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Abstract
Human hepatitis B virus (HBV) is a member of the 
family Hepadnaviridae , and causes acute and chronic 
infections of the liver. The hepatitis B surface antigen 
(HBsAg) contains the large (L), middle (M), and small 
(S) surface proteins. The L protein consists of the S 
protein, preS1, and preS2. In HBsAg, the preS domain 
(preS1 + preS2) plays a key role in the infection of 
hepatocytic cells by HBV and has several immunogenic 
epitopes. Based on these characteristics of preS, 
several preS-based diagnostic and therapeutic materials 
and systems have been developed. PreS1-specific 
monoclonal antibodies (e.g. , MA18/7 and KR127) 
can be used to inhibit HBV infection. A myristoylated 
preS1 peptide (amino acids 2-48) also inhibits the 
attachment of HBV to HepaRG cells, primary human 
hepatocytes, and primary tupaia hepatocytes. 
Antibodies and antigens related to the components 
of HBsAg, preS (preS1 + preS2), or preS1 can be 
available as diagnostic markers of acute and chronic 
HBV infections. Hepatocyte-targeting delivery systems 
for therapeutic molecules (drugs, genes, or proteins) 
are very important for increasing the clinical efficacy of 
these molecules and in reducing their adverse effects 
on other organs. The selective delivery of diagnostic 
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molecules to target hepatocytic cells can also improve 
the efficiency of diagnosis. In addition to the full-length 
HBV vector, preS (preS1 + preS2), preS1, and preS1-
derived fragments can be useful in hepatocyte-specific 
targeting. In this review, we discuss the literature 
concerning the applications of the HBV preS domain in 
bio- and nanotechnology.

Key words: Hepatitis B virus; Hepatocyte; delivery 
system; Vaccine; Hepatitis B surface antigen; Diagnosis
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Core tip: The hepatitis B surface antigen (HBsAg) of 
human hepatitis B virus (HBV) contains the large (L), 
middle (M), and small (S) surface proteins. The L 
protein consists of the S protein, preS1, and preS2. In 
HBsAg, the preS domain (preS1 + preS2) plays a key 
role in the infection of hepatocytic cells by HBV and 
has several immunogenic epitopes. Therefore, the preS 
domain can act as a diagnostic or therapeutic target or 
as material for developing inhibitors of HBV infection, 
HBV vaccines, diagnostic tools for HBV infection, and 
hepatocyte-targeting delivery systems for diagnostic or 
therapeutic molecules. 
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INTRODUCTION
Human hepatitis B virus (HBV) is a double-stranded 
circular DNA virus that causes acute and chronic 
infections of the liver. Most adults with acute HBV 
infections make a full recovery, but about 5% 
suffer chronic hepatitis B. The occurrence of acute 
HBV infection in neonates and infants (< 4 years) 
dramatically increases the risk of chronic HBV 
infection by up to 90%. Chronic HBV infection causes 
severe liver diseases, including liver cirrhosis and 
hepatocellular carcinoma (HCC), and HCC is associated 
with significant morbidity and mortality[1-4].

The HBV virus is subdivided into eight genotypes 
(A-H), which show distinct geographic distributions. 
In brief, genotypes A, D, and H are prevalent in 
Western countries (e.g., Central and North America 
and northwestern Europe) and India, and genotypes 
B and C are prevalent in Asian countries (e.g., Japan, 
Taiwan, Korea, China, and East Asia). Genotype E has 
been detected in Africa, genotype F in Central and 
South America, and genotype G in France and North 
America[2,3,5].

The HBV particle contains the hepatitis B surface 
antigen (HBsAg), which specifically recognizes human 

hepatocytes and HCC cells. In HBsAg, the preS 
domain (preS1 + preS2) plays a key role in HBV 
infection and the host immune responses (see below). 
Because of these functions, the preS domain can act 
as a diagnostic or therapeutic target or as material for 
developing inhibitors of HBV infection, HBV vaccines, 
diagnostic tools for HBV infection, and hepatocyte-
targeting delivery systems for diagnostic or therapeutic 
molecules (Figure 1).

In this review, we discuss the literature concerning 
the applications of the HBV preS domain in bio- and 
nanotechnology.

STRUCTURE OF HBV
The HBV particle contains HBsAg and the hepatitis B 
core antigen (HBcAg), together with a double-stranded 
DNA molecule and the hepatitis B envelope antigen 
(HBeAg)[1,4,6-8]. HBeAg shares its residue 1-149 region 
with HBcAg[9,10]. The sizes of the HBV particle and 
HBsAg are about 44 and 22 nm, respectively[1,11].

HBsAg consists of the large (L), middle (M), and 
small (S) surface proteins. The L and M proteins 
contain the S protein (226 amino acids [aa]) and 55 
hydrophilic aa at the N-terminus of the S protein (called 
“preS2”). The L protein has an extension of hydrophilic 
residues (108 or 119, depending on the genotype), 
called “preS1”, at the N-terminus of preS2[6-8] (Figure 1 
and 2A).

The preS1 domain has receptor binding sites (aa 
1-48), containing essential residues at aa 9-18 in 
genotype D. The eight HBV genotypes show very 
similar sequences in the essential residues[7,12,13]. The 
preS1 domain is myristoylated at the glycine residue 
at position 2 and this N-terminal myristoylation 
dramatically increases HBV infectivity[6,7,12]. Previous 
studies have also reported that residues 21-47 of 
preS1 are important in the attachment of HBV to the 
receptors on hepatocytes[14,15] (Figure 2B). (Note that 
residues 21-47 correspond to aa 10-36 in genotype D).

The asialoglycoprotein receptor on the surfaces of 
human hepatocytes and HCC cells is considered to be 
a functional preS1-specific receptor[7,16,17]. Recently, the 
sodium taurocholate cotransporting polypeptide (NTCP) 
was identified as a novel preS1-specific receptor[18,19], 
and inhibitors that block its metabolic functions may 
be able to prevent HBV entry (e.g., cyclosporine A[20] 
and irbesartan[21]). 

Human and tupaia hepatocytes can be reproducibly 
infected with HBV, but HBV infection in tupaia 
hepatocytes causes only mild and transient infection, 
with low viral titers. Because mice are not infected 
by HBV, transgenic or human-liver-chimeric mice are 
used as animal models of HBV infection[22-24]. However, 
a recent study reported that the myristoylated preS1 
peptide (aa 2-48) can bind to primary hepatocytes 
derived from nonsusceptible species, such as the 
mouse, rat, dog, and rabbit[6]. However, the previous 
study of these researchers reported the conflicting 
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result that the myristoylated preS1 peptide (aa 2-48) 
cannot bind to primary rodent hepatocytes or the 
mouse liver cell line AML-12[12]. Furthermore, after an 
intravenous injection of the preS1 lipopeptide (aa 2-48) 
into mice, rats, and dogs, its accumulation in the livers 
was detected[25]. 

NTCP is regarded as a receptor that binds the 
myristoylated preS1 peptide (aa 2-48) to the 
hepatocytes of nonsusceptible hosts (e.g., mouse)[26,27]. 
In fact, the preS1 lipopeptide (aa 2-48) can bind 
to mouse NTCP and human NTCP, but its affinity is 
higher for human hepatocyte NTCP than in mouse 
hepatocyte NTCP[26,27]. In contrast, the expression of 
NTCP is higher for mouse (five times), rat (four times), 
and monkey livers (twice) than in human liver. Rat 
hepatocytes show three times higher levels of NTCP 
than human hepatocytes. However, the expression of 
NTCP in HCC is half that in the normal human liver[28]. 
Therefore, the higher binding of the myristoylated 
preS1 peptide (aa 2-48) to mouse and rat hepatocytes 
may be associated with their higher levels of NTCP. 

However, the higher binding of myristoylated preS1 
peptide (aa 2-48) to mouse and rat hepatocytes does 

not mean high levels of HBV infection in the rat and 
mouse, because HBV entry is restricted by mouse 
NTCP, and efficient HBV infection does not even occur 
in mouse hepatocytes expressing human NTCP[26,27,29]. 
Although aa 84-87 and aa 157-165 of human NTCP 
play important roles in preS1 binding and HBV entry, 
the region at residues 84-87 is a major host infection-
determining area. In fact, although HBV entry into 
mouse hepatocytes through mouse NTCP is restricted, 
HBV entry is possible when mouse NTCP aa 84-87 are 
substituted with their human counterparts[26,27].

The preS domain (preS1 + preS2) also contains 
several immunogenic epitopes[30-32]. These epitopes 
may be potential targets for HBV vaccines and 
antibodies that inhibit HBV infection (see below).

PreS-SPECIFIC ANTIBODIES AS 
INHIBITORS OF HBV INFECTION
PreS1-specific antibodies can be used to inhibit HBV 
infection. The very N-terminal part of preS1 (aa 1-21) 
and the C-terminal part (aa 78-116) are nonneutralizing 
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Figure 1  hepatitis B surface antigen consists of the S protein, M protein (S and preS2 proteins), and L protein (S, preS1, and preS2 proteins). In hepatitis 
B surface antigen (HBsAg), the preS domain (preS1 + preS2) plays a key role in the human hepatitis B virus (HBV) infection of hepatocytic cells by facilitating HBV 
attachment and entry, and contains several immunogenic T- and B-cell epitopes. Therefore, the preS domain containing HBV-binding sites and immunogenic epitopes 
is a diagnostic and therapeutic target or material. In fact, several diagnostic and therapeutic materials and systems based on preS have been developed, including 
inhibitors of HBV infection, HBV vaccines, diagnostic tools for HBV infection, and hepatocyte-targeting delivery systems for diagnostic and therapeutic molecules.
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preS1 peptide (aa 2-48) efficiently prevented HBV 
infection[43]. The results of a recent phase IIa trial of 
the myristoylated preS1 lipopeptide (aa 2-48) are 
available from the company website (http://www.
hepatera.ru//node/53?ln=en).

In the preS1 sequence at aa 2-48 of genotype D, 
the region defined by residues 2-18 is essential for 
the inhibition of HBV infection, whereas the aa 19-48 
region has no or little effect on this inhibition[12,41,42]. 
A deletion or mutation between residues 2 and 18 
dramatically reduces the efficiency of inhibition of HBV 
infection[6,42]. Recently, a modified myristoylated preS1 
peptide aa 2-19 showed significantly higher affinity 
for HepG2 and HuH-7 cells than two unmodified 
myristoylated peptides derived from preS1 aa 2-19 of 
genotypes A-D[44]. However, the palmitoylated preS1 
sequence aa 11-31 of genotype C, which corresponds 
to sequence aa 1-19 of genotype D, potentially inhibits 
HBV infection[45] (Figure 2B).

Several preS1-binding peptides obtained from a 
phage display library have been developed to inhibit 
HBV infection[46-49]. Theoretically, they block the binding 
of the HBV preS1 domain to target cells. However, 
there are very few in vitro or in vivo data regarding 
their efficiency in inhibiting HBV infection, other than 
a recent study in which two preS1-binding peptides 
(LKKKW and LRNIR) inhibited HBV attachment to 
HepG2 cells[49]. 

PreS-RELATED ANTIBODIES AND 
ANTIGENS AS A DIAGNOSTIC TARGET 
OF HBV
The levels of serum HBV-related antibodies and antigens, 

epitopes[32] and the region at residues 21-48 is 
considered a virus-neutralizing epitope[32-34] (Figure 2A). 
For example, the monoclonal antibody (mAb) MA18/7, 
which specifically recognizes a preS1 epitope (aa 20-23; 
DPAF)[35], can block the HBV infection of primary tupaia 
hepatocytes[36]. The mAb KR127, which binds to aa 
37-45 of the preS1 domain[37], shows virus-neutralizing 
activity and confers efficient protection against HBV 
infection in chimpanzees[38]. In addition to MA18/7 and 
KR127, an mAb targeting preS1 aa 32-47 (F35.25)[39] 
or preS1 aa 30-35[40] has been constructed, but its 
efficiency in inhibiting HBV infection of hepatocytes or 
animals has not yet been demonstrated.

PreS-DERIVED OR-TARGETING PEPTIDES 
AS INHIBITORS OF HBV INFECTION
A preS1-derived lipopeptide (myristoylated preS1 
peptide; also known as Myrcludex B) containing aa 2-48 
inhibits the attachment of HBV to HepaRG cells[6,41,42], 
primary human hepatocytes[6,41], and primary tupaia 
hepatocytes[6,12], but the nonmyristoylated preS1 
peptide failed to inhibit HBV infection of these 
cells[6,12,42]. Interestingly, the replacement of myristic 
acid (tetradecanoic acid) in the lipopeptide with 
palmitic acid (hexadecanoic acid) or a cholesteryl 
moiety enhanced its inhibition of HBV infection, 
whereas caprylic acid (octanoic acid) or valeric 
acid (pentanoic acid) reduced its inhibition of HBV 
infection[12]. 

In an in vivo experiment using urokinase-
type plasminogen activator (uPA+/-) transgenic 
mice crossed with RAG-2-/-/perforin-/- mice lacking 
mature T, B, and NK cells, the injection of human-
hepatocyte-transplanted mice with the myristoylated 
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Figure 2  Scheme of the preS domain (preS1 + preS2) and PreS1 sequence. A: Schematic representation of the preS domain containing HBV attachment sites, 
antibody-binding sites, and sites for virion formation (modified from ref.[7]). The receptor-binding sites are important in hepatitis B virus (HBV) attachment and entry, 
and the antibody-binding sites for developing preS1-specific antibodies and HBV vaccines; B: PreS1 sequence (aa 1-50) in different HBV genotypes (A-H), obtained 
from ref.[12]. The essential residues for receptor binding (aa 9-18) are very similar in genotypes A-H (gray). 
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HBV DNA, and aminotransferases (e.g., alanine ami
notransferase and aspartate aminotransferase) are 
commonly assayed for the diagnosis of acute and chronic 
HBV infections[1,3,4].

HBV-related antibodies and antigens, such as anti-
hepatitis B core antibody (anti-HBc), HBeAg and anti-
HBeAg antibody (anti-HBe), and HBsAg and anti-
HBsAg antibody (anti-HBs), are potential markers for 
diagnosing HBV infection. HBsAg appears in the first 
stage after HBV infection and anti-HBc is detected 
within 2 wk of the appearance of HBsAg. For these 
reasons, HBsAg and anti-HBc can be considered 
useful markers for diagnosing the acute phase of 
HBV infection[1,4]. However, an HBsAg-targeting 
immunoassay often produces false-negative results in 
patients infected with mutant HBsAg[50,51] or in patients 
with low HBsAg levels, because HBsAg can disappear 
at any stage of the disease[1,3]. 

HBsAg can be detected as a diagnostic marker 
in serum and saliva samples from patients infected 
with HBV[52-54]. However, during recovery from illness, 
HBsAg disappears more rapidly from the saliva than 
from the sera of patients with acute HBV infections[52]. 
To detect HBsAg in serum and saliva samples, an 
enzyme immunoassay[52,55], ELISA[55], time-resolved 
fluoroimmunoassay (TRFIA)[56], or chemiluminescence 
immunoassay[50,53-55] is commonly used. Recently, 
modified versions of these assays for the more 
sensitive detection of HBsAg have been reported, such 
as assays based on magnetic beads and TRFIA[57] and 
a bioluminescent enzyme immunoassay using firefly 
luciferase[58].

Antibodies and antigens related to the components 
of HBsAg, preS (preS1 + preS2), or preS1 are also 
available as diagnostic markers of acute and chronic 
HBV infections[59-61]. Serum preS1-related antibodies 
are detected with a typical ELISA microplate coated 
with one or two copies of preS1 (e.g., aa 21-47 or 
21-119) fusion proteins[62,63]. In another assay, an 
indirect ELISA was constructed by coating the plates 
with two copies of the preS1 peptide (aa 21-47) 
fused to glutathione S-transferase through a flexible 
linker[64]. However, these assays targeting serum 
preS1-related antibodies show relatively low positive 
rates in diagnoses using sera from HBV-infected 
patients[62,63].

ELISA and TRFIA are applicable to the detection 
of serum preS1 antigen[65-67]. However, an analysis of 
serum preS1 antigen showed that TRFIA is better than 
ELISA in its precision, specificity, and sensitivity[67].

An immunoassay in which a plate is coated with 
a polyclonal antibody directed against preS (preS1 
+ preS2) has been used to detect serum HBV preS 
antigen. Its sensitivity, specificity, and accuracy 
in serum samples from patients with chronic HBV 
infection were 81% (72%-89%), 65% (58%-70%), 
and 72%, respectively[66]. A double-sandwich 
immunoassay in a plate coated with two mAbs, 
anti-PreS1 mAb and anti-HBc mAb, has also been 

developed. In HBsAg-positive serum samples infected 
with the wild-type viruses of four genotypes (A-D), 
the assay using two mAbs displayed higher sensitivity 
than the assay using anti-preS1 mAb, anti-HBc mAb, 
or anti-HBe mAb alone, but lower sensitivity than the 
assay using anti-HBs mAb. However, the sensitivity 
of the assay based on the anti-preS1 and anti-HBc 
mAbs for the serum samples of 10 patients infected 
with an HBsAg-mutant virus was 80% (8/10, 95%CI: 
44.4%-97.5%)[68].

PreS AS A TARGET FOR DEVELOPING 
HBV VACCINES
The HBV surface and core proteins are regarded as 
potential targets for the development of HBV vaccines. 
Although the S protein is the major component 
of HBsAg, the preS1 and preS2 regions are more 
immunogenic targets within HBsAg[2,32,69].

To prevent HBV infection, two types of vaccines 
have been developed, HBV protein vaccines and HBV 
DNA vaccines. Protein-based HBV vaccines containing 
recombinant HBsAg usually require adjuvants. They 
also induce ineffective T-cell responses, but these 
problems can be improved by their formulation with 
novel adjuvants, e.g., 3-deacylated monophosphoryl 
lipid A or saponins purified from Quillaja saponaria 
Molina[70,71]. HBV DNA vaccines expressing HBsAg 
are produced by inserting the HBsAg gene into an 
expression vector. The efficiency of DNA immunization 
can be enhanced by combining it with an optimized 
delivery technology, such as electroporation[72] or the 
gene gun[73].

Conventional yeast-derived HBV vaccines (second 
generation) contain the S protein of HBV. These 
vaccines induce protective antibody responses in 
healthy adult recipients (about 90%), but fail to 
elicit adequate antibody production in up to 10% of 
individuals, who may become chronic HBV carriers and 
develop liver disease (e.g., liver cirrhosis or HCC)[2,74,75]. 
Mutations in the S gene may be associated with 
inadequate control of HBV infection after vaccination 
with conventional HBV vaccines[2,76]. However, when 
combined with the core antigen, conventional vaccines 
can exert more potent and efficient therapeutic 
effects[77,78].

In contrast, a third-generation HBV vaccine, 
Sci-B-Vac™ (also known as Hepimmune or Bio-
Hep-B), containing the S, preS1, and preS2 protein 
components, is safe and more immunogenic than 
conventional HBV vaccines[79-81] because the preS1 
and preS2 domains contain T- and B-cell-specific 
epitopes[30-32]. An HBV vaccine containing the preS1 
and preS2 domains can elicit protective antibody 
levels in non- or low responders to conventional 
HBV vaccines[82,83]. HBV-specific T-cell proliferation 
and interferon γ (IFN-γ) production are induced in 
non- or low responders after the injection of Sci-B-
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Vac™, whereas non- or low responders display no 
proliferation of T cells, which are important for an 
efficient B-cell response[83]. 

HBsAg DNA vaccines expressing either the L, 
M, or S protein can induce anti-HBs antibodies, but 
interestingly, HBsAg DNA vaccines expressing the L 
protein was less immunogenic than the HBsAg DNA 
vaccine with the M or S protein. However, HBsAg-
specific interleukin 2 (IL-2) and IFN-γ secretion in 
mouse splenocytes did not differ significantly after 
vaccination with either of the three HBsAg DNA 
vaccines[84]. In contrast, the modified HBsAg DNA 
vaccine that expresses the truncated N-terminal 
sequence (aa 1-18) within the preS1 region, enhances 
anti-HBs antibody levels in mice earlier and with higher 
titers than the HBsAg DNA vaccine expressing the 
full L protein. However, the two vaccines do not differ 
in the levels of IFN-γ and IL-4 secreted from mouse 
splenocytes after vaccination[81,84]. These data suggest 
that the HBsAg DNA vaccine expressing N-terminal-
truncated preS1/preS2/S proteins can induce both 
anti-HBs antibodies and T- and B-cell immune 
responses more efficiently than full-length preS1/
preS2/S proteins. 

HBV vaccines constructed by fusing the preS1 
peptide to the core protein or S protein induce efficient 
cellular and humoral immune responses[72,85,86], as 
mentioned above, because preS1 contains immunogenic 
T- and B-cell epitopes, e.g., preS1 aa 21-30 contains a 
T-cell epitope[31] and aa 12-32 and 32-53 contain B-cell 
epitopes[30].

Generally, the immune system is weakened in 
patients with chronic HBV infection. Therefore, thera
peutic vaccines that can efficiently stimulate the 
immune responses will be useful in treating chronic 
HBV infection[87]. According to the results of several 
studies, HBV vaccines containing the preS1 domain 
can be used to treat chronic HBV infection because 
they induce highly potent immune responses[81,86,88,89]. 
Furthermore, a combined therapy with the preS1/
preS2/S vaccine and antiviral drugs (e.g., lamivudine 
and clevudine) induces more efficient viral suppression 
and enhanced immune responses than the antiviral 
drug or vaccine alone[89-91]. 

HEPATOCYTIC CELL-TARGETED 
DELIVERY SYSTEMS OF THERAPEUTIC 
OR DIAGNOSTIC MOLECULES USING 
preS
Hepatocyte-targeting delivery systems for therapeutic 
molecules (drugs, genes, or proteins) are very 
important for increasing the clinical efficacy of these 
molecules and in reducing their adverse effects on 
other organs. The selective delivery of diagnostic 
molecules to target hepatocytic cells can also improve 
the efficiency of diagnosis[92].

Recombinant HBV is used as a vector for delivering 
genes to hepatocytes or HCC cells[93-96]. For example, 
the delivery of small interfering RNA (siRNA) by 
recombinant HBV successfully inhibited HBsAg expre
ssion in primary tree shrew hepatocytes infected with 
wild-type HBV[96]. 

In addition to the full-length HBV vector, preS 
(preS1 + preS2), preS1, and preS1-derived fragments 
can be useful in hepatocyte-specific targeting. As a 
simple gene delivery system, the preS1 peptide (aa 
21-47) fused to an arginine 9-mer, which binds to 
anionic genes, efficiently delivered siRNA into HepG2 
cells[97].

The conjugation of viral vectors (e.g., bacterio
phages)[98] with a preS1 peptide makes it possible to 
deliver genes into hepatocytic cells. Bacteriophage 
T7 displaying a preS1 fragment (aa 60-108) was 
constructed as a vector for delivering genes into 
HepG2 cells. Recombinant T7 phage particles containing 
preS1 aa 60-108 displayed higher recovery in HepG2 
cells than T7 phage particle containing preS1 aa 
1-47[99]. The incorporation of preS1 peptides into a 
mutant herpes simplex virus type 1 (HSV-1) virus, 
from which the glycoprotein that binds to the host 
cell glycosaminoglycans was deleted, increased their 
binding activity to HepG2 cells compared with that 
of the mutant HSV-1 virus alone, but no data are 
available for nonhepatocytic cells[100].

A preS-conjugated liposome has been constructed, 
simply by mixing a His-tagged C-terminal recombinant 
preS protein with cationic liposomes. In a transfection 
experiment using different cells, the conjugate 
containing plasmid DNA (pDNA) expressed more 
β-galactosidase in human hepatocytes than in human 
pulmonary artery smooth muscle cells, human renal 
epithelial cells, human dermal fibroblasts (fetal), or 
human cardiac fibroblasts. The β-galactosidase activity 
was higher in the livers of immunocompromised mice 
treated with the preS-conjugated liposome/pDNA 
complex than in mice treated with the liposome/pDNA 
complex[101]. In a recent study, the incorporation of 
a preS1-derived lipopeptide (aa 2-48 with myristic 
acid) into a PEGylated liposome enhanced its uptake 
by primary mice hepatocytes and its accumulation in 
the liver. The livers of mice treated with a PEG-preS1-
liposome containing silybin were more efficiently 
protected from carbon tetrachloride (CCl4)-induced 
acute hepatitis than were those of mice treated with 
the PEG-liposome containing silybin or with silybin 
alone[102].

An L-protein-based bionanocapsule that contains 
the preS1 region has been developed to deliver 
genes into human hepatocytes[103]. A complex of the 
bionanocapsule and a cationic liposome (EL-01-A) 
significantly increased its transfection efficiency in 
HepG2 cells compared with that of the bionanocapsule 
alone[104]. The injection of a bionanocapsule/liposome 
complex containing the GFP gene into mice carrying 
tumor cells induced GFP expression in HCCs (NuE 
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tumors), but in neither mouse liver nor human 
epidermoid carcinoma (A431)[104]. In another study, 
mice bearing NuE tumors were injected with GFP fused 
with preS (preS1 + pesS2), and no GFP fluorescence 
was found in the mouse liver, but was observed in 
the NuE tumors[105]. These results contradict those of 
recent studies in which a myristoylated preS1 peptide 
(aa 4-48) accumulated in the livers of mice and rats 
after its intravenous injection, and bound to mouse 
hepatocytes[6,25-27]. Therefore, further studies are 
required to establish definitively whether myristoylated 
preS1 peptides (aa 4-48), full preS1, and preS (preS1 
+ preS2) differ in their affinity for human and mouse 
hepatocytes.

Mixing liposomes with preS1 or preS (preS1 + 
preS2) is a simple method of constructing hepatocyte-
targeting gene delivery systems. However, according 
to a recent study, a mixture of myristoylated preS1 
(aa 4-48) and liposomes caused myristic acid to be 
inserted into the lipid layer of the liposomes, markedly 
reducing the efficiency of liver targeting[102].

A protein-based nanocage composed of HSP16.5 
can be fused to several peptides and proteins, and is 
used as a cell-targeting delivery system for genes and 
drugs[106-109]. A nanocage fused to preS1 increased 
its specificity for HCC cells (HepG2 and Huh-7) 
more significantly than for human breast cancer 
cells (MCF-7) or human epithelial carcinoma cells 
(HeLa)[110]. The myristoylated-preS1-fused nanocage 
also displays higher affinity for HepaRG cells than the 
nonmyristoylated preS1-fused nanocage[111].

A construct in which technetium-99m (99mTc) is 
conjugated to a stearoylated preS1 peptide (aa 2-48) 
through a mercaptoacetyltriglycerin linker has been 
synthesized as a single-photon emission computed 
tomography (SPECT) tracer. After the tracer was 
injected intravenously into rats, its accumulation was 
higher in their livers than in other tissues (heart, lung, 
spleen, kidney, muscle, brain, intestine, duodenum, 
and tail)[112]. In that study, stearic acid was used 
instead of myristic acid. In a previous study, peptides 
conjugated with a palmitoyl moiety (C16) with a 
longer carbon chain or a cholesteryl moiety (C27) with 
more carbon atoms than the myristoyl moiety (C14) 
increased its affinity for primary tupaia hepatocytes, 
whereas fatty acids with shorter carbon chains (e.g., 
caprylic acid [C8] and valeric acid [C5]) markedly 
reduced its affinity for hepatocytes[12]. Stearic acid 
is a fatty acid with 18 carbon atoms. Therefore, 
the affinities of stearoylated preS1 aa 2-48 and 
myristoylated preS1 aa 2-48 for hepatocytes may 
differ.

Although preS (preS1 + preS2)- and preS1-
conjugated delivery systems can specifically target 
hepatocytes and HCC cells, they cannot distinguish 
between normal and abnormal hepatocytic cells 
(e.g., cirrhotic liver and HCC cells). A novel gene 
delivery system has been reported that responds to 
the hyperactivated intracellular signals of tumor cells 

(e.g., protein kinase A [PKA] and PKCα), but not to 
the normal intracellular signals of normal cells or 
tissues[113-115]. Combining this system with nanoparticles 
containing preS1 makes it possible to distinguish 
between normal human hepatocytes and HCC cells[116]. 
The combined system also increases the transfection 
efficiency and selectivity for HCC cells (e.g., HepG2 
and Huh-7 cells) with hyperactivated PKA or PKCα, 
but shows no gene expression in human epidermoid 
carcinoma cells (A431), human colon carcinoma cells 
(WiDr), or human lung adenocarcinoma cells (A549), 
which also contain hyperactivated PKA or PKCα[116,117].

Recently, a research group reported an interesting 
relationship between endocytosis and the lengths of 
the preS1 peptide, using virus-like particles (VLPs) 
derived from the bacteriophage AP205 coat protein 
and fused with different lengths of preS1 peptide at 
the C-terminus of the coat protein sequence. The VLP 
containing preS1 aa 10-36 bound strongly to HepG2 
cells, but was not found in the cytosol of HepG2 
cells. However, a VLP containing preS1 aa 2-108 was 
endocytosed and was observed in the cytosol[118]. This 
study suggests that preS1 fragments, like full-length 
preS1, can specifically bind to hepatocytic cells, but 
has not shown satisfactory results for their cellular 
uptake by hepatocytic cells.

CONCLUSION
The preS domain (preS1 + preS2) of HBV HBsAg 
plays a key role in HBV infection by attaching to 
hepatocytic cells and interacting with receptors, and 
contains several immunogenic epitopes. Based on 
these characteristics of preS, several preS-based 
diagnostic and therapeutic materials and systems have 
been developed, including inhibitors of HBV infection, 
HBV vaccines, diagnostic tools for HBV infection, and 
hepatocyte-targeting delivery systems for diagnostic 
or therapeutic molecules. As a good example, the 
myristoylated preS1 peptide (aa 4-48) is highly potent 
in inhibiting HBV entry into human hepatocytes, and 
the clinical trial results for this peptide have been 
reported. However, there are still several opportunities 
for the development of more preS1-fragment-based 
inhibitors using the myristoylated preS1 peptide (aa 
4-48), e.g., by replacing myristic acid with other 
fatty acids or by altering the amino acid sequence at 
receptor binding sites[12,44].

 The HBV virus is classified into at least eight 
genotypes (A-H) which have distinct geographic 
distributions. The eight HBV genotypes show very 
similar sequences in essential residues (aa 9-18) within 
receptor binding sites located in the preS domain 
(Figure 2). These results, however, do not mean that 
bio- and nanotechnological approach using a HBV 
genotype-derived preS domain can be applicable to 
other HBV genotypes, due to high genetic diversity at 
the preS domain. 

Recent studies suggest that preS1-derived fragments 
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can recognize receptors on rodent hepatocytes. Mice and 
rats have been used to evaluate hepatocyte-targeting 
delivery systems based on preS1 or preS (preS1 + 
preS2). However, HBV entry into mouse hepatocytes 
is restricted and mouse hepatocytes are not efficiently 
infected by HBV. Several studies have also reported 
that preS1-derived peptides and full-length preS1 or 
preS (preS1 + preS2) differ in their binding affinities 
for the mouse liver. Therefore, as stated above, further 
studies are required to clarify whether preS1-derived 
fragments, full-length preS1, and preS (preS1 + 
preS2) differ in their affinities for human and mouse 
hepatocytes. 

In a recent study[118], the intracellular transfer 
of VLPs conjugated with preS1 fragments clearly 
differed from that of VLPs conjugated with full-
length preS1. The preS1-fragment-fused VLP bound 
strongly to HepG2 cells, but was not transferred into 
the cytosol. Although further studies are needed, 
this study suggests that preS1-fragment-conjugated 
delivery systems cannot be used to deliver therapeutic 
molecules into the cytosol of hepatocytic cells.

Delivery systems using preS1 or preS (preS1 + 
preS2) are also unable to distinguish between normal 
and abnormal hepatocytes (e.g., cirrhotic liver cells and 
HCC cells). However, the development of abnormal-
hepatocyte-targeting delivery systems (for example, 
by combining abnormal-cell-targeting delivery systems 
with delivery systems based on preS1 or preS [preS1 
+ preS2]) should enhance the therapeutic efficacy 
against abnormal hepatocytic cells and reduce the risk 
of adverse effects on normal hepatocytes.
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