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Abstract

Eggshell mechanical property traits such as eggshell breaking strength (ESS), eggshell
thickness (EST) and eggshell weight (ESW) are most common and important indexes to
evaluate eggshell quality in poultry industry. Uterine ion transporters involve in eggshell
formation and might be associated with eggshell mechanical property traits. In this study,
99 SNPs in 15 ion transport genes were selected to genotype 976 pedigreed hens of
Rhode Island Red. ESS, EST and ESW were measured for each bird at 55 weeks of age.
The association study showed that 14 SNPs in 8 genes were significantly related (p < 0.05)
with at least one trait, and their contributions to phenotypic variance ranged from 0.23% to
4.14%. Both ATP2A3 and SLC4A5 had a significant effect on all the three traits. Strong
linkage disequilibrium (LD) was detected among SNPs in four genes: ATP2A3, ITPR1,
SLCB8A3, SCNN1a. The significant effects of those diplotypes on eggshell mechanical prop-
erty traits were found, and their contributions to phenotypic variance ranged from 0.50% to
0.70%. It was concluded that the identified SNPs and diplotypes in this study were potential
markers influencing the eggshell mechanical properties, which could contribute to the
genetic improvement of eggshell quality.

Introduction

Eggshell formation and quality has attracted much attention for several decades because of its
ubiquity as a biomeralization model [1-2] and significance for poultry industry in reducing the
waste due to shell cracking during production and transport [3]. Eggshell breaking strength
(ESS), eggshell thickness (EST) and eggshell weight (ESW) are the most direct indexes to evalu-
ate eggshell mechanical properties. The bird eggshell itself is composed of calcium carbonate in
calcite form, and has ordered crystal structure, which determines the mechanical properties of
eggshell [4-6]. 95% minerals, 3.3%-3.5% organic matrix and 1.6% water constitute the whole
eggshell in normal state [7]. The formation of eggshell is initiated by the egg about to migrate
into uterus and lasts about 20 h. During this process, amounts of calcium and bicarbonate ions,
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and precursors of organic matrix are secreted into uterine fluid, where the organic and mineral
phases interact and form the eggshell [8-10]. Thus, the biological research on eggshell is
divided into two aspects: the organic matrix and the ion transporters in bird uterus.

Recently, several proteomics studies in eggshell and uterine fluid have revealed a mass of
eggshell matrix proteins, most of which were considered as either the part of eggshell structure
or a regulator for eggshell mineralization [11-14]. Ions transport in respect to eggshell mineral-
ization is studied mainly around the base elements of eggshell: carbonate and calcium [15-17].
The experiment of selective inhibition to ions transfer in vitro and in vivo [18-19] and the com-
parisons of uterine ions concentrations among the stages of shell formation [20] suggested that
the ions transport in relation to eggshell calcification was a collaboration process of multiple
ions transport and regulation, such as Ca**, HCO;, Na*, and K*. A detailed function analysis
of ion transport genes by Jonchére et al. (2012) improved the avian uterine ion transport model
[2]. According to this model, the function of ion transport genes can be summarized as: (1)
Ca** is transferred by TRPV6 Ca** channel from blood plasma to uterine glandular cells, then
extruded by membrane’s Ca** pumps (ATP2B1, 2) and Ca**/Na* exchangers (SLC8AL, 3).
The endoplasmic Ca** pumps type 2, 3 (ATP2A2, 3), inositol trisphosphate receptors type 1, 2,
3 (ITPR1, 2, 3) and 28 kDa calbindin (CALB1) maintain a low intracellular free Ca** concen-
tration. (2) Three Na* channels (subunits SCNN1a, 1b, 1g) and Na*/Ca®" exchangers SLC8A1,
3 involve Na™ uptake in the cell, and the Na"/K" ATPase (ATP1A1, ATP1B1) output Na* from
the cell. (3) The Na*/K* ATPase take K" in the cell. The K" channels (KCNJ2, 15, 16 and
KCNMAL) excrete K™ at the apical membrane. (4) CA2 involves the production of HCOj5
from CO,. The Na*/HCO;" co-transporters (SLC4A4, 5, 10) and the HCO;/Cl exchanger
SLC26A9 contribute to the transport of HCO;™. H' produced during the reaction of HCOj3
are transferred to plasma via the membrane Ca®* pumps ATP2BI, 2 in the apical membrane
and the VAT pump at the basolateral level. (5) The HCO5'/Cl” exchanger SLC26A9 transfers
Cl" into the cell, and CI'/ H* exchanger (CLCN5) extrudes it.

The microarray study on gene expression profiling in hen’s uterus during eggshell forma-
tion revealed more candidate ion transport genes, which were considered probably associated
with eggshell mineralization [21]. However, the relation between those candidate ion transport
genes and eggshell mechanical properties is not very clear. Based on previous researches on
uterine ions transport [2, 21], we selected 15 genes which have been confirmed with significant
different expression in uterus compared with magnum and duodenum to detect the pheno-
typic-genotypic association in a pedigreed line of laying chickens. The aim of this study was to
provide evidence for the important role of candidate ion transport genes on eggshell mechani-
cal properties.

Materials and Methods
Ethics Statements

All the blood samples were collected from brachial veins of chickens by standard venipuncture.
The whole procedure was performed according to regulations and guidelines established by the
Animal Care and Use Committee of China Agricultural University. The entire study was
approved by Animal Care and Use Committee of China Agricultural University (permit num-
ber: SYXK 2007-0023).

Birds and Phenotypes

Nine hundred and seventy-six hens from the 9 generation of a pedigreed line of Rhode Island
Red were used from Beijing Huadu Yukou Poultry Breeding Co. Ltd., China. Feed and water
were provided ad libitum for all birds during the entire experimental period. All hens were
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randomly allocated to individual cages. At 55 weeks of age, a total of 2810 eggs were collected
for 4 consecutive days from the experimental population to make sure at least 2 eggs for each
hen. ESS (kg/cm?®) was determined using the eggshell force gauge (model-II Robotmation Co.
Ltd., Tokyo, Japan) with the blunt end up. ESW (g) was measured with membrane on it and
the egg white removed. EST (mm) was measured at three points of eggshell (the equator, sharp
and blunt ends of egg) without the membrane.

Genes and SNPs Selection

Fifteen candidate genes which had a significant differential expression level in uterus compared
with magnum and duodenum were selected from the results of Jonchere et al. [2, 21]. Detail
information of SNPs in those fifteen protein-coding genes was obtained from UCSC Genome
Browser database (http://genome.ucsc.edu/cgi-bin/hgGateway). Variants on genes can be cate-
gorized as follows: intergenic, upstream/downstream of gene, 5° or 3’ UTR (untranslated
region), CDS (coding sequence)-synonymous coding change, CDS-non-synonymous, intron,
splice site or splice region, exon of non-coding gene (http://genome.ucsc.edu/cgi-bin/hgVai).
Except for the known function-change mutations, SNPs in CDS and UTR regions are more
likely to affect function of genes. We selected ninety-nine SNPs localized in UTR regions and
exons of these 15 genes for further association analysis (S1 Table).

Genotyping and Quality Control

Genomic DNA was extracted from the blood samples using a standard phenol-chloroform
method, then quantified using a NanoDrop spectrophotometer (GE Healthcare Life Sciences,
Uppsala, Sweden), and the final concentrations were 30~50 ng/uL. Primers were designed
using software Assay Design 3.1 (SEQUENOM, San Diego, CA) for each SNP, as shown in S1
Table.

Genotyping of the 976 hens was performed using matrix-assisted laser desorption-ioniza-
tion time-of-flight mass spectrometry on the Mass ARRAY iPLEX Plat-form (Sequenom, San
Diego, CA). Single nucleotide polymorphism with a genotype call rate < 90% and minor allele
frequency < 1% across all individuals were removed.

Statistical Analysis

LD Analysis and Haplotype Reconstruction. The linkage disequilibrium (LD) among
SNPs within each gene was determined by using Haploview program [22] and assessed by the
Lewontin D' statistic and squared correlation statistic r>. D' > 0.8 and r>> 1/3 means strong
LD [23]. The haplotypes for SNPs in strong LD were inferred using Phase (v2.1.1, http://
stephenslab.uchicago.edu/software.html) [24-25].

Association Analysis. The association of single SNP and diplotype with eggshell mechani-
cal property traits were performed with the least-squares method using a linear mixed model
(Mixed procedure, SAS version 9.2, SAS Institute Inc., Cary, NC). The linear mixed model was
follow:

yzjzu+hi+gj+a+etj

where y;; represents the observed values of the traits, y the population mean, h; the fixed effects
of house, g; the fixed effects of genotype (for the association analysis of SNP with eggshell traits)
or diplotype (for the association analysis of diplotype with eggshell traits), a the residual poly-
genic effects and e;; the residuals. The additive genetic relationship matrix was calculated from
the pedigree.
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Table 1. Descriptive statistical analysis of eggshell mechanical property.

Traits® Number
ESS (kg/cm?) 973
EST (mm) 976
ESW (g) 976

Average S.D. Min Max CV (%)
2.644 0.566 0.929 5.499 21.4
0.32 0.023 0.224 0.39 7.13
5.9 0.5 3.9 71 8.13

8ESS = Eggshell Strength; EST = Eggshell Thickness; ESW = Eggshell Weight.

doi:10.1371/journal.pone.0130160.t001

Variance Components Estimation. The variance components were estimated using the
model below and the SAS 9.2 with the restricted maximum likelihood method for the SNPs or
diplotypes showing statistically significant association with eggshell mechanical property traits.
Then, SNPs or diplotypes contributions to phenotypic variance (CPV) were calculated by the
equation CPV = V,/V,,, where V; and V,, were the SNP or diplotype and phenotypic variance
respectively.

yi]':H+hi+gj+ezj

where y;; represents the observed values of the traits, p the population mean, h; the fixed effect
of house, g; the fixed effect of genotype or diplotype, and e;; the residuals.

Results
Phenotypic Analysis

Descriptive statistical analyses for the three traits are shown in Table 1. ESS had the highest
coefficient of variation of 21.4%. High positive phenotypic and genetic correlations among
them are presented in Table 2.

SNP Summary and Haplotype Construction

The distribution of 99 SNPs in 15 genes and the information of gene location are presented in
S2 Table. Genotype quality control and data filtering resulted in the removal of 24 SNPs with a
low minor allele frequency (<1%) and 54 SNPs with monopolymorphism. The remaining
twenty-one SNPs in nine genes that agreed with Hardy-Weinberg equilibrium were finally
identified as polymorphic with MAF >1% and genotype call rates >90% (S3 Table).

To further detect multi-loci association of each gene with eggshell mechanical property
traits, linkage disequilibrium (LD) among SNPs within each gene were analyzed using the Hap-
loview program, with the default algorithm and default parameter settings, and SNPs that devi-
ated from the Hard-Weinberg equilibrium were removed. Strong LD was detected within each
of the four ion transport genes, i.e. ATP2A3, ITPR1, SLC8A3 and SCNN1a, and each of them

Table 2. Phenotypic and genetic correlation among eggshell mechanical property and heritability®.

Traits® ESS (kg/cm?) EST (mm) ESW (g)
ESS (kg/cm?) - 0.5597 0.4212
EST (mm) 0.5893(0.1156) - 0.7487
ESW (g) 0.2988(0.1492) 0.7357(0.0716) -

@Phenotypic correlations are given above diagonal, and genetic correlations below diagonal. Standard
errors of estimates are in parentheses.
PESS = Eggshell Strength; EST = Eggshell Thickness; ESW = Eggshell Weight.

doi:10.1371/journal.pone.0130160.t002
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Table 4. Association analysis of the SNPs with eggshell mechanical property traits

SNP

rs15841856
rs13574212
rs14118603
rs14964612
rs14986134
rs15672233
rs15672283
rs15672301
rs15672305
rs16544657
rs13886291
rs14075350
rs15009190
5538155652

Gene

ATP2A3
ATP2A3
ATP2A3
CA7
ITPR1
ITPR1
ITPR1
ITPR1
ITPR1
KCNMA1
SCNN1a
SCNN1b
SCNN1g
SLC4A5

Table 3. Major haplotypes (frequency >1%) and diplotypes (frequency >1%) in 4 linkage disequilib-
rium (LD) blocks.

LD block Haplotypes (%)

LD-ATP2A3 H1: CC (14.27), H2: TT (85.67)

LD-ITPR1 H1: GGCCGGTC (23.97), H2:
GGTTGACT (33.64), H3: AACCAGTC
(41.44)

LD-SLC8A3 H1: CT (51.75), H2: TC (48.15)
LD-SCNN1a H1: ATT (57.06), H2: GTT (22.28), H3:
GCC(20.55)

doi:10.1371/journal.pone.0130160.t003

Diplotypes (%)
H1H1 (1.64), H1H2 (25.20), H2H2 (73.05)

H1H1 (4.92), H1H2 (14.55), H1H3 (22.95),
H2H2 (11.99), H2H3 (28.59), H3H3 (15.27)

H1H1 (27.08), H1H2 (49.84), H2H2 (23.08)

H1H1 (33.50), H1H2 (23.97), H1H3 (23.87),
H2H2 (4.71), H2H3 (10.35), H3H3 (3.38)

had one LD block (S1 Fig). Haplotypes were constructed for SNPs within the same LD block.
The major haplotypes (frequency >1%) and diplotypes (frequency >1%) in four LD blocks
were shown in Table 3.

Association of Single SNP with Eggshell Mechanical Property Traits

The results showed that 14 SNPs in 8 genes were significantly associated (p < 0.05) with at
least one trait, and the CPV of these SNPs were presented in Table 4. ESS had significant asso-
ciation with three SNPs, rs14118603 in ATP2A3, rs14075350 in SCNN1b and ss538155652 in
SLC4A5 (p <0.05). The CPV of these three SNPs to ESS ranged from 0.46% to 1.11%. For EST,
nine SNPs were significantly associated (p < 0.05), and they were located in four genes:
ATP2A3,ITPRI, KCNMAI and SLC4A5, and the CPV of these SNPs to EST ranged from
0.33% to 1.30%. And for ESW, six SNPs showed significant association (p < 0.05), and they
were located in six genes: ATP2A3, CA7, KCNMA1, SCNNI1a, SCNN1g and SLC4A5. The CPV
of these SNPs ranged from 0.23% to 4.14%. Especially, the SNP ss538155652 in SLC4A5 exhib-
ited significant association with all the traits, and had a high CPV to EST (1.30%).

a,b,c

Region ESS EST ESW

ex7 0.2395 0.0386* (0.5290) 0.1252

ex20 0.2791 0.0452* (0.4834) 0.1325

ex22 0.024* (0.6837) 0.0707 <.0001** (4.141)
5'UTR 0.8680 0.4916 0.0439* (0.2344)
ex4 0.3056 0.0136* (0.5227) 0.6505

ex44 0.2647 0.0052** (0.6892) 0.4181

ex51 0.2672 0.0056** (0.6812) 0.4576

ex54 0.2090 0.0068** (0.6650) 0.5083

ex54 0.2581 0.005** (0.7092) 0.4742

3'UTR 0.3436 0.0325* (0.3266) 0.0001** (1.251)
ex3 0.3454 0.3770 0.0074** (0.6122)
5'UTR 0.0043** (1.109) 0.3304 0.7113

3'UTR 0.9615 0.5218 0.0451* (0.2354)
3'UTR 0.0366* (0.4568) 0.0011** (1.302) 0.0045** (0.7858)

8ESS = Eggshell Strength; EST = Eggshell Thickness; ESW = Eggshell Weight.

b* p < 0.05;
*% < 0.01.

°SNP contribution to phenotypic variance (%) are in parentheses.

doi:10.1371/journal.pone.0130160.t004
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Association of Haplotypes with Eggshell Mechanical Property Traits

Haplotypes had combined effect of SNPs on phenotypes, and their association analysis with
eggshell mechanical property traits was performed. The CPV of these diplotypes to eggshell
mechanical traits are presented in Table 5. The results showed that there was significant associ-
ation (p <0.05) between diplotypes and eggshell mechanical property traits, except SLC8A3.
Effects of the diplotypes in each LD block on eggshell mechanical property traits were listed in
S4 Table.

No significant association was found between ESS and diplotypes within ATP2A3, ITPRI,
SCNN1a and SLC8A3. The diplotypes within ATP2A3 and ITPR1I were significantly (p <0.05)
associated with EST, and they all had low CPVs (< 0.70%). The diplotypes within SCNNIa
were significantly (p <0.05) associated with ESW, but it had a low CPV (0.54%).

Discussion

Eggshell breaking strength, thickness and weight reflect mechanical properties of eggshell in
different aspects and are the most common parameters for measuring the ability of resisting
exterior force [26-29]. Additionally, they can indicate the final state of eggshell mineralization
after a complex ions transport.

The identification of ion transporters related to eggshell mineralization could improve our
understanding of the mechanisms and regulation for ionic precursors of calcium carbonate
(CaCO0:s3), and enable us to find new potential genes effectively. In this study, 15 ion transport
genes were analyzed for their genetic effect on eggshell mechanical properties for the first time.
The association analysis results showed that 78 SNPs were filtered regrettably for their low
minor allele frequencies (<1%) or monopolymorphism in the current Rhode Island Red popu-
lation. This strain has been chosen for 9 generations in accordance with the appearance, growth
and egg weight traits within every generation. At last, 14 SNPs from 8 genes were found signifi-
cantly associated with eggshell mechanical traits. These 8 genes involved four kinds of ions,
Ca®", HCO;', Na" and K. This indicated that the eggshell mineralization was a collaboration
process of multiple ions transport and regulation, which was supported by the differential
expression of genes involved in those ions between uteruses in mineralization and non-
-mineralization in a microarray study [30].

The transport of Ca** and HCO5 is the core of ion transport in uterus, which has a great
effect on eggshell mineralization and eggshell quality. The amount of calcium deposited in egg-
shell is about 2 g, almost 10% of the total body calcium [17, 31]. However, both of carbonate
and calcium ions are not stored in the uterus before eggshell mineralization but are continu-
ously transported from the blood plasma through uterine endothelium [7, 31]. Thus, laying

Table 5. Association analysis of the diplotypes with eggshell mechanical property traits®°.

LD-block Gene ESS EST ESW

LD- ATP2A3 ATP2A3 0.2834 0.0427*(0.50) 0.1345

LD- ITPR1 ITPR1 0.4261 0.0030**(0.70) 0.5788

LD- SCNN1a SCNN1a 0.4918 0.3281 0.0122* (0.54)
LD- SLC8A3 SLC8AS3 0.5800 0.2276 0.4723

8ESS = Eggshell Strength; EST = Eggshell Thickness; ESW = Eggshell Weight.

b* p < 0.05;

** p <0.01.

“Diplotype contribution to phenotypic variance (%) are in parentheses

doi:10.1371/journal.pone.0130160.t005
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birds have severe demands on calcium homeostasis and more active ions transport than non-
laying animals [16, 32-33]. In this study, the Ca>* transport genes ATP2A3 and ITPRI, and the
HCOj5  transport genes CA7 and SLC4A5 had significant genetic effects on eggshell mechanical
properties. ATP2A3 were expressed in many types of tissues, such as platelets, lymphoid cells
and mast cells in human [34], which were not only involved in calcium transport but also rele-
vant to protein folding in endoplasmic reticulum (ER) [35-37]. In uterine glandular cells,
ATP2A3, localised in the endoplasmic reticulum, played a role in calcium dynamic store and
maintaining the low level of free Ca** in cytoplasm [2], which may relate to the supply of cal-
cium for eggshell formation, and be more likely relevant to eggshell matrix protein folding. In
the present study, three SNPs in ATP2A3 were found significant association with EST, ESS and
ESW. Moreover, these three SNPs were located in the same linkage disequilibrium block, and
the corresponding haplotypes were significantly associated with EST. ITPRI was another gene
which was directly involved in Ca** transport, and mainly localised in the endoplasmic reticu-
lum, releasing Ca>* from the endoplasmic reticulum [38-39]. The expression of ITPRI in
uterus was higher than in magnum and duodenum, and there was no difference between the
different processes of presence and absence of eggshell formation in uterus [2]. In this study,
five SNPs in ITPRI were significantly associated with EST. These five SNPs together with
rs15672050, rs15672053 and rs14986199 fall in the same LD block significantly associated with
EST.

CA7 and SLC4A5 are genes transporting HCO;™. CA7 belongs to a family of enzymes which
can catalyze carbon dioxide and water to bicarbonate and protons, and functions in cytoplasm
[40]. The expression study showed that CA7 had a higher expression in chicken uterus than in
magnum [2]. Previous studies suggested that most HCO5 for eggshell calcification came from
the blood CO,, rather than the plasma HCO; [15, 41]. In the current study, rs14964612 in
CA7 was significantly associated with ESW, indicating that CA7 played an important role in
supply of HCO;™. SLC4A5 is a Na*/ HCO; ™ cotransporter, as predicted in the basolateral mem-
brane of uterine glandular cells to allow the entry of HCO5'. It was shown higher expression in
uterus than in magnum and duodenum [2]. Present results showed that ss538155652 in
SLC4A5 was significantly associated with EST, which provided evidence for the great effect of
SLC4A5 on the transport of HCOj'.

SCNN1a, SCNN1b and SCNN1g belong to the sodium channel gene family, which encode
three subunits of epithelial Na* channel respectively [42]. These three subunits showed higher
expression in uterus in chicken compared to magnum, duodenum, liver, and kidney [2, 29],
indicating their importance in uterine Na* transport. We found that rs13886291 (SCNNIa)
and rs15009190 (SCNN1g) had a significant effect on ESW, and rs14075350 in SCNN1b on
ESS. The haplotype block of LD-SCNN1a (rs13886291, rs14845041) was significantly associ-
ated with ESW.

K" channels play a crucial role for many complex biological processes, including cell volume
regulation, cell migration, differentiation and apoptosis [43]. Variety of K* channels provide
energy for many voltage-driven transport processes, such as bicarbonate secretion in small
intestinal villus cells, electrogenic glucose reabsorption in small intestine, and colonic Na*
reabsorption by epithelial Na* channels [43-44]. We found that rs16544657 in KCNMAI (K"
large conductance Ca** activated channels, subfamily M) had a significant association with
EST and ESW. In chicken, the higher expression of KCNMAI in active uterus and the increased
K" concentrations in uterine fluid between early and late stages of eggshell calcification indi-
cated the active and important role of K" channels in uterus physiological function, or uterine
mineralization [2].
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Conclusion

This study evaluated the association between uterine ion transport genes and eggshell mechani-
cal property traits for the first time. The association analysis provided evidences that 14 SNPs
in 8 genes were significantly associated (p < 0.05) with at least one trait. Both ATP2A3 and
SLC4A5 had a significant effect on all the traits. The rs14118603 in ATP2A3 could contribute
4.14% to the variation of eggshell weight. The results supported that eggshell mineralization
was a collaboration process of multiple ions transport and regulation. Identified SNPs and hap-
lotypes in this study will help understand the process of ion transport during eggshell forma-
tion, and these potential markers may be available to the genetic improvement in eggshell

quality.
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