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Keywords.

An outbreak of human infections with an avian influenza
A(H7NO9) virus was first reported in eastern China by the
World Health Organization on 1 April 2013 [1]. This
novel influenza virus was fatal in approximately one-
third of the 135 confirmed cases detected in the 4 months
following its initial identification [2],and limited human-
to-human H7N9 virus transmission could not be exclud-
ed in some Chinese clusters of cases [3,4]. There was, and
still is, the possibility that the virus would mutate to the
point where there would be sustained human-to-human
transmission. Given that most of the human population
has no prior immunity (either due to natural challenge or
vaccine induced), such a strain presents the danger of
starting an influenza pandemic.

In response to such a threat, the Joint Modeling Unit at
the Centers for Disease Control and Prevention (CDC)
was asked to conduct a rapid assessment of both the po-
tential burden of unmitigated disease and the possible im-
pacts of different mitigation measures. We were tasked to
evaluate the 6 following interventions: invasive mechani-
cal ventilators, influenza antiviral drugs for treatment
(but not large-scale prophylaxis), influenza vaccines, re-
spiratory protective devices for healthcare workers and
surgical face masks for patients, school closings to reduce
transmission, and airport-based screening to identify
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those ill with novel influenza virus entering the United
States. This supplement presents reports on the methods
and estimates for the first 5 listed interventions, and in
this introduction we outline the general approach and
standardized epidemiological assumptions used in all
the articles.

METHODS

Approach to Modeling

Given that there had not yet been (and subsequently has
not been to date) a pandemic caused by the H7N9 virus,
there are no relevant large-population data concerning
transmission and clinical impacts of H7N9. We there-
fore had to consider the potential impacts of disease
and interventions for a not fully defined pandemic (ie,
a pandemic caused by a generic influenza strain HxNy).
Thus, any model that we built had to allow for a wide
range in virus transmissibility and resulting clinical im-
pact. The models had to also fully consider a range of
effectiveness of interventions—for example, influenza
antiviral drugs could be less effective against the next
influenza strain causing a pandemic.

Given these uncertainties, and the need for a rapid as-
sessment of a large number of factors, the models pro-
duced had to meet a number of specifications: had to
be produced in a manner that would allow the models
to be easily transferred to other units in government
and to public health officials, and subsequently used by
people who did not build them; had to provide easy iden-
tification of all input variables, their values, and ability to
rapidly change those values; can be easily stored and res-
urrected for future use and reference at some unspecified
time in the future; and, the results from each model can
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be readily compared to each other. In response to these specifi-
cations, we decided to require that each model be built in a
spreadsheet format, and that we would essentially have 1
model for each intervention considered.

Meeting these specifications had the added value of produc-
ing models that readily fit into the existing CDC Emergency
Operations response structure. In this structure, groups called
Task Forces are formed to focus on particular aspects of a re-
sponse to a public health emergency. For example, for an influ-
enza pandemic response, there are usually Task Forces that
focus on vaccines (eg, recommendations regarding prioritiza-
tion of vaccine supplies, issues related to distribution), medical
countermeasures (eg, recommendations regarding use of drugs
for treatment and prophylaxis, use of personal protective equip-
ment such as face masks), and nonpharmaceutical interventions
(eg, recommendations regarding school closures, border secur-
ity, and screening).

Standardized Epidemiological Scenarios

To allow easy comparison between results (a specification), we
standardized a risk space defined by using ranges of transmis-
sion and clinical severity from a previously published influenza
severity assessment framework (Figure 1) [5]. The framework
can be used to plot, and compare to historical data, the relative
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Figure 1. Framework for assessing the impact of an influenza pandemic,
with examples of past pandemics and influenza seasons plotted as exam-
ples. The assumed possible risk space is the range of possible transmis-
sibility and clinical severity standardized for use in all models used to
assess the possible impact of studied interventions. For the actual range
of values used in each of the models, see Table 1. See main text for ad-
ditional details. Note that the 1977-1978, 2006-2007, and 20072008
seasons were nonpandemic seasons. They are included to provide refer-
ence points regarding the impact of nonpandemic seasons. Adapted
from Reed et al [5].

severity of an influenza pandemic (or nonpandemic influenza
season). The framework uses 2 scales: a scale of clinical severity,
and a scale of transmissibility. The severity scale has a number
of components in it, including case-fatality ratio and case-
to-hospitalization ratio (Table 1) [5]. The transmissibility
scale is assessed by considering factors such as the clinical
(symptomatic) attack rate in various locales, such as school,
community, and workplace (Table 1) [5].

Possible Risk Space

We defined and chose a risk space that has a transmission scale
that runs from approximately a scale of 3 (eg, comparable to a
community attack rate of 11%-15%) to a scale of 5 (community
attack rate of >25%) (Figure 1, Table 1). Our defined risk space
has a low-end clinical severity scale of 3, with a case-fatality
ratio of 0.05%-0.1% and a death-to-hospitalization ratio of
7%-9% (Table 1). The upper range of severity in our risk
space was defined as a scale of 5, with a case-fatality rate of
0.25%-0.5%, and a death-to-hospitalization ratio of 13%-15%
(Table 1). Note that the defined risk space encloses the 1968
and 1957 pandemics (Figure 1).

It is essential to note that this chosen risk space is illustrative,
not definitive. Until there are data defining the epidemiological
elements of the next pandemic, such as rate of transmission,
and case-fatality rate, other risk spaces could be chosen for
planning purposes. The models presented in this collection,
built to the specifications listed here, allow for rapid alterations
in input values.

Epidemic Curves
The size and shape of the epidemic curve could impact the effec-
tiveness of interventions. For example, the impact of influenza
vaccines depends upon the start of deliveries of large amounts
of vaccine compared to the timing of the pandemic peak.
Thus, we included in the standardized epidemiological scenario
4 epidemic curves, produced using a simple simulation model
(see below). We configured the model using 2 clinical attack
rates of approximately 20% and 30%. These clinical attack rates
represent the aggregated attack rate across the entire US popula-
tion. Within the population, subpopulations will typically experi-
ence different attack rates (eg, children will experience a higher
attack rate than adults 20-64 years old—see description later in
paper). Furthermore, for each attack rate, we assumed 2 starting
(seeding) scenarios. We used one scenario in which the pandem-
ic started with the arrival of 10 infectious cases and the other
when the pandemic started with 100 infectious cases (Figure 2).
To model the 4 epidemic curves, we built a simple, nonpro-
babilistic (ie, deterministic) model that simulates the spread of
influenza through a population by moving the population into
groups of susceptible, exposed, infectious, and recovered or
death (Table 2 provides values used). We divided the population
into 4 age groups (0-10, 11-20, 21-60, or >61 years of age). We
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Table 1.

Measures of Transmissibility and Clinical Severity for the Defined Pandemic Impact Assessment®

Scale®

Parameter 1

3 4 5 6 7

Transmissibility

1 Symptomatic attack rate, <10% 11%-15% 16%—-20% 21%-24% >25%
community

2 Symptomatic attack rate, school <20% 21%-25% 26%-30%  31%-35% >36%

3 Symptomatic attack rate, <10% 11%-15% 16%-20%  21%-24% >25%
workplace

4 Household secondary attack rate, <5% 6%-10% 11%-15% 16%-20% >21%
symptomatic

5 Ro: basic reproductive number <1.1 1.2-1.3 1.4-1.5 1.6-1.7 >1.8

6 Peak % outpatient visits for 1%-3% 4%-6% 7%-9% 10%-12% >13%

influenza-like illness
Clinical severity

1 Case-fatality ratio
2 Case-hospitalization ratio <0.5%
B Ratio, deaths: hospitalization <3%

<0.02% 0.02%-0.05% 0.05%-0.1% 0.1%-0.25% 0.25%-0.5%
0.5%-0.8%
4%-6%

05%-1% >1%
5%-7% >7%
16%-18% >18%

0.8%-1.5%
7%-9%

3%-5%
13%-15%

1.5%-3%
10%-12%

For case-fatality ratio and case-hospitalized ratio, scale 3 shows low severity, and scale 5 shows high severity (in bold).

Source: Adapted from Reed et al [5].

@ These estimates related to the framework for assessing the impact of influenza pandemics, shown in Figure 1.

® ltalics represent the measures of transmissibility included in the defined risk space, shown in Figure 1.

modeled the probabilities of daily contact (and thus risk of disease
transmission) by constructing a contact matrix using data from
the United Kingdom (see Table Al in Technical Appendix A).
We thus produced 4 notably different epidemic curves (Fig-
ure 2). For example, the two 30% attack rate scenarios peak in
weeks 12 and 14, whereas the 20% attack rate scenarios peak in
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Figure 2. Standardized attack rates and epidemic curves used in the
models: 2 clinical attack rates and 2 initial seedings. Clinical attack rates
of 20% or 30% represent the aggregated attack rate across the entire US
population. A 30% clinical attack rate results in approximately 94 million
persons becoming ill, and a 20% clinical attack rate causes approximately
64 million to become ill. Within the population, subpopulations will
typically experience different attack rates (see Table 3). Seeding refers
to the number of infectious cases, either 10 or 100, that arrives near-
simultaneously in the United States to start the pandemic.

weeks 13 and 22 (Figure 2). The clinical attack rates by age
group are presented in Table 3. Obviously, the largest numbers
of cases occur in the largest age group of 21- to 60-year-olds;
however, children in both the 0-10 and 11-20 age groups
have the highest attack rates, indicating a potentially greater de-
gree of vulnerability (Table 3).

Strengths and Limitations
Perhaps one of the greatest strengths of the simple models pre-
sented in this collection of articles is that they highlight what is

Table 2. Assumed Values Used to Model the Standardized Influenza
Epidemiological Curves

Model Parameter Value
No. of persons infected per infectious person: 1.3

for clinical attack rate of 20%°
No. of persons infected per infectious person: 1.65

for clinical attack rate of 30%°
Average duration of incubation of infection 1.5d
Average duration of infectious period 2d
Proportion of population asymptomatic 50%
Contact mixing matrix See Technical

Appendix A
Initial population immunity Zero for all age
groups

@ Average number of persons infected per infectious person is often, in
modeling terms, referred to as Rq. This number represents the number
infected when all, or almost all, of the population is susceptible to infection.
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Table 3. Age-Specific Number of Clinical Cases and Attack Rates by Total Population Attack Rate Scenarios

0-10y 11-20y 21-60y >61y
Total
Total Clinical Million Age-Specific Million Age-Specific Million Age-Specific Million Age-Specific Million
Attack Rate Cases Attack Rate Cases Attack Rate Cases Attack Rate Cases Attack Rate Cases
30% 13.1 31.9% 16.9 39.0% 52.7 31.0% 11.3 20.0% 94.0
20% 8.9 21.7% 12.7 29.3% 35.2 20.7% 6.9 12.2% 63.7

and is not known about the burden of disease and the potential
impact of a planned intervention. To find the weaknesses of
what is currently known, a reader need only consult Table 1
in each article. These tables list inputs, their assumed values,
and data sources. An example of an important unknown is as
follows: When estimating the number of respiratory protection
devices (eg, face and surgical masks) needed by first responders
(police officers, firefighters, emergency medical technicians),
one could assume that first responders will need 1 mask per per-
son whom they encounter with influenza-like illness. The prob-
lem is that there are no readily available data that report on the
measurement of such [6]. Similarly, when considering the po-
tential use and impact of influenza antiviral drugs, O’Hagan
et al had to assume that existing influenza antiviral drugs
would have the same level of effectiveness against the strain

causing the next influenza pandemic as they do with existing in-
fluenza strains [7]. Despite these limitations, these simple mod-
els make it fairly straightforward to rapidly assess the relative
importance of each of the input variables.

One assumption that may not be readily appreciated is the im-
pact of the shape of the standardized epidemiological curves used
in all the models (Figure 2). Previous influenza pandemics have
produced different shapes of deaths over time (Figure 3). Such
differences in deaths over time can greatly influence the success
of some of the interventions. For example, when considering the
number of mechanical ventilators needed at the peak of the pan-
demic, Meltzer et al initially assumed that the peak demand for
ventilators would equal approximately 13% of all patients need-
ing mechanical ventilation [8]. However, in the 30% attack rate
epidemiological curve (Figure 2), the number of cases that
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Figure 3. Standardized plots of deaths over time from different influenza pandemics compared to the epidemic curves used in the model. The different
curves illustrate that influenza pandemics can have different pattern of deaths (and, by extension, cases) over time. When the peak occurs and the shape of
the curve can greatly influence the success of some of the interventions. See main text and Technical Appendix B for further details. These curves were
standardized to the approximate 2014 US population of 310 million persons. The standardized curves of 20% and 30% attack rate (AR) refer to the curves
built for this exercise. The 2 standardized curves plotted here are those assuming an introduction of 100 infectious persons (cf, Figure 2). Note that the data
for 1957 were recorded once every 2 weeks, whereas all other plots used weekly data. See Technical Appendix B for further details.
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occur in the peak 10 days is approximately 30% of all cases. Thus,
the authors of the ventilator study conducted a sensitivity analysis
by changing from 13% to 30% the assumed number of mechan-
ically ventilated patients that occurs at the peak of a pandemic.

The articles in this supplement also incorporate other impor-
tant implicit assumptions. One of the more important is that
each article essentially assumes that the healthcare system can
absorb and/ or successfully execute any of the interventions
so modeled. For example, Biggerstaff et al provide some esti-
mates of the impact of influenza vaccination in which it was as-
sumed that 30 million persons could be vaccinated each week
[9]. The US private and public health systems, collectively or
separately, have never previously achieved such a rate (though
the authors clearly demonstrate that achieving such a rate
would have very positive public health outcomes).

Furthermore, the successful deployment and ultimate impact
of each intervention is likely to have a wide variation. Schools
can close for different lengths of time, antiviral drug prescrip-
tion and distribution may not be equally efficient in all areas,
and healthcare workers and patients may have different levels
of compliance in wearing protective gear.

Finally, readers will note that there are no reports in this collec-
tion that consider the simultaneous deployment of >2 interven-
tions. It is realistic to assume that, during the next influenza
pandemic, public health officials, healthcare providers, and other
policy makers are likely to enact several interventions at once
(eg, close schools, start dispensing antiviral medications, recom-
mend use of protective personal gear). The problem arises in
that such multi-intervention models become very scenario specific.
For example, different locales are likely to face different unmitigat-
ed epidemic curves (Figure 3). Thus, researchers who estimate the
potential impact of combining several interventions at once have to
make a very large increase in the number of assumptions. This
makes it more difficult to both generalize the results and to rapidly
understand what assumptions are relatively more important.

Despite these limitations, we believe that the benefits of using
these models outweigh the limitations. This assessment is based
on our experience of using the models and results produced to
help public health leadership reassess US influenza pandemic
planning and preparedness. In the 2013 response to the H7N9
threat, the most important outcome from policy makers seeing
the results from these models was the intense debate concerning
the inputs and assumptions. We thus believe that the methodol-
ogy used here to develop and guide the building of the models in
this collection, and the subsequent interpretations and use of the
results, can be a useful part of future public health responses.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org). Supplementary materials consist of data

provided by the author that are published to benefit the reader. The posted
materials are not copyedited. The contents of all supplementary data are the
sole responsibility of the authors. Questions or messages regarding errors
should be addressed to the author.
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APPENDIX

TECHNICAL APPENDIX A: CONTACT MATRIX
FOR EPIDEMIOLOGICAL MODEL

Standardized epidemiological curves—contact matrix: To model
the 4 epidemic curves (Figure 2), we built a simple, nonproba-
bilistic (ie, deterministic) model in which we divided the popu-
lation into 4 age groups (0-10, 11-20, 21-60, >61 years). To
measure the risk of contact and possible onward spread between
and within each age group, we used the contact matrix shown in
Table Al. For the contact matrix, we used, in the absence of rel-
evant data from the United States, data from the United King-
dom [10], collected as part of a study called the Polymod study
that collected contact data from approximately 8000 persons
living in 8 European countries [10]. Because the UK data are
split into 5-year age groups, we had to aggregate the data into
the 4 age groups used in our model. During this aggregation, we
ensured that the total number of contacts between any 2 age
groups is “equal in any direction” (eg, the number of contacts
between 0-9 years and 10-18 years is the same as those between
10-18 years and 0-9 years). We used, for this aggregation pro-
cess, the age distribution of the US population (www.
censusscope.org).

Recalibrating the Mixing Matrix Into 4 Age Groups
As noted above, the UK contact data [10] are split into 5-year age
groups, which we had to aggregate into the 4 age groups used in
our models. Furthermore, the matrix that we constructed had to
meet the condition of being symmetrical. That is, the number of
contacts from age group A to age group B should equal the num-
ber of contacts in the reverse direction.

We begin the explanation of how we built our contact matrix
by introducing some notation: The mixing matrix elements of

the published matrix [10] are denoted by 0y, i, j=1,...,m,

Table A1. Contact Matrix Used to Model Probabilities of Contact
and Potential Onward Transmission Between Age Groups (Contacts
per Day Between Each Age Group)

No. of Contacts per Day

Age Groups, y

Age group, y 0-10 11-20 21-60 >61

0-10 4.962 1.235 5.029 0.743
11-20 1.197 8.063 5.640 1.018
21-60 1.102 1.275 7.5682 1.488
>61 0.389 0.55 3.5656 2.254

Source: Adapted from Mossong et al [10] (Supplementary Table 8.4: contact
data from Great Britain).

where i, j refers to rows and columns, respectively, and m is
the number of age groups in the mixing matrix.

As the mixing matrix required has fewer age groups than that
of the published Polymod matrix [10], indexed by f, g=1,. . .,
n, then we let age group u contain narrower age groups

i=1(f) to u(f).
1. The contact rate between someone in group i and another
in group g is given by

u(g)
dg= > ;.
J=1g)

We then proceed according to the following steps:

2. If the US population distribution is such that the popula-
tion in age group i is N;, we can calculate the population-weighted
means of each of the elements d, to obtain contact rates between
groups f and g. For f=g, this calculation is simple:

()
Z?:l(f Nidy

eg = )
g )

=) Ni

3. For the elements that are off the diagonal, the calculation
becomes more complicated because we need to sum up the cor-
rect number of contacts made between each age group. The total
reported rates of contact from f to g and g to f are:

u(f)
Y= Z Nidj
i=I(f)
u(g)
Ygf = Z N,'dif.
i=l(g)

4. Theoretically, these values should be equal to one another;
however, they differ from one another when calculated from ac-
tual reported contact rates (from self-administered surveys such
as those conducted by Mossong et al [10]), and so, to ensure
that they are equal, we can average them before calculating
the final mixing-matrix elements e and eg:

7 _ Vgt Yy)
fe = 2
e = Zf e = Zf
D N ® N
Yicip Ni Yicig N

Here then, e, is the rate at which an individual in age group f
makes contacts with anyone in age group g, per unit time, as
reported in the original data (ie, per day for the original Mos-
song et al [10] data).

An example of this procedure is given below, following the
steps above, outlined theoretically:

1. We begin with the “all contacts” (ie, both conversational
and physical) matrix for Great Britain from the Polymod
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study. The elements of this matrix denote the daily number of
contacts between an individual in one 5-year age group with
those in another 5-year age group. Element (1,2), for example,
is the daily number of contacts a person aged 0-4 years has with
someone aged 5-9 years. The fill matrix is as follows:

19 0.7 04 0.2 05 0.7 0.7 08 0.2 0.2 04 0.2 0.2 0.3 0.1
1.0 66 1.1 0.7 06 08 1.0 1.4 09 0.2 03 0.2 05 05 0.2
05 1.3 69 15 03 03 05 08 1.0 0.7 0.3 04 03 0.4 03
03 03 1.0 6.7 16 0.7 04 06 09 1.2 0.7 0.3 0.2 05 0.6
05 03 02 09 26 15 0.8 06 08 0.9 09 06 05 04 0.3
0.8 0.7 04 0.7 1.3 1.8 1.0 0.7 0.7 0.9 0.9 09 0.7 0.7 0.3
1.0 1.1 06 05 09 1.2 1.7 09 1.0 0.9 09 0.6 08 0.6 0.3
1.0 1.0 1.3 1.1 08 1.0 1.5 1.5 1.3 1.1 0.8 0.7 1.0 1.0 0.2
0.6 1.0 1.1 09 0.7 09 08 1.2 1.4 1.3 0.9 0.7 0.9 0.8 0.8
03 05 06 08 1.0 09 06 0.8 1.3 1.9 0.6 0.8 0.6 0.6 0.6
03 04 04 04 04 09 06 06 0.7 1.0 0.7 1.1 06 0.6 0.6
0.3 0.2 03 0.3 04 05 0.7 05 06 05 0.8 1.2 09 09 0.3
03 03 02 0.2 02 03 04 04 05 06 04 08 0.7 09 0.6
0.1 0.1 0.1 02 0.2 0.2 0.1 0.3 0.2 0.1 0.2 0.3 04 0.7 0.6
0.1 0.2 02 0.1 0.2 02 0.2 04 05 0.7 06 08 05 0.7 156

Summing the columns of the 5-year group matrix according to
the desired group widths (eg, the first 2 columns are summed to
give a 10-year age group column) gives the following interme-
diate 15-group by 4-group matrix:

2.6 0.7 8.7 0.6
7.6 1.8 53 1.2
1.8 8.4 4.3 1.0
0.7 7.7 6.3 1.3
0.8 1.2 8.6 1.2
1.5 1.2 8.1 1.7
2.0 1.1 8.1 1.7
2.0 24 8.7 2.2
1.6 21 7.8 2.6
0.8 1.3 7.9 1.8
0.7 0.8 6.0 1.7
0.5 0.6 5.2 2.0
0.5 0.4 8.5 21
0.2 0.3 1.7 1.7
0.3 0.3 8.5 2.7

2. Next, we obtain a vector whose elements are the numbers
of individuals in each of the age groups of the original matrix
(here 5-year width groups, taken from the 2011 Great Britain
census; the age distribution should correspond closely with
the distribution that held at the time when the contact survey
was performed), and we perform a sum of the total number
of contacts to produce an aggregated age group (ie, two 5-
year age groups are aggregated into one 10-year age group).

3914 000 (eg, first row is the number of individuals in the age
group 0-4 years).

3517000

3669 000
3997000
4297000

4307 000

4126 000
4194000
4624000

4643 000
4095000
3614000

3808 000
3019000

2463 000

2006 000

1 498 000

918 000

476 000

For example, to construct the matrix element pertaining to
the total number of contacts between the 0-9-year age group
and the 0-9-year age group (ie, itself), we perform the following
sum:

3914000 * 2.6 + 3517000 * 7.6 = 36 905 600.

This is the first diagonal element of the “total contacts” ma-
trix and, again, it represents the total number of contacts made
per day between those in the 0-9-year age group.

Because diagonal elements are of course the same as their
oft-diagonal counterparts, there is no problem.

3. However, corresponding pairs of off-diagonal totals
should be the same; that is, the total number of contacts be-
tween those in the 0-9-year and 10-19-year groups should be
the same as the total number between those in the 10-19-year
and 0-9-year age groups.

Y21 =N3*d31 + N4*d41 =3 669 000*1.8 + 3 997 000*0.7 =
9402 100

Y12 =N1*d12 + N2*d22 =3 914 000*0.7 + 3 517 000*1.8 =
9070 400

36753010 8945 040 33090 700 6459320
9245500 61646310 40847730 8941760
42 080560 45753 440 257630820 63160 700
3260150 3367050 27090 960 19494940

These 2 total contact numbers are not the same and so we take
the average of them and they become the (1,2) and (2,1)
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elements of the total contact matrix. Note that the numbers in
the above matrix in these 2 positions differ slightly from those
in the Y21, Y22 calculations outlined above; this is because daily
Polymod contacts were rounded for the calculations illustrated.

4. Once we have completed this procedure for the whole ag-
gregated total contact matrix, we need to divide our total con-
tact numbers by the correct number of individuals in each age
group, to ensure we end up with a matrix that gives the number
of contacts per person per day in the relevant age group.

For example, the (1,1) element of the final matrix is the (1,1)
element of the matrix produced by step (2) divided by the total
number of individuals in the first age group (ie, the sum of the
individuals in the first two 5-year age groups=3914000 +
3517000 =7 431 000); and the (1,2) element is divided by the
same number, whereas the (2,1) element is divided by the number
in the second age group = 3 669 000 + 3 997 000 = 7 666 000. Di-
viding through gives the final matrix below (which is similar to
Table Al, accounting for rounding in the illustrative calculation).

4.9 1.2 5.1 0.7
1.2 8.0 5.6 0.8
1.1 1.3 7.6 1.3
0.4 0.7 4.9 2.1

TECHNICAL APPENDIX B: DATA AND NOTES
FOR FIGURE 3

To model the curves shown in Figure 3, we used the estimated
number of deaths from previous pandemic seasons (1918, 1957,
and 1968). We compared those to the estimated clinical cases
from the epidemiological model built for this exercise, using at-
tack rates of both 20% and 30% (ie, the curves shown in Figure 2,
main text). All deaths were based on the clinical data reported
during the specific pandemic season. However, in an effort to ob-
tain current death estimates, we extrapolated the seasonal case
values (either clinical data or number of deaths) into current-
year 2014 US cases at a total population of 310 million.

« 1918 influenza pandemic: We obtained from the source [11]
the weekly number of deaths in 1918 (per 100 000 people) for
the reported 3 different US geographic locations (West, East,
and Midwest/South). We then adjusted those number of deaths,
per 100 000, to the approximate current US population of 310
million persons (ie, multiplied each data point by 3100). This
gave us the equivalent number of deaths for the 2014 US
population.

o 1957 influenza pandemic: We obtained the total, all ages
biweekly (ie, reported every 2 weeks) number of respiratory ill-
nesses per 100 000 from Figure 5 in the report of the CDC (then
known as the Communicable Disease Center) [12]. We then ad-
justed those number of cases to the approximate current US
population of 310 million persons (ie, multiplied each data
point by 3100). This gave us the equivalent number of cases
for the 2014 US population. To obtain estimates of deaths in
equivalent 2014 US population, we multiplied the estimates of
cases by a case-fatality ratio of 0.001 (ie, 0.1% of all cases result
in death). This case-fatality estimate was taken from Table 1 in
the main text [5].

« 1968 influenza pandemic: We obtained the weekly reported
number of pneumonia-influenza deaths in 122 US cities from
Figure 3 in Sharrar et al [13]. However, the total number of
deaths recorded by Sharrar et al was only 19 450, which is no-
tably lower than what may be expected. We therefore used a
multiplier of 7.89 to adjust upward their estimates. We con-
structed this multiplier by noting that Meltzer et al’s Figure 1
[14] showed approximately 155 000 deaths for a 1968-type in-
fluenza pandemic occurring in the US population (ie, 155 000/
19 540 = 7.89).

o Attack rates: We took the 2 curves plotting the 20% and 30%
clinical case attack rates shown in Figure-2 of the main text (the 2
plots assuming 100 infectious persons start, or “seed,” the pan-
demic in the United States). We then used a case-fatality rate of
0.001 (ie, 0.1% of all cases result in death), taken from Table 1
in the main text [5]. For simplicity, we assumed a low severity
(scale of 3) of 0.1% for both attack rates to generate the number
of deaths.
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