwa.sourceforge.net/bwa.shtml).

Alignment post-processing—Duplicates are removed using Picard (http://

picard.sourceforge.net) and the resulting alignments are further processed to minimize 
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alignment artifacts (realignments around indels and base quality score recalibration from the 

GATK tool suite 17, 18).

SNV calling—Single nucleotide polymorphisms (SNPs) and short indels are called using 

Unified Genotyper tool from the GATK tool suite, and micro-indels (up to 50-bp in length) 

are called using Pindel19. Pindel’s true positive rate for detecting longer insertions is poor 

(true positive rate drops below 80% for insertions longer than 40% of the read-length19) 

hence, we restricted our analysis to micro-indels up to 50-bp in length.

CNV calling—Exon-level copy number variation (CNV) profiles of the tumor samples 

were assessed with CONTRA 20 using a normal baseline (comprised of 3 unrelated HapMap 

samples: NA12877, NA12878, and NA18507) as a control. The HapMap samples that went 

into constructing this baseline were also sequenced on the JAX-CTP™ to comparable 

coverage as the tumor samples, thus minimizing coverage- and technology-related biases. 

The statistical significance of the exon-level CNV calls was recalibrated using ConReg-R 21 

to improve the false discovery rate estimates, and using these recalibrated p-values, the 

significance of CNV calls at the gene-level was assessed by Fisher’s method.

Quality Criteria (QC)—The passing QC metric for the clinical cancer panel is mean target 

coverage >300X. Variants from samples meeting this criterion were assessed for functional 

and clinical significance using genomic and therapeutic annotations from Genetic Variant 

Annotation (GVA), a molecular diagnostic tool from CollabRx (San Francisco, CA), as well 

as the in-house JAX Clinical Knowledgebase (CKB).

Results

Assay Description

Using the described analytical and post-analytical pipeline (Figure 1), the JAX-CTP™ is 

designed to identify mutations in 190 potentially clinically actionable genes from FFPE 

tumor specimens with an allele frequency as low as 10%. Slides are macrodissected to 

enrich for regions of high neoplastic cellularity followed by DNA preparation and QC. 

Using hybrid capture, the genes of interest are enriched and then sequenced on either the 

Illumina HiSeq or MiSeq sequencers. Following the generation of the high quality sequence 

data, SNPs, indels and CNVs are called using the JAX Clinical Genome Analytics (CGA) 

automated bioinformatic pipeline. Identified variants are then submitted for clinical curation 

using a combination of the in-house JAX Clinical Knowledgebase (CKB) and the external 

Genetic Variant Annotation (GVA) from CollabRx. Once clinically annotated, the variants 

are graded relative to their clinical utility for the specific tumor type and compiled into a 

clinical report to inform patient treatment.

Assay precision

Precision of the JAX-CTP™ assay was determined in terms of both repeatability (within-run 

precision) and reproducibility (between-run precision) using genomic DNA from 7 HapMap 

samples and 12 FFPE tumor specimens of the following tumor types: 4 colon, 2 ovarian, 2 

endometrial, 1 prostate, 1 pancreatic, 1 breast, and 1 urothelial. Repeatability was assessed 
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by concurrent replication of library preparation and simultaneous sequencing of all samples 

by the same technician using the same reagent lots and instruments, including the sequencer. 

Concordance was assessed by comparing the variant calls from the two technical replicates, 

with all samples meeting the acceptance threshold of at least 98% concordance.

Reproducibility was assessed by replication of the library preparation and sequencing 

performed in the same lab with the same instruments, but by different technicians one week 

apart using different reagent lots. Concordance was assessed by comparing the variant calls 

from the two technical replicates, with all samples meeting the acceptance threshold of at 

least 98% concordance. Between the assessment of repeatability and reproducibility, each 

sample was processed in triplicate.

Limit of detection for SNPs and indels

Given intra-tumor heterogeneity and/or the presence of small numbers of tumor cells in a 

specimen, one needs to be able to reliably identify mutations across a spectrum of allele 

frequencies. The identification of low frequency mutations is particularly challenging since 

it is often difficult to distinguish true variants from sequencing errors. To evaluate our 

variant (SNPs and small indels) detection capability at different allele frequencies, we 

designed a titration experiment that involved mixing of two pairs of HapMap samples 

(NA18507 + NA12878 and NA12882 + NA18507) such that the minor allele was present at 

the following frequencies: 2.5%, 3.75%, 5%, 7.5%, 10%, 20%, 40%, 45%, 46.25% and 

47.5%. The variants in these HapMap samples have been well characterized by multiple 

projects, including 1000 Genomes 22, Illumina Platinum Genomes (http://

www.illumina.com/platinumgenomes/), and the Genome in a Bottle Consortium 23. We 

compared the variants called by us with those from these gold-standard resources to 

determine the limit of detection of our assay – i.e., the allele frequency at which a majority 

(defined as > 95%) of the true variants are called. At an allele frequency of 10%, > 98% of 

the variants for both HapMap mixtures were identified (See Supplemental Table S2), thus 

establishing the limit of detection of our assay as 10% for SNPs and indels.

Analytical Sensitivity, Specificity, and Accuracy of SNPs and indels

At/above the limit of detection of 10% (established above), we sought to determine the 

assay’s ability to (a) correctly call true mutations (sensitivity or true positive rate), (b) 

correctly identify wild-type loci as non-variant sites (specificity or true negative rate), and 

(c) correctly identify mutations called by an external CLIA-certified assay (accuracy). For 

this we used samples with (e.g., HapMap, HorizonDx) and without (e.g., 12 FFPE clinical 

tumor specimens sequenced at an external CLIA lab) known and/or validated mutations.

Sensitivity for the detection of SNPs and single-base indels was determined by sequencing 

the HorizonDX (Cambridge, UK) quantitative multiplex FFPE reference standard, which 

contains known clinically actionable mutations with minor allele frequencies from 1 to 

33.5% (Table 1). All variants at/above our assay’s limit of detection (10%) were detected, 

indicating that the sensitivity for the detection of SNPs and single-base indels is 100%. 

Additionally, several variants below 10% were also detected. The only variants that were not 
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detected by our assay were the EGFR T790M* variant present at 1% and EGFR L858R 

variant present at 3% frequency.

The assay’s sensitivity for the detection of longer (15-bp) indels was assessed by mixing the 

HorizonDx FFPE reference standard containing a known EGFR exon 19 deletion (delE746-

A750) at 50% frequency with a sample confirmed to be wild-type for EGFR to generate a 

series of samples with varying frequencies of the deletion mutation (0%, 5%, 10%, 20%, 

30%, and 50%). The deletion was detected in all sample mixtures down to 5%.

Specificity for the detection of SNPs was determined using the gold-standard HapMap 

sample NA12878, which was analyzed using the JAX-CTP™. By calling all variants 

detected at a range of allele frequencies ≥5%, the false positive rate was determined (See 

Supplemental Table S3). At an allele frequency of ≥5%, the specificity is ≥99.5%.

Specificity for the detection of micro-indels was assessed by a PCR-based validation of 27 

unique indels of length 4-45 bp present at ≥5% allele frequency across 41 FFPE tumor 

specimens and not present in HapMap control samples (NA12878, NA18507) (See 

Supplemental Table S4). All micro-indels were successfully genotyped with PCR, indicating 

that the specificity for micro-indel detection is 100%.

Accuracy of the JAX-CTP™ for the detection of SNPs and indels was determined by the 

parallel analysis of twelve clinical tumor specimens on the JAX-CTP™ and a CLIA-

certified amplicon-based sequencing assay with 93 genes in common at an external 

laboratory (PacificDX, Pacific Diagnostics, Irvine, CA). The concordance for the detection 

of SNPs and indels was > 98% (See Supplemental Table S5). Additional assessment of the 

accuracy of indel detection was completed using the HorizonDX FFPE Quantitative 

Multiplex Reference Standard, which contains the 15bp deletion EGFR delE746-A750 at an 

allele frequency of 2%. Analysis of this sample was repeated five times with 100% accuracy 

in the detection of the deletion. Furthermore, we sequenced a colon adenocarcinoma patient 

sample with a previously validated germ-line micro-indel on the JAX-CTP™ to further 

assess accuracy of indel detection. This sample contained a heterozygous 6-bp deletion of 

AGGGGG and 11-bp insertion of CTTCACACACA between nucleotides 736 and 741 in 

exon 7 of the PMS2 gene, creating a frameshift change at codon 246 resulting in truncation 

of the PMS2 protein. We were able to detect this complex heterozygous micro-indel in this 

sample at a 40% allele frequency (Table 1), as depicted in Figure 2.

Limit of detection for CNVs

The limit of detection for CNVs at different levels of tumor purity was assessed by mixing 

the DNA from two FFPE samples (1218_GES14_00876_CGACACAC_L002 – Lung 

Squamous cell carcinoma, SS_13_15281_GES14_00880_GACAGTGC_L002 – Colon 

Adenocarcinoma) with a HapMap control sample (NA12878) at different proportions to 

produce samples with 75%, 50%, and 25% tumor purity (See Supplemental Table S6). 

Additionally, these two FFPE samples were CNV profiled using the NanoString (Seattle, 

WA) nCounter® technology at an external laboratory. Using CNV calls from NanoString 

(for forty common genes) as the benchmark, we assessed the limit of detection for CNVs – 

i.e., the copy number at which a majority (defined as > 95%) of the true variants are called. 
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At a tumor purity of ≥ 75%, the assay is able to detect 100% of CNVs of copy number ≥ 5, 

and at a tumor purity of ≥ 50%, 100% of CNVs of copy number ≥ 6 are detected. Given our 

tumor purity requirement of 50% for acceptable FFPE specimens, the limit of detection for 

CNVs is copy number 6. We were not able to assess the limit of detection for deletions, as 

the tested samples did not include any homozygous deletions. Samples containing homo- 

and heterozygous deletions are currently being sought.

Analytical Sensitivity, Specificity and Accuracy of CNVs

In addition to the two FFPE samples used for limit of detection determination above, six 

FFPE clinical samples that were sequenced with the JAX-CTP™ were CNV profiled using 

the NanoString nCounter® technology. At/above the limit of detection of copy number 6, 

the assay’s sensitivity, specificity, and accuracy (see section “Sensitivity, Specificity, and 

Accuracy of SNPs and indels” for definitions) for CNV detection were assessed using CNV 

calls from NanoString (for forty common genes) as the benchmark (See Supplemental Table 

S6). At a copy number of six and above, the sensitivity was 100% and the specificity was 

99.4%. The current dataset does not allow for the assessment of sensitivity and specificity 

for the detection of a homozygous deletion. An example of the concordance between the two 

independent technologies is highlighted in Figure 3 in a lung squamous cell carcinoma 

specimen. This example demonstrates the concordance in the detection of a high-level 

amplification (> 80 copies) in CCND1, and low-intermediate amplifications (> 5 copies) in 

KDR, FGFR1, and WHSC1L1. (Figure 3).

Similar to SNPs and indels, accuracy for CNVs was determined by comparing calls from 

CTP with those from an external CLIA-certified assay for 12 FFPE clinical samples. The 

concordance for the detection of CNVs was > 96% (See Supplemental Table S8).

Discussion

With the continued development of targeted therapeutics for cancer, there is an expanding 

need for molecular diagnostic tests that provide a broad mutational spectrum. Clinical 

research studies continue to demonstrate the impact of mutations in multiple pathways and 

show how those interact to cause sensitivity or resistance to both chemotherapeutic and 

targeted therapies3, 24, 25. The JAX-CTP™ is designed to identify mutations in 190 

potentially actionable genes across multiple cancer relevant pathways (figure 4) to facilitate 

the selection of the appropriate therapeutic strategy.

Implementation of rapidly evolving analytical molecular technologies and associated 

bioinformatic and curation methodologies in a clinical setting require a thoughtful validation 

plan to assess the accuracy, sensitivity, specificity, limit of detection, and precision of the 

assay. An additional complication is that there is not yet a consensus in the field on the 

approach to validation or the types of samples that should be utilized. As summarized in 

Table 2, we have described our approach to analytically validating a hybrid-capture based 

targeted sequencing assay of DNA from FFPE tumor specimens.

A particular challenge was to define an appropriate validation method for the assessment of 

specificity of microindel detection. Attaining samples that have very specific actionable 
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mutations such as EGFR exon 19 deletion (ΔE746 - A750) is easily accomplished and is 

useful for the assessment of sensitivity and limit of detection, but this does not address the 

specificity of an assay. It is also not appropriate to generalize the detection of this one 

mutation to the detection of other potentially actionable mutations across the reportable 

range. Therefore, we independently verified 27 unique indels of length 4-45 bp present at 

≥5% allele frequency across 41 FFPE tumor specimens and not present in HapMap control 

samples (NA12878, NA18507). There was a 100% concordance, demonstrating that the wet 

and dry lab methodologies we have developed achieve very high specificity in detecting this 

important class of mutations.

The JAX-CTP™ utilizes the latest state-of-the-art methodologies for the detection and 

clinical annotation of potentially actionable mutations in tumors in a clinical setting. With 

the recent commercialization of the Illumina HiSeq X Ten, which has made whole genome 

analysis significantly more affordable and the innovation and improvements in long read 

single molecule sequencing technologies (Pacific BioSciences, Oxford Nanopores and 

others), there is little doubt that the clinically relevant genome will move far beyond the 

protein coding sequences that are the primary focus of current targeted methodologies. 

Diagnostics that can accommodate the greater complexity of whole genome based clinical 

assays will be developed and adopted, building on the work that we and others have taken to 

fully vet the utility of next generation sequencing technologies in the clinic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Using NGS, the JAX-CTP™ detects potentially actionable mutations in 190 

genes.

• The JAX-CTP™ accurately detects SNP’s, small indels and gene-level CNV’s.

• The JAX-CTP™ accurately detects variants at a 10% allele frequency.

• DNA is analyzed from macrodissected FFPE tumor specimens
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Figure 1. 
JAX-CTP™ workflow from sample receipt through clinical report generation.
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Figure 2. 
Depiction of a complex indel (a heterozygous deletion of AGGGGG and insertion of 

CTTCACACACA) in PMS2 gene from a colon adenocarcinoma patient sample: (A) Pile up 

of reads at the locus: Deletion represented by a solid pink horizontal line and Insertion by a 

solid orange vertical line. (B) UCSC Genome Browser track showing the two alleles at this 

locus.
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Figure 3. 
Comparison of copy-number profiles from JAX-CTP™ with NanoString for a squamous 

cell carcinoma patient sample. Red and blue crosses represent exon (or probe) level log 

ratios measured by JAX-CTP™ and NanoString respectively. Red and blue lines represent 

the averages of the exon (or probe) level log ratios measured by JAX-CTP™ and 

NanoString respectively.
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Figure 4. 
Each bar represents the number of genes (Y axis) of the JAX-CTP™ within each of the 

described biological pathways (X axis).
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Table 1

Validation of known SNVs and micro-indels

Gene Variant True Allele Frequency Estimated Allele Frequency

BRAF V600E 10.5% 7.0%

cKIT D816V 10.0% 11.0%

EGFR L858R* 3.0%* -

EGFR T790M* 1.0%* -

EGFR G719S 24.5% 18.0%

KRAS G13D 15.0% 16.0%

KRAS G12D 6.0% 4.0%

NRAS Q61K 12.5% 12.0%

PIK3CA H1047R 17.5% 16.0%

PIK3CA E545K 9.0% 13.0%

ALK P1543S 33.0% 33.0%

APC R2714C 33.0% 32.0%

ARID1A P1562fs 33.5% 40.0%

BRCA2 A1689fs 33.0% 35.0%

EP300 K291fs 8.0% 6.0%

FBXW7 G667fs 33.5% 32.0%

FGFR1 P150L 8.5% 7.0%

FLT3 S985fs 10.5% 8.0%

FLT3 V197A 11.5% 9.0%

IDH1 S261L 10.0% 8.0%

MET V237fs 6.5% 5.0%

MLH1 L323M 8.5% 5.0%

NF1 L626fs 7.5% 5.0%

NF2 P275fs 8.0% 4.0%

NOTCH1 P668S 31.5% 31.0%

PDGFRA G426D 33.5% 29.0%
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Gene Variant True Allele Frequency Estimated Allele Frequency

EGFR ΔE746 - A750

2.0%* 1.0%

5.0% 2.5%

10.0% 8.5%

20.0% 14.9%

30.0% 21.9%

50.0% 42.3%

PMS2 P246CfsStop3$ N/A 40%

N/A: not available

*
Variants below the assay’s detection limit will not be reported

$
This variant is from a colon adenocarcinoma patient sample. All variants except this are from HorizonDx
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Table 2

Summary of validation methodologies and results

Molecular Alteration Samples Used Validation Parameter QC Result

SNPs, Indels Titration of 2 HAPMAP samples Limit of Detection ≥ 10% AF

CNVs 2 FFPEs Limit of Detection ≥ 6 copies at 50% neoplastic content

HAPMAP (NA12878)

SNPs, Indels HorizonDX Sensitivity 100% at ≥ 10% AF

≥ 10 bp Indels HorizonDX + titration with EGFR delE746-
A750

Sensitivity 100% at 5% AF

CNVs 8 FFPEs Sensitivity 100% at ≥ 6 copies

SNPs HAPMAP NA12878 Specificity 99.5% at ≥ 5% AF

Indels 41 FFPEs Specificity 100% at ≥ 5% AF (confirmed by PCR)

CNVs 8 FFPEs Specificity 99.4% at ≥ 6 copies

SNPs, Indels 12 FFPEs Accuracy 98% concordance

Cross-reference lab

CNVs 12 FFPEs Accuracy 96% concordance

Cross-reference lab
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