
Sequence analysis

Reference-based compression of short-read

sequences using path encoding

Carl Kingsford1,* and Rob Patro2

1Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA

15213, USA and 2Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-4400, USA

*To whom correspondence should be addressed.

Associate Editor: Ivo Hofacker

Received on July 23, 2014; revised on January 16, 2015; accepted on January 29, 2015

Abstract

Motivation: Storing, transmitting and archiving data produced by next-generation sequencing is a

significant computational burden. New compression techniques tailored to short-read sequence

data are needed.

Results: We present here an approach to compression that reduces the difficulty of managing

large-scale sequencing data. Our novel approach sits between pure reference-based compression

and reference-free compression and combines much of the benefit of reference-based approaches

with the flexibility of de novo encoding. Our method, called path encoding, draws a connection

between storing paths in de Bruijn graphs and context-dependent arithmetic coding. Supporting

this method is a system to compactly store sets of kmers that is of independent interest. We are

able to encode RNA-seq reads using 3–11% of the space of the sequence in raw FASTA files, which

is on average more than 34% smaller than competing approaches. We also show that even if the

reference is very poorly matched to the reads that are being encoded, good compression can still

be achieved.

Availability and implementation: Source code and binaries freely available for download at http://

www.cs.cmu.edu/�ckingsf/software/pathenc/, implemented in Go and supported on Linux and

Mac OS X.

Contact: carlk@cs.cmu.edu.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The size of short-read sequence collections is often a stumbling

block to rapid analysis. Central repositories such as the NIH

Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra) are

enormous and rapidly growing. The SRA now contains 2.5 peta-

bases of DNA and RNA sequence information, and due to its size, it

cannot be downloaded in its entirety by anyone except those with

enormous resources. When select experiments are downloaded, the

local storage burden can be high, limiting large-scale analysis to

those with large computing resources available. Use of cloud com-

puting also suffers from the data size problem: often transmitting

the data to the cloud cluster represents a significant fraction of the

cost. Data sizes also hamper collaboration between researchers at

different institutions, where shipping hard disks is still a reasonable

mode of transmission. Local storage costs inhibit preservation of

source data necessary for reproducibility of published results.

Compression techniques that are specialized to short-read se-

quence data can help to ameliorate some of these difficulties. If data

sizes can be made smaller without loss of information, transmission

and storage costs will correspondingly decrease. While general com-

pression is a long-studied field, biological sequence compression—

though studied somewhat before short-read sequencing (e.g.

Cherniavsky and Ladner, 2004; Matsumoto et al., 2000)—is still a

young field that has become more crucial as data sizes have out-

paced increases in storage capacities. In order to achieve compres-

sion beyond what standard compressors can achieve, a compression

VC The Author 2015. Published by Oxford University Press. 1920
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 31(12), 2015, 1920–1928

doi: 10.1093/bioinformatics/btv071

Advance Access Publication Date: 2 February 2015

Original Paper

http://www.cs.cmu.edu/~ckingsf/software/pathenc/
http://www.cs.cmu.edu/~ckingsf/software/pathenc/
http://www.cs.cmu.edu/~ckingsf/software/pathenc/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv071/-/DC1
http://www.ncbi.nlm.nih.gov/sra
,
 —
Matsumoto etal.,2000;
) —
http://www.oxfordjournals.org/

approach must be tailored to the specific data type, and it is likely

that different compression approaches are warranted even for differ-

ent short-read experimental settings such as metagenomic, RNA-seq

or genome assembly applications.

Here, we present a new compression algorithm for collections of

RNA-seq reads that outperforms existing compression schemes.

RNA-seq experiments are extremely common, and because they are

repeated for many different conditions, the number of future experi-

ments is nearly unbounded. Among the SRA’s 2500 terabases, there

are over 72 304 experiments labeled ‘RNA-seq’ that contain short-

read sequences of expressed transcripts. While the compression

technique we describe here was motivated by, and optimized for,

RNA-seq data, it will work for any type of short read data.

Existing short-read compression approaches generally fall into

categories: reference-based schemes (Campagne et al., 2013; Fritz et

al., 2011; Li et al., 2014) attempt to compress reads by aligning

them to one or more known reference sequences and recording edits

between the read and its mapped location in the reference. De novo

compression schemes (Adjeroh et al., 2002; Bhola et al., 2011;

Bonfield and Mahoney, 2013; Brandon et al., 2009; Burriesci et al.,

2012; Cox et al., 2012; Deorowicz and Grabowski, 2011; Hach

et al., 2012; Jones et al., 2012; Kozanitis et al., 2011; Popitsch and

von Haeseler, 2013; Rajarajeswari and Apparao, 2011; Tembe

et al., 2010) attempt to compress without appeal to a reference.

SCALCE (Hach et al., 2012) is one of the most effective de novo

compressors. It works by reordering reads within the FASTA file to

boost the compression of general purpose compressors.

Reference-based schemes require a shared reference to be trans-

mitted between all parties who want to decode the data. Most

reference-based schemes (e.g. Campagne et al., 2013; Fritz et al.,

2011; Jones et al., 2012; Li et al., 2014) focus on compressing align-

ments between the reads and a set of reference sequences. As such,

they work by compressing BAM files, which are the result of align-

ment tools such as Bowtie (Langmead et al., 2009). The most-used

such compression tool is CRAM (Fritz et al., 2011). The limitation

of these approaches is that they must encode information in the

BAM file that can be recreated by re-running the alignment tool. In

fact, such BAM compressors may increase the raw size of the data

since all the alignment information must be preserved. Another ref-

erence-based compressor, fastqz (Bonfield and Mahoney, 2013), at-

tempts to compress sequences directly using its own alignment

scheme without first creating a BAM file.

We present a scheme that lies somewhat in the middle of these

two extremes: we exploit a shared reference—a compressed

transcriptome—but we do no aligning. The reference serves only to

generate a statistical, generative model of reads that is then em-

ployed in a fixed-order context, adaptive arithmetic coder. The

coder is adaptive in the sense that as reads are encoded, the model is

updated in such a way that the decoder can reconstruct the updates

without any additional information beyond the initial compressed

transcriptome. In this way, if the read set differs significantly from

the reference transcriptome, the statistical model will eventually

converge on this new distribution, resulting in improved compres-

sion. We present a scheme that updates the model in a way that is

robust to sequencing errors, which are a common source of poor

compression. By sitting between pure reference-based compression

and de novo compression, the path encoding scheme gains flexibility

and generality: the same scheme works reasonably well even when

the provided reference is a poor match for the sample but is signifi-

cantly improved with better shared data.

The arithmetic coder uses a fixed-length context to select a

conditional distribution for the following base. This scheme is

efficient but has the drawback that at the start of each read, there is

insufficient context to apply the model. We solve this problem with

a new approach. We encode the starts of all the reads in a single,

compact data structure called a bit tree. The bit tree is a general

scheme for storing sets of small, fixed length (say, <30 nt)

sequences. It is a simplification of other serial encoding schemes

such as S-trees (de Jonge et al., 1994) and sequence multiset

encoding (Steinruecken, 2014).

Taken together, the bit tree for encoding the read starts and the

adaptive, context-aware arithmetic coding for the remainder of

the read, produce files that are on average <66% of the size of those

produced by a current state-of-the-art de novo encoder, SCALCE

(Hach et al., 2012). The size reduction of these files is often larger

than the space needed to transmit the reference, and thus the over-

head of transmitting the reference is recovered immediately. Our

approach also produces smaller files compared with reference-based

schemes. Its files are on average 33% the size of those produced by

CRAM (Fritz et al., 2011) and on average 59% the size of those pro-

duced by fastqz (Bonfield and Mahoney, 2013). These are very large

improvements in compression, a field where improvements of sev-

eral percent are often difficult to achieve.

We call the resulting approach path encoding because, in the

methods below, we draw a parallel between the design of our arith-

metic coder and the problem of efficiently encoding paths in directed

graphs, which is a problem that arises in genome assembly (Pevzner

et al., 2001) and metagenomic analyses (Iqbal et al., 2012). The bit

tree scheme for storing sets of short sequences (kmers) is of inde-

pendent interest as the need to transmit and store collections of

kmers is also increasingly common in de Bruijn-graph-based genome

assembly, metagenomic classification (Wood and Salzberg, 2014)

and other analyses (Patro et al., 2014).

2 Algorithm

2.1 Overview
Our compression approach is composed of several different encod-

ing techniques that are applied to the input reads as a set. First, the

reads are reverse complemented based on a heuristic to determine

which orientation matches the initial reference better (Section 2.6).

The initial k letters of each read are stored in a bit tree data structure

along with the counts of their occurrences (Section 2.3). These initial

k letters of each read are called the read head. The reads are then

reordered to place reads with the same heads next to one another.

Finally, the remainder of each read (called the read tail) is encoded

using an adaptive arithmetic coding scheme (Section 2.4) inspired by

the path encoding problem (Section 2.2).

2.2 The path encoding problem
We can capture much of the information in a reference transcrip-

tome using a graph G that has a node for every kmer that occurs in

a transcript and an edge (u, v) between any two kmers u and v if v

follows u, overlapping it by k�1 characters, in some transcript.

This is a de Bruijn graph, except it is derived from several strings ra-

ther than a single string. A read r, if its sequence occurs in the tran-

scriptome, corresponds to a path in G, and conversely there is only

one path in G that spells out r. Therefore, r can be encoded by spe-

cifying a path in G by listing a sequence of nodes. This leads to a

very general problem:

Problem (Path encoding) Given a directed graph G, encode a col-

lection of paths P1; P2; . . . ;Pn, each given as an ordered sequence

of nodes of G, using as little space as possible.

Compressing short reads using path encoding 1921

,
2,500
,
``
''
(
al.,2014;Campagne et
3
(Tembe etal.,2010;
Kozanitis
Deorowicz and Grabowski,2011;
Jones etal.,2012;Hach etal.,2012;
Rajarajeswari and Apparao,2011;
al.,
Bhola
Li etal.,2014;
2
 —
 —
 nucleotides
less than
),
 –
,

Our compression scheme uses one system for encoding the first

node of each read path Pi (the read head) and another system for

encoding the remaining nodes in the path (the read tails). We

describe each below.

2.3 Encoding the starts of the reads with a bit tree
Let T be the kmer trie defined as follows. T has a root node that has

four children, and each edge from the root node to a child is labeled

by a different nucleotide in fA;C;G;Tg. Each of these children

themselves has four similar children, with edges for each of the nu-

cleotides. This continues until every path from the root to a leaf

node has exactly k edges on it. In this way, a complete, 4-ary tree

of depth k is constructed such that any path from the root to a leaf

spells out a unique kmer, and every possible kmer corresponds to

some such path in T. The set of kmers K that appear at the start of

some read corresponds to a subset of those possible paths, and we

can construct a subtree TjK from T by removing all edges that are

not used when spelling out any kmer in K. Knowing TjK allows us to

reconstruct K precisely: K is those kmers spelled out by some path

from the root to a leaf in TjK.

TjK can be encoded compactly by performing a depth-first search

starting at the root, visiting each child of every node in a fixed order

(say A then C then T then G) and emitting a 1 bit whenever an edge

is traversed for the first time and a 0 bit if we attempt to go to a child

that does not exist. This bit stream is then compressed using a gen-

eral purpose compressor, gzip (Gailly, J. and Adler, M. http://www.

gzip.org). TjK can be reconstructed from this stream of 0s and 1s by

performing a depth-first search on T traversing an edge whenever a

1 bit encountered but pruning subtrees whenever a 0 bit is read. K is

then reconstructed as the set of kmers corresponding to the leaves

that we encountered.

The trie T never need be actually built to perform the encoding

or the decoding. Rather, a sorted list of the kmers is sufficient for

simulating the traversal of the trie to encode, and decoding only ever

needs to implicitly construct the part of the trie that is on the current

depth-first search path. In practice, encoding and decoding of very

large collections of kmers takes very little time or memory.

The same kmer may start many reads, but the encoding of TjK
only records which kmers were used, not the number of times each

was used. To store this, we write out a separate file called the

count file with the count of each kmer in TjK in the order that the

kmers will be visited during the decoding of TjK. This file stores

counts as space-separated ASCII integers, and the entire file is com-

pressed using the gzip algorithm. TjK also does not record the order

in which the kmers were used as read heads, so we reorder the read

set to put reads with the same head adjacent to one another in the

same order as their starts will be encountered during the decoding

of TjK.

This data structure is essentially the same as an S-tree (de Jonge

et al., 1994) specialized to kmer tries, except that no data is stored

at the leaves, and because the length of every sequence is a known

constant k we need not store any information about the (always

nonexistent) children of nodes at depth k. It is a simplification of

Steinrucken (Steinruecken, 2014) since counts are stored only for

the leaves.

2.4 Arithmetic coding of read tails
Arithmetic coding (Moffat et al.,1998; Rissanen and Langdon,

1979; Witten et al., 1987) compresses a message by encoding it as

a single, high-precision number between 0 and 1. During the

encoding, an interval [a, b] is maintained. At the start, this interval

is [0, 1], and at each step of the encoding, it is reduced to a subin-

terval of the current interval. At the end, a real number within the

final interval is chosen to represent entire message. The interval is

updated based on the probability of observing each symbol in a

particular context. For path encoding, we store a probability distri-

bution puð�Þ associated with each node u in G on its outgoing edges

such that puðvÞ gives an estimate for the probability that edge (u, v)

will be the one used by a path leaving u. We also give the outgoing

edges of u an arbitrary, fixed order hv1; . . . ; vdðuÞi, where d(u) is

the out-degree of u (when encoding DNA or RNA, d(u) is always

4). Using this ordering, we can compute the cumulative distribu-

tion p0uðvjÞ ¼
P

i<j puðviÞ. The probability distributions puð�Þ for

each node in G represent the statistical generative model that en-

codes the information about which sequences are more or less

likely.

Let Pi ¼ hu1; . . . ; u‘i be a sequence of nodes of the path Pi that

we are encoding. The first node u1 is encoded using the bit tree ap-

proach described above. Suppose we have encoded u1; . . . ; uj�1 and

the current interval is ½a;b�. To encode uj, we update the interval to:

aþ ðb� aÞp0uj�1
ðujÞ; aþ ðb� aÞ

�
p0uj�1
ðujÞ þ puj�1

ðujÞ
�h i
: (1)

This chooses a subinterval of ½a;b� that corresponds to the inter-

val for uj in p0uj�1
. The intuition for why this approach achieves com-

pression is that it requires fewer bits to specify a number that falls in

a high probability (large) interval than in a low probability (small)

interval. If we choose the distributions puð�Þ well so that common

edges are given high probability, we will use few bits to encode fre-

quently occurring symbols.

In practice, Equation (1) is not used directly because it would re-

quire infinite precision, real arithmetic which is not available on dig-

ital computers. Rather, an approach (Moffat et al., 1998) that uses

only finite, small precision, integer arithmetic and that rescales the

current interval when necessary is used. This practical arithmetic

coding has achieved state-of-the-art compression in many

applications.

2.5 Initializing and updating the sequence generative

model
The probability distributions puð�Þ for each node u specify what we

consider to be a high-probability sequence (which is equivalent to a

high probability path). It is here that we can use shared, prior infor-

mation to influence the encoding. These distributions need not be

constant—so long as the decoder can reconstruct any changes made

to the distributions, we can adapt them to observed data as we see

it.

We derive puðvÞ using counts cuðvÞ, which are set according to:

cuðvÞ ¼

10ðnuv þ 2Þ if ðu; vÞ occurs in the reference

10nuv if nuv�2 and ðu; vÞ 62 the reference

1 otherwise

8>><
>>:

(2)

where nuv is the number of times edge (u, v) was observed in the

read paths that have been encoded so far. This expression for cuðvÞ
requires an edge (u, v) to either occur in the reference or be used at

least twice in a read path before it is given the larger weight. This is

to reduce the impact of sequencing errors that are frequent, but un-

likely to occur twice (the þ2 makes kmers in the reference start as if

we had seen them twice, and this is the only place where the refer-

ence is used). The 1 in the third case of Equation (2) acts as a pseu-

docount for edges that have not yet been observed, and the 10 in the

first two cases sets the relative weight of observations versus this

1922 C.Kingsford and R.Patro

.
ve
http://www.gzip.org
http://www.gzip.org
(Witten
7
Moffat
9
,
.
.
.
 —
,

pseudocount (changing this weight within a reasonable range has lit-

tle effect on the compression—see Supplementary Table 6). We com-

pute puðvÞ ¼ cuðvÞ=
P

w cuðwÞ.
During the encoding of reads, it is possible that we encounter a

kmer that we have never seen before. In this case, we encode the

base following this kmer using a default probability distribution

derived from a distinct count distribution c0ðbÞ that gives the num-

ber of times we encoded base b using this default distribution. After

the first time we see a new kmer, we add it to the graph G and on

subsequent observations, we treat it using Equation (2).

An alternative way to view the arithmetic coding scheme above

is that the probability distribution is provided by a fixed-order (k)

Markov chain for which the transition probabilities are updated as

edges are traversed. The k preceding bases provide a context for esti-

mating the probability of the next base. The read heads provide the

initial context for the Markov chain. This view also motivates

the need to handle sequence errors and (less common) sequence vari-

ants effectively, because an error in a read will produce an incorrect

context for k bases, resulting in decreased compression.

2.6 Other considerations
The reference model only includes the forward strand of the tran-

script but, in an unstranded RNA-seq protocol, reads may come

from either strand. We implement a heuristic for selecting whether

or not to reverse complement the input read. To do this, we esti-

mate whether the forward read r or its reverse complement rc(r)

will produce a smaller encoding by counting the number of times

adjacent kmers in the read are both present in the reference for

both r and rc(r). If rc(r) has a higher number of observed transi-

tions in the statistical model, we reverse complement the read be-

fore encoding. The decision to reverse complement reads is made

for all reads at the beginning of compression before any reads are

encoded and before the read starts are encoded. We often do not

need to store whether a read was flipped or not since in an

unstranded protocol the strand that was sequenced and recorded

in the file was arbitrary to begin with. However, if it is important

to store the string in the direction it was originally specified, a sin-

gle bit per read is recorded indicating whether the read was reverse

complemented.

Due to biases in RNA-seq, and due to pooling of technical repli-

cates, it is often the case that the exact same read sequence is listed

more than once in a read file. To more compactly encode this

situation, we check whether the set of reads that start with a given

kmer m consists entirely of d duplicates of the same sequence. In this

case, we record the number of reads associated with m in the count

file as �d rather than d, and we only store one of the tails in the

path file.

To simplify the statistical model, any Ns that appear in the input

file are translated to As upon initial input. This is a strategy taken

by other compressors (Hach et al., 2012) because the lowest quality

value always indicates an N and all Ns must have the lowest quality

value. If quality scores are not stored with the sequences and the lo-

cations of the Ns are needed, a separate compressed file is output

with their locations.

Because reads are reordered, the two ends of a mate pair cannot

be encoded separately if pairing information is to be preserved.

Instead, when dealing with paired-ended RNA-seq, we merge the

ends of the mate pair into a longer read, encoding this ‘read’ as

described above. If the library was constructed with the mate pairs

from opposite strands, one strand is reverse complemented before

merging so that the entire sequence comes from the same strand in

order to better match the generative model described above. This

transformation can be undone when the reads are decoded.

2.7 Implementation
Software, called kpath, implementing the path encoding and decod-

ing method was written in the Go programming language, using

a translation of the arithmetic coding functions of Moffat et al.

(1998). The software is parallelized and can use several threads to

complete various steps of the encoding and decoding algorithms

simultaneously. Parallelization is used for the input, output and pre-

processing steps, but arithmetic coding itself is not easily paralleliz-

able because information from all previous reads may be needed to

decode the current read. To limit memory usage, the counts cuð�Þ
described above are stored in 8-bit fields with a mechanism to hold

the few kmers with counts �255. This results in a small loss of com-

pression effectiveness compared with 32-bit fields but large im-

provements in running times for the larger files.

2.8 Comparison with other methods
SCALCE (Hach et al., 2012) version 2.7 was run with its default

parameters, using -r for paired-end read sets. The file sizes reported

are the sizes of the .scalcer files it produces, which encode the se-

quence data (except the positions of the Ns). The program fqzcomp

(Bonfield and Mahoney, 2013) version 4.6 was run using the recom-

mended parameters for Illumina data (-n2 -s7þ -b -q3). The file

sizes used were the sizes of only the portion of its output file that

encodes for the sequences, as printed by fqzcomp. Running fqzcomp

with -s8 instead of -s7þ produced files that were still larger than

SCALCE. For paired-end reads, fqzcomp often achieved better com-

pression if it was provided with a FASTQ file that contained both

ends merged into a single read, and so sizes for compressing these

files (the same as provided to kpath) were used. Despite this,

fqzcomp always produced files that were larger than SCALCE, and

so only the SCALCE numbers are reported. Both SCALCE and

fqzcomp are de novo compressors. Experiments with the de novo ver-

sion of fastqz always produced larger files than fqzcomp and so its re-

sults are not reported here. The reference-based version of fastqz

(Bonfield and Mahoney, 2013) version 1.5 was provided the same ref-

erence as used with path encoding (a multi-fasta file with transcripts),

processed with the fapack program. The file sizes reported for fastqz

are the sum of the sizes of its output files .fxb.zpaq and .fxa.zpaq

that encode the sequences (except the Ns).

CRAM (Fritz et al., 2011) is designed for compressing BAM

files. To adapt it to compress sequences, read files were aligned with

Bowtie (Langmead et al., 2009) using –best -q -y –sam to an

index built from the same transcriptome as used for path encoding.

Quality values, sequence names and sequence descriptions were

stripped from the file (fields 1 and 11), MAPQ values were all set to

255, and the RNEXT and PNEXT fields were set to ‘*’ and ‘0’ re-

spectively. The resulting simplified SAM file was converted to a

sorted BAM file using samtools (Li et al., 2009). This file was then

encoded using CRAM, and the reported file size is that of the result-

ing .cram file. (Leaving the MAPQ, RNEXT and PNEXT fields un-

changed resulted in compressed files of nearly identical size.)

3 Results

3.1 Path encoding effectively compresses RNA-seq

reads
We selected seven short-read, RNA-seq datasets of various read

lengths and number of reads. Both single- and paired-end protocols

Compressing short reads using path encoding 1923

 —
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv071/-/DC1
.
.
since
 –
``
''
(Moffat etal.,
,
.
,
``*''
``0''
7
data sets

are represented among the sets. One dataset, SRR037452, was

chosen because it is a benchmark dataset for comparing RNA-seq

abundance estimation algorithms (e.g. Patro et al., 2014; Roberts

and Pachter, 2013). Three sets related to human embryo develop-

ment were chosen as a representative set of related experiments that

one might consider when investigating a particular biological ques-

tion. A fifth set represents a larger collection of single-end reads of a

human cell line. Finally, to assess the effect of using a human tran-

scriptome as a reference when encoding other species, RNA-seq

experiments from Mus musculus (SRR689233) and the bacterium

Pseudomonas aeruginosa (SRR519063) were included. The read

sets are a mix of paired- and single-end protocols, with read lengths

ranging from 35 to 90 bp. Taken together, these are representative

set of RNA-seq read sets.

Path encoding with k¼16 is able to reduce these files to

12–42% of the size that would be achieved if the file was naı̈vely

encoded by representing each base with 2 bits (Table 1). The 2-bit

encoding is approximately one-fourth the size of the sequence data

represented as ASCII. (It is approximate because the ASCII encoding

includes newline characters separating the reads.) Thus, path encod-

ing reduces files to 3–10.5% of the original, raw ASCII encoding.

For the human datasets, this is on average 34% smaller than

the encoding produced by the SCALCE compression scheme (Hach

et al., 2012), a recent, highly effective de novo compression ap-

proach. This is also smaller than the de novo compressor fqzcomp

(Bonfield and Mahoney, 2013), which produces files that are larger

than those produced by SCALCE.

When encoding these files, a human reference transcriptome

derived from the hg19 build of human genome was used to prime

the statistical model. This transcriptome contains 214 294 tran-

scripts and occupies 96 446 089 bytes as a gzipped FASTA file. This

reference file is required to decompress any files that were com-

pressed using it, but because the same reference transcriptome can

be used by many RNA-seq experiments, the cost of transmitting the

reference can be amortized over the many files encoded with it. The

cost of transmitting or storing the 92 Mb of the reference can be

recovered after <1 to 6.12 transmissions of a compressed file

(Table 1, last column). Often the size of the reference transcriptome

plus the encoded file is less than the size required by previous pure

de novo compression schemes—this means that path encoding can

also be seen as a very effective de novo encoder if the reference is

always transmitted with the file, with the option to become a refer-

ence-based compressor if several files share the same reference.

Even though this reference contains only human transcripts, it is

still effective when encoding RNA-seq experiments from

other organisms. For mouse data (SRR689233), for example, the

compression is on par with that achieved for the human datasets.

For the very different bacterium P. aeruginosa (SRR519063),

the compression gain over de novo encoding is still substantial

(Table 1, last row). Thus, a single reference can provide enough in-

formation to effectively encode RNA-seq reads from many organ-

isms, further allowing its size to be amortized across collections of

read sets.

When compared against a recent reference-based encoding

scheme, fastqz (Bonfield and Mahoney, 2013), path encoding fares

well, consistently producing smaller files than the mapping

approach taken by fastqz. In contrast to path encoding, using a mis-

matched reference for fastqz results in files that are larger than if no

reference were used at all (Table 1, last 2 rows). This is because

nearly no reads map sufficiently well to the reference. This shows

that the non-mapping-based reference scheme implemented by

path encoding is both more effective and more robust than

mapping-based schemes, which require good matches along a read

to benefit from the reference and which also spend a lot of

their encoding recording the edits between the reference and the

mapped read.

Much of the previous work on reference-based compression has

focused on compressing alignment BAM files. The archetypical ex-

ample of this is CRAM (Fritz et al., 2011). BAM files contain more

than sequences. They normally include quality values, sequence de-

scriptions, etc. and may contain multiple alignments for each se-

quence. To fairly compare sequence compression schemes, we

generated BAM files with a single, best alignment for each read to

the reference transcriptome, and then stripped extraneous fields

(including quality values and sequence names) from the resulting

BAM file by setting them to the appropriate ‘empty’ value. These

streamlined BAM files were then compressed with CRAM (Table 1).

In all cases, path encoding produced a much smaller file than

CRAM. This is not entirely fair to CRAM, since it attempts to pre-

serve all alignment information in the BAM files, and it also allows

for random access to records in compressed file, which path encod-

ing does not. However, for raw compression and transmission, path

encoding sequences directly is much more effective than compress-

ing a BAM file. Again, when the reference is mismatched to the se-

quence (Table 1, last two rows), compression of the CRAM

mapping-based approach is reduced substantially.

3.2 Encoding of the read tails represents the bulk of the

compressed file
A path encoded file consists of several parts (Fig. 1). The bulk of the

space is used to encode the ends of reads using a context-dependent

arithmetic coding scheme (see Section 2). The first few characters

(here 16) of each read are encoded via a bit tree—a data structure

that encodes a set of kmers—along with counts for how many

reads begin with each kmer (‘read head counts’ in Fig. 1). Together,

Table 1. Compressed sizes (in bytes) using various methods

Read set Org.a S/Pb 2-Bit SCALCE fastqz CRAM PathEnc No. Trans.c

SRR037452 (Bullard et al., 2010) H.s. S 102 487 744 66 630 706 80 465 928 156 554 323 43 105 624 4.10

SRR445718 (Yan et al., 2013) H.s. S 823 591 625 252 989 168 238 180 853 375 901 891 154 960 810 0.98

SRR490961 (Yan et al., 2013) H.s. S 1 228 191 700 300 176 711 316 478 709 518 183 711 170 613 303 0.74

SRR635193 (Kim et al., 2012) H.s. P 736 178 787 294 524 283 272 862 515 366 789 369 187 256 974 0.90

SRR1294122 (Friedli et al., 2014) H.s. S 1 001 574 429 299 329 267 285 710 714 369 774 561 187 808 066 0.86

SRR689233 (Xue et al., 2013) M.m P 738 357 525 233 812 737 266 126 542 929 644 204 167 659 551 1.46

SRR519063 (Winsor et al., 2011) P.a P 688 509 129 100 403 786 183 275 880 714 193 963 84 642 682 6.12

aOrganism (H.s., human; M.m., mouse; P.a., Pseudomonas aeruginosa).
bP indicates paired-end reads; S indicates single-end reads.
cNumber of transmissions before size of the reference is recovered.

1924 C.Kingsford and R.Patro

data set
data set
 =
% –
two
1/4th
% –
data sets
,
,
,
,
 —
data sets.
Pseudomonas
``
''
Figure
Methods).
 —
 —
(``
''
Figure

the read tail encoding, the bit tree, and the counts represent the

information needed to reconstruct the original reads if we do not

care about recording the locations of ‘N’ characters or the orienta-

tion of the reads. Since SCALCE and 2-bit encoding also do

not record the location of ‘N’s and read orientation is often arbi-

trary, the sum of the sizes of these three parts are what is reported in

Table 1.

N locations and the original read orientations can optionally be

recovered using the ‘N locations’ and ‘Flipped bits’ parts of the

compressed output. The sizes of these later two parts are a tiny frac-

tion of the overall size and so the compression effectiveness does not

qualitatively change if their sizes are included (Fig. 1). While smarter

encoding schemes may reduce the size of these parts of the

path encoded file [for example by performing a bit-level Burrows-

Wheeler transformation (Burrows and Wheeler, 1994) of the bit

vector], they do not represent a large fraction of the output and so

improvements to them will likely have a small effect.

3.3 Priming the statistical model results in improved

compression
The availability of the reference typically results in a 15–25% re-

duction in file size for human read sets, a non-trivial gain in com-

pression (Fig. 2A). For example, for a file with 3.8 gigabases of

sequence (SRR1294122), path encoding with the reference produces

an encoded file of 0.17 GB, while starting with a uniform,

empty statistical model produces a file of 0.22 GB. For non-human

data, the gain of using a human reference is naturally smaller. For

mouse reads, the reference yields only a � 2% gain in compres-

sion—still a non-trivial size reduction in the context of large files,

but much smaller than with a well-matched reference. For the bac-

terial data, the reference provides little help, but does not hurt com-

pression, unlike the similar situation with mapping-based

approaches.

Although the reference provides a starting point for the statistical

model, the arithmetic coding we use is adaptive in the sense that

read patterns observed frequently during encoding will become

more efficiently encoded as they are observed. By disabling these

dynamic updates, we can quantify their benefit (Fig. 2B), which is

substantial. The dynamic updating for the larger human files results

in a encodings that are 42–92% the size of those produced by the

non-dynamic model. For non-human data, where the initial model is

likely to be most wrong, the adaptive coding is essential for good

compression, resulting in a file that is 4.1 (mouse) or 7.0 (P. aerugi-

nosa) times smaller. Thus, even with a poor initial model, a good

model can be constructed on the fly by adapting the probabilities to

the reads as they are processed.

These results show that path encoding provides a unified frame-

work for good compression: when a good reference is available, it

can be exploited to gain substantially in compression. When a refer-

ence is mismatched to the reads being encoded, the initial model is

poor but can be improved via adaptive updates.

3.4 Effect of heuristics for reverse complementation

and encoding duplicate reads, and of the choice of

context size
Reverse complementing reads also provides a significant gain,

particularly for reads that match the reference (Fig. 2A). This is

Fig. 1. Sizes of the various components of the compressed files. ‘Read tails’

are the portion of the reads encoded using arithmetic encoding. ‘Bit tree’

gives the storage used by the bit tree for encoding the read starts (the first

k¼16 letters of each read). ‘Read head counts’ is the space taken to store the

number of reads with each start. ‘N locations’ is the space to store the loca-

tion of input Ns that were changed to As upon encoding. ‘Flipped bits’ gives

the space needed to record (in a compressed format) a single bit for each

read indicating whether the read was reverse complemented

A

B

Fig. 2. Performance when several features of the path encoding scheme are

disabled. All values are given as percentage over the encoding size for the

encoding that uses all the features. (A) ‘No reference’ starts with an empty

transcriptome reference. ‘No reverse complement’ disables the reverse com-

plementation of the reads. ‘No duplicate handling’ disables the recognition

and special encoding of exact duplicate reads. (B) ‘No dynamic updates’ gives

the compression when the probabilities of the statistical model are not

updated as reads are encoded

Compressing short reads using path encoding 1925

``N''
two
``N''s
``
''
``
''
Figure
(
),
% –
Figure
gigabytes,
gigabytes.
 —
Figure
% –
Figure

because the reverse complementation allows the read to agree more

with the statistical model. Recognizing some duplicate reads also

leads to a modest improvement in encoding size (Fig. 2A). The im-

provement based on handling duplicate reads is small both because

there are relatively few exact duplicate reads and because—in the

interest of speed—we only tag a read as a duplicate if every read

with the same first 16 bases is identical. It is possible that, in more

redundant read sets, better handling of duplicate reads could result

in a bigger gain.

Path encoding has one major parameter: the kmer length k used

to construct the nodes of the context graph (see Section 2). A bigger

k uses more of the preceding string as context to set the probability

distribution for the next base, but at the same time bigger ks make

the effect of sequencing errors last longer since the sequence error af-

fects the context for k bases. In addition, a larger k requires more

memory resources to encode and decode. We find that k¼16 is the

point at which encoding is most effective (Fig. 3). This is also the

point at which a kmer can fit in a single 32-bit computer word, lead-

ing to an efficient use of memory. While longer k does reduce the

size of the encoding of the read ends (both because the read ends are

shorter and because a longer context is used), the size of the bit tree

encoding the read starts grows more quickly than the savings

gained.

3.5 Encoding and decoding path-encoded files is fast
Running times and memory usage for all the tools discussed here are

reported in Supplementary Tables 1–4. Path encoding the entire

dataset here takes 2.45 h, including all read preprocessing. This is

nearly identical to the running time for running bowtie and CRAM

on the same dataset (2.44 h; Scramble (Bonfield, 2014) is a faster im-

plementation of CRAM that may improve this running time, al-

though the slowest step in compressing with CRAM is the read

alignment). Decoding with path encoding is generally faster, taking

2.10 h for the files in Table 1. When a larger amount of memory is

available, the prototype implementation provides a -bigmem option

that reduces decoding time by 40% (Supplementary Table 5). While

these running times are practical, an important direction for future

work is improving the speed and memory usage of the technique.

4 Discussion

We have provided a novel encoding scheme for short read sequence

data that is effective at compressing sequences to 12–42% of

the uncompressed, 2-bit encoded size. To do this, we introduced the

novel approach of encoding paths in a de Bruijn graph using an

adaptive arithmetic encoder combined with a bit tree data structure

to encode start nodes (see Section 2 for a description). These

two computational approaches are of interest in other settings as

well. Path encoding achieves better compression than both de novo

schemes and mapping-based reference schemes. Because the refer-

ence for the human transcriptome is small (92 Mb) compared with

the size of the compressed files, the overhead of transmitting the

reference is recovered after only a few transmissions. In addition, al-

though it would be possible to shrink the reference using a custom

format, in our current implementation the reference is intentionally

chosen to be merely a gzipped version of the transcriptome—a file

that most researchers would have stored anyway.

Path encoding is more general than reference-based schemes be-

cause we have more flexibility in choosing how to initialize the stat-

istical model with the reference sequence. For example, the reference

could be reduced to simple context-specific estimates of GC content.

This will naturally lead to worse compression but will also eliminate

most of the need to transmit a reference. Technology-specific error

models could also be incorporated to augment the reference to better

deal with sequencing errors. In addition, single nucleotide poly-

morphism (SNP) data from a resource such as the HapMap project

could be included in the reference to better deal with genomic vari-

ation. Framing the problem using a statistical generative model as

we have done here opens the door to more sophisticated models

being developed and incorporated.

Another source of flexibility is the possibility of lossy sequence

compression. Path encoding naturally handles with errors since they

will have low probability because they are typically seen only once

(or a few times) in contrast to correct kmers that are more frequently

seen. While encoding, a base that has low probability in a particular

context could be converted to a higher probability base under the

assumption that the low probability base is a sequencing error.

Implementation of this technique does indeed reduce file sizes sub-

stantially, but of course at the loss of being able to reconstruct the

input sequence. While lossy compression may be appropriate for

some analyses (such as isoform expression estimation) and error

correction can be viewed as a type of lossy encoding, because we are

interested in lossless compression, we do not explore this idea

more here.

An interesting direction for future research is to explore the use

of the reference to improve the encoding of the read heads, using for

example, a Huffman encoding-like scheme. Another important

direction for future work is to reduce the time and memory require-

ments of the implementation of path encoding. Part of the reason

for the higher computational demands is use of dynamic arithmetic

encoding, which is needed because the probabilities of kmers

need not be stationary. For example, in a file with many As in the

first reads but many Cs in the later reads, the dynamic AC will adapt

to this non-stationary distribution, leading to improved compres-

sion. Another direction for future work is to apply similar ideas

to genomic reads, where the reference is much larger.

A recent line of work (e.g. Daniels et al., 2013; Janin et al.,

2014; Loh et al., 2012) aims at producing searchable, compressed

representations of sequence information. Allowing sequence search

limits the type and amount of compression that can be applied and

requires some type of random access into the encoded sequences.

Arithmetic encoding does not generally allow such random access

decoding because the constructed interval for a given symbol

depends on all previously observed symbols. However, decompres-

sion with our path encoding scheme can be performed in a streaming

Fig. 3. Effective of kmer length. File size, represented as a fraction of the 2-bit

encoding size, using various kmer lengths k.

1926 C.Kingsford and R.Patro

Figure
 —
 —
Methods
 =
Figure
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv071/-/DC1
data set
hours
data set
hours
hours
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv071/-/DC1
% –
two
Methods
Since
 —
since
.
Loh etal.,2012;
4

manner: the encoded file is read once from start to finish, and the

decoder produces reads as they are decoded. This would allow reads

to be decoded as they are being downloaded from a central

repository.

The other dimension of compressing short-read data is storing

the quality values that typically accompany the reads. Path encoding

does not attempt to store these quality values as there are other,

more appropriate approaches for this problem (Cánovas et al.,

2014; Hach et al., 2012; Ochoa et al., 2013; Yu et al., 2014). Path

encoding can be coupled with one of these approaches to store both

sequence and quality values. In fact, in many cases, the quality val-

ues are unnecessary and many genomic tools such as BWA (Li and

Durbin, 2009) and Sailfish (Patro et al., 2014) now routinely ignore

them. Yu et al. (2014) showed that quality values can be aggres-

sively discarded and without loss of ability to distinguish sequencing

errors from novel SNPs. Thus, the problem of compression of qual-

ity values is both very different and less important than that of

recording the sequence reads.

Our main contribution is the design of a high-performing com-

pression scheme. We hope that our compression results will spur

further reference-based read compression work in the new direction

that we propose here: mapping-free, statistical compression with

accompanying supporting pre-processing.

Acknowledgements

We would like to thank Darya Filippova, Emre Sefer, and Hao Wang for use-

ful discussions relating to this work and for comments on the manuscript.

This work was primarily completed while R.P. was at the Lane Center at

Carnegie Mellon University.

Funding

This work is funded in part by the Gordon and Betty Moore Foundation’s

Data-Driven Discovery Initiative through Grant GBMF4554 to Carl

Kingsford. It has been partially funded by the US National Science

Foundation [grant numbers CCF-1256087, CCF-1319998]; and US National

Institutes of Health [R21HG006913, R01HG007104]. C.K. received support

as an Alfred P. Sloan Research Fellow.

Conflict of Interest: none declared.

References

Adjeroh,D. et al. (2002) DNA sequence compression using the Burrows-

Wheeler transform. In: Procceeding IEEE Computer Society Bioinformatics

Conference. Vol. 1, IEEE Computer Society, Washington, DC,

pp. 303–313.

Bhola,V. et al. (2011) No-reference compression of genomic data stored in

FASTQ format. In: IEEE International Conference on Bioinformatics and

Biomedicine. IEEE Computer Society, Washington, DC, pp. 147–150

Bonfield,J.K. (2014) The Scramble conversion tool. Bioinformatics, 30,

2818–2819.

Bonfield,J.K. and Mahoney,M.V. (2013) Compression of FASTQ and SAM

format sequencing data. PLoS One, 8(3), e59190.

Brandon,M.C. et al. (2009) Data structures and compression algorithms for

genomic sequence data. Bioinformatics, 25, 1731–1738.

Bullard,J. et al. (2010) Evaluation of statistical methods for normalization and

differential expression in mRNA-Seq experiments. BMC Bioinformatics,

11, 94.

Burriesci,M.S. et al. (2012) Fulcrum: condensing redundant reads from high-

throughput sequencing studies. Bioinformatics, 28, 1324–1327.

Burrows,M. and Wheeler,D.J. (1994) A block sorting lossless data compres-

sion algorithm. Technical Report 124. Digital Equipment Corporation.

Campagne,F. et al. (2013) Compression of structured high-throughput

sequencing data. PLoS One, 8, e79871.

Cánovas,R. et al. (2014) Lossy compression of quality scores in genomic data.

Bioinformatics, 30, 2130–2136.

Cherniavsky,N. and Ladner,R. (2004) Grammar-based compression of DNA

sequences. Technical Report 2007-05-02. University of Washington CSE.

Cox, A.J. et al. (2012) Large-scale compression of genomic sequence databases

with the Burrows-Wheeler transform. Bioinformatics, 28, 1415–9.

Daniels,N.M. et al. (2013) Compressive genomics for protein databases.

Bioinformatics, 29, i283–i290.

de Jonge,W. et al. (1994) Sþ-trees: an efficient structure for the representation

of large pictures. CVGIP: Imag. Understan., 59, 265–280.

Deorowicz,S. and Grabowski,S. (2011) Compression of DNA sequence reads

in FASTQ format. Bioinformatics, 27, 860–862.

Friedli,M. et al. (2014). Loss of transcriptional control over endogenous

retroelements during reprogramming to pluripotency. Genome Res, 24,

1251–1259.

Fritz,M.H.-Y. et al. (2011) Efficient storage of high throughput DNA

sequencing data using reference-based compression. Genome Res., 21,

734–740.

Hach,F. et al. (2012) SCALCE: boosting sequence compression algorithms

using locally consistent encoding. Bioinformatics, 28, 3051–3057.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using col-

ored de Bruijn graphs. Nat. Genet., 44, 226–232.

Janin,L. et al. (2014) BEETL-fastq: a searchable compressed archive for DNA

reads. Bioinformatics, 30, 2796–2801.

Jones,D.C. et al. (2012) Compression of next-generation sequencing reads

aided by highly efficient de novo assembly. Nucleic Acids Res., 40, e171.

Kim,J. et al. (2012) Transcriptome landscape of the human placenta. BMC

Genomics, 13, 115.

Kozanitis,C. et al. (2011) Compressing genomic sequence fragments using

SlimGene. J. Comput. Biol., 18, 401–413.

Langmead,B. (2009) Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol., 10, R25.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–9.

Li,P. et al. (2014) HUGO: hierarchical mUlti-reference Genome cOmpression

for aligned reads. J. Am. Med. Inform. Assoc., 21, 363–373.

Loh,P.-R. et al. (2012) Compressive genomics. Nat. Biotechnol., 30, 627–630.

Matsumoto,T. et al. (2000) Biological sequence compression algorithms.

Genome Inform. Ser. Workshop Genome Inform., 11, 43–52.

Moffat,A. et al. (1998) Arithmetic coding revisited. ACM Trans. Inform. Syst.,

16, 256–294.

Ochoa,I. et al. (2013) QualComp: a new lossy compressor for quality scores

based on rate distortion theory. BMC Bioinformatics, 14, 187.

Patro,R. et al. (2014) Sailfish enables alignment-free isoform quantification

from RNA-seq reads using lightweight algorithms. Nat. Biotechnol., 32,

462–464.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assem-

bly. Proc. Natl. Acad. Sci. USA, 98, 9748—9753.

Popitsch,N. and von Haeseler,A. (2013) NGC: lossless and lossy compression

of aligned high-throughput sequencing data. Nucleic Acids Res., 41, e27.

Rajarajeswari,P. and Apparao,A. (2011) DNABIT Compress—genome com-

pression algorithm. Bioinformation, 5, 350–360.

Rissanen,J. and Langdon, G.Jr. (1979) Arithmetic coding. IBM J. Res. Dev.,

23, 149–162.

Roberts,A. and Pachter,L. (2013) Streaming fragment assignment for real-

time analysis of sequencing experiments. Nat. Methods, 10, 71–73.

Steinruecken,C. (2014) Compressing sets and multisets of sequences.

arXiv:1401.6410 [cs.IT].

Tembe,W. et al. (2010) G-SQZ: compact encoding of genomic sequence and

quality data. Bioinformatics, 26, 2192–2194.

Winsor,G.L. et al. (2011) Pseudomonas Genome Database: improved

comparative analysis and population genomics capability for

Pseudomonas genomes. Nucleic Acids Res., 39(Database issue),

D596–D600.

Compressing short reads using path encoding 1927

(
Yu etal.,2014;
Cánovas
 the

Witten,I.H. et al.. (1987) Arithmetic coding for data compression. Comm.

ACM, 30, 520–540.

Wood,D.E. and Salzberg,S.L. (2014) Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol., 15, R46.

Xue,Z. et al. (2013) Genetic programs in human and mouse early embryos re-

vealed by single-cell RNA sequencing. Nature, 500, 593–597.

Yan,L. et al. (2013) Single-cell RNA-Seq profiling of human preimplantation

embryos and embryonic stem cells. Nat. Struct. Mol. Biol., 20, 1131–1139.

Yu,Y.W. et al. (2014) Traversing the k-mer landscape of NGS read datasets

for quality score sparsification. In: Sharan,R. (ed.) Research in

Computational Molecular Biology (Lecture Notes in Computer Science).

Switzerland: Springer International Publishing. pp. 385–399.

1928 C.Kingsford and R.Patro

	btv071-M1
	btv071-M2
	btv071-TF1
	btv071-TF2
	btv071-TF3

