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Abstract

Motivation: The data gathered by the Pan-Cancer initiative has created an unprecedented oppor-

tunity for illuminating common features across different cancer types. However, separating tissue-

specific features from across cancer signatures has proven to be challenging. One of the often-

observed properties of the mutational landscape of cancer is the mutual exclusivity of cancer driv-

ing mutations. Even though studies based on individual cancer types suggested that mutually ex-

clusive pairs often share the same functional pathway, the relationship between across cancer mu-

tual exclusivity and functional connectivity has not been previously investigated.

Results: We introduce a classification of mutual exclusivity into three basic classes: within tissue

type exclusivity, across tissue type exclusivity and between tissue type exclusivity. We then com-

bined across-cancer mutual exclusivity with interactions data to uncover pan-cancer dysregulated

pathways. Our new method, Mutual Exclusivity Module Cover (MEMCover) not only identified pre-

viously known Pan-Cancer dysregulated subnetworks but also novel subnetworks whose across

cancer role has not been appreciated well before. In addition, we demonstrate the existence of mu-

tual exclusivity hubs, putatively corresponding to cancer drivers with strong growth advantages.

Finally, we show that while mutually exclusive pairs within or across cancer types are predomin-

antly functionally interacting, the pairs in between cancer mutual exclusivity class are more often

disconnected in functional networks.

Contact: przytyck@ncbi.nlm.nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Pan-Cancer initiative surveyed genetic and epigenetic aberrations

in cancer samples from thousands of cancer patients over 12 cancer

types (Cancer Genome Atlas Research et al., 2013). This data opened

the door to a systematic examination of the similarities and differences

among multiple cancer types. However, integrative analysis for sub-

type classifications from five ‘omics’ platforms revealed that ‘cell-of-

origin’ features dominate the molecular taxonomy of diverse tumor

types rather than discovering common features across tissue types.

Although such an outcome may be partly due to the tissue specificity

of some cancer driver genes and pathways, it can also be attributed to

the lack of power to untangle mixed signals of cell-type-specific and

cancer-specific features (Cancer Genome Atlas Research et al., 2013).

Despite these strong tissue-specific signals, it has also become

evident that many mutated genes, and even whole dysregulated sub-

networks, are shared by multiple cancer types (Lawrence et al.,

2014; Leiserson et al., 2013, 2014). Pathway-centric methods have

emerged as a key approach to empower studies of complex diseases

with heterogeneous signals by focusing on the genetic activities on

the level of biological pathways (subnetworks) rather than individ-

ual genes. Several computational methods have been developed to

utilize genotypic data for the identification of mutated subnetworks

(Cho et al., 2012; Vandin et al., 2011, 2012a, b) and stratification

of cancer subtypes (Hofree et al., 2013).

One of the often-observed properties of the mutational landscape

of cancer is the mutual exclusivity of cancer driving mutations
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(Thomas et al., 2007). Mutually exclusive mutations observed among

genes in the same functional pathway prompted the development of

computational methods that utilize mutual exclusivity in the context

of identifying pathways dysregulated in cancer as well as for the path-

way independent identification of mutually exclusive cancer drivers

(Ciriello et al., 2012, 2013, Leiserson et al., 2013; Szczurek and

Beerenwinkel, 2014; Vandin et al., 2012a, b). However, the sets of

mutually exclusive drivers previously obtained in Pan-Cancer analysis

(Kandoth et al., 2013; Szczurek and Beerenwinkel, 2014) predomin-

antly contain tissue type-specific genes and do not necessarily share

common pathways, indicating that the previous definition of mutual

exclusivity is not sufficient in Pan-Cancer analysis and it is necessary

to recognize different mutual exclusivity classes.

To this end, we started by classifying mutual exclusivity

patterns into three basic classes: within tissue type exclusivity (mutual

exclusivity observed only in one cancer type), across tissue type exclu-

sivity (mutual exclusivity common to several tissue types), and be-

tween tissue type exclusivity (mutual exclusivity between putative

tissue-specific drivers). We developed statistical tests that allow us to

identify the membership of gene sets to these mutual exclusivity

classes. We then aimed to use the principle of mutual exclusivity for

identification of subnetworks dysregulated across multiple cancer

types. To identify Pan-Cancer dysregulated modules, we utilized the

across cancer mutual exclusivity measure jointly with the interaction

data from a network. Interestingly, we found that functionally inter-

acting gene pairs are more likely to be involved in across tissue type

mutual exclusivity while between type exclusivity is more often

observed in gene pairs that are not functionally related.

Adapting the Module Cover approach (Kim et al., 2013), we un-

covered subnetworks that are dysregualted in multiple cancer types.

Module Cover is an extension of the classical Multi-Set Cover ap-

proach, utilized before to find disease marker genes for highly hetero-

geneous genomic data, to a network setting. This is an optimization

technique that is particularly suitable in the context of heterogonous

data. The approach essentially aims to identify a set of dysregulated

subnetworks so that a desired subnetwork score is optimized, while at

the same time, ensuring that altered genes from different cancer sam-

ples are present in the union of the selected subnetworks. Our pro-

posed algorithm, Mutual Exclusivity Module Cover (MEMCover),

uses the module cover strategy to combine mutual exclusivity feature

with functional interactions and genomic aberration data from indi-

vidual Pan-Cancer cases to uncover Pan-Cancer dysregulated subnet-

works. Unlike previous approaches for finding a set of genetic

aberrations exclusive between all pairs, MEMCover does not neces-

sarily seek to identify subnetworks with complete exclusivity among

the genes, (Leiserson et al., 2013; Szczurek and Beerenwinkel, 2014;

Vandin et al., 2012a, b) but utilizes pairwise mutual exclusivity to

complement interaction data for a better identification of subnet-

works dysregulated in Pan-Cancer samples.

When applied to Pan-Cancer data, MEMCover identified a large

number of subnetworks dysregulated across many cancer types. We

found that many of the identified subnetworks are linked to cancer-

related pathways, overlapping with all but one subnetwork with at

least 10% coverage recently identified by HotNet2 in Pan-Caner

analyses (Leiserson et al., 2014) despite the fact that MEMCover is

based on completely different principle from HotNet2. We also

identified subnetworks whose role across cancer types has not been

appreciated previously.

Finally, our analysis also suggests the existence of mutual exclu-

sivity hubs—genes whose genetic aberrations are mutually exclusive

with aberrations in a large number of other genes, both connected

and not connected in the network, indicating that these mutual

exclusivity hubs may correspond to cancer driver genes that have

particularly strong growth advantages.

2 Classification of mutual exclusivity in
pan-cancer

2.1 Mutual exclusivity classes
Although mutually exclusive mutations are often observed in cancer

samples, the underlying cause of mutual exclusivity is not always

clear and might vary depending on the context. Gene pairs with mu-

tually exclusive aberrations might correspond to different drivers

dysregulating the same pathway or might be tissue-specific cancer

drivers dysregulating completely different pathways. A mutually ex-

clusive pair can also be specific in only one tissue type or might be

common to multiple cancer types. Observing different mutual exclu-

sive patterns, we start by classifying mutual exclusivity into the fol-

lowing classes (Fig. 1):

1. Mutual Exclusivity Within a cancer type (WITTHIN_ME):

mutual exclusivity is observed within only one individual tissue

type. For example, the RB1 and EGFR pair has a significant

WITHIN_ME relationship in GBM as shown in Figure 1A.

2. Mutual Exclusivity Between cancer types (BETWEEN_ME): mu-

tual exclusivity is observed due to different tissue specificity of a

given pair of genetic aberrations. Figure 1B shows an example of

BETWEEN_ME, where von Hippel-Lindau (VHL) mutation is

specific for KIRC, APC is enriched in CRC and EGFR in GBM.

3. Mutual Exclusivity Across multiple cancer types

(ACROSS_ME): mutual exclusivity is observed in more than

one tissue types. It may mean that mutual exclusivity is statistic-

ally significant in two or more cancer types or that the statistical

significance is increased when considering multiple cancer types

relative to within cancer type exclusivity. Figure 1C and D are

two examples of ACROSS_ME class.

It is important to keep in mind that this classification is data de-

pendent, and expanding the dataset might change membership in some

classes. In particular, ACROSS_ME pairs that are not detected as

WITHIN_ME in the individual tissues (e.g. ARID1B, KRAS in Fig. 1D)

are likely to be detected as such if a larger sample size was available.

2.2 Estimating mutual exclusivity classes
Permutation test is a commonly used technique to estimate mutual

exclusivity in cancer mutation profiles (Ciriello et al., 2013; Vandin

et al., 2012a, b). In the approach, the null model is created by per-

muting a given mutation profile while preserving the mutation rates

of individual genes and samples. If the mutations of a pair of genes

are mutually exclusive, they will collectively cover more samples

than expected by chance. The significance of mutual exclusivity is

measured by counting the number of random instances in which

more samples are covered than in the original mutation profile. We

extended the permutation technique to estimate each of the Pan-can-

cer ME classes defined in Section 2.1. We first describe the tests and

then explain how they are used to assess the exclusivity classes of

gene pairs.

1. Type Separate Permutation Test of an Individual Tissue Type

(TS_test): Mutual Exclusivity within a cancer type is estimated

separately by permuting mutation profiles independently for

each cancer type. To preserve the mutation rates of each gene

and each sample, in each iteration, two (gene, sample) pairs are

randomly chosen and swapped. A permuted mutation profile is
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obtained after a certain number of iterations. For a gene g, let

COVERC(g) be the set of samples in cancer type C with gene g

mutated. Given a set of genes A, COVERC(A)¼Ug in A

COVERC(g). The significance of ME is estimated by counting

the number of random instances in which jCOVERc(A)j is

bigger than the size in the original mutation profile. The size of

COVERc(A) is likely to be bigger than expected if the mutations

of the genes in A are mutually exclusive (Ciriello et al., 2013;

Vandin et al., 2012a). In Figure 2A, gene 1 and gene 2 are mutu-

ally exclusive and the size of the cover in the original mutation is

bigger than the permutated instances.

2. Type Restricted Permutation Test with All Pan Cancer Samples

(TR_test): In this test, we run permutation for each cancer

separately as in the TS_test and compute the normalized sum

of cover size, NCOVER(A)¼
P

C NCOVERC(A) where

NCOVERC(A)¼ jCOVERc(A)j/jCj and jCj is the number of

samples in cancer type C. The cover size is divided by jCj to re-

move the impact of different sample sizes of cancer types. The

empirical P-value is computed based on the rank of

NCOVER(A). Figure 2B gives an illustration of TR test, where

the significance of ME is increased by combining the samples

from cancer type A and B. Note that because the mutations are

permuted separately for each type, the mutations from different

cancer types will never be swapped with each other, which pre-

vents a pair of genes whose mutations are specific to two differ-

ent cancer types (i.e. BETWEEN_ME class) from being assigned

a low P-value (the second panel in Fig. 2C)

3. Type Oblivious Permutation Test with All Pan Samples (TO_test):

We applied the permutation test described in TS_test to all Pan-

Cancer samples and estimate the significance of the mutual exclu-

sivity. That is, we considered all cancer samples and repeatedly

performed swapping of two randomly selected (gene, sample)

pairs regardless of their cancer types. The bottom panel in Figure

2C shows an illustration of TO test. The mutations are specific to

two different cancer types and the mutual exclusivity may be sig-

nificant in TO test but not in TR_test.

The gene pairs passing TS_test for exactly one tissue type with a

more significant P-value than in TR_test are naturally assigned to

the WIHTIN_ME class. The ACROSS_ME class contains the gene

pairs that pass TS_test for more than one tissue or pass TR_test

(with a more significant P-value than in TS_test). Note that by sum-

ming up the size of covers across all cancer types, the statistically

power to identify ME patterns existing in multiple cancer types can

be increased, allowing for detecting across-cancer mutual exclusivity

that might not be detected when each tissue type is considered

individually.

Finally, we assign a pair to the BETWEEN_ME class if the pair

pass TO_test but none of the other tests. Indeed, TO_test can poten-

tially capture mutually exclusive pairs of all three types. However,

in the case where the overall mutation rates of a given set of genes

are low and the mutations are associated with only a few cancer

types, permuting samples across cancer types may wipe out existing

ME patterns especially for WITHIN_ME and ACROSS ME classes.

Thus, TS_test and TR_test are more accurate for the purpose of de-

tecting these two classes, whereas TO_test is used to capture gene

sets in the BETWEEN_ME class provided that other classes of ME

are not present. We confirmed the correctness of this assignment in

the discussion below.

2.3 ME classes of interacting gene pairs
Dataset: We obtained Pan-Cancer mutation profiles by collecting

somatic mutation and Copy Number Variation (CNV) data for a set

of 11 different types (COAD and READ are combined into one

type) of cancers from TCGA with total of 3182 cancer samples. We

then created 10 000 randomly permuted profiles using both type-

separate and type-oblivious permutations. Note that TS and TR

tests use the same permutation method by permuting samples inde-

pendently in each cancer type but differ in the way to compute P-

values. For each permutation instance, we performed edge swapping

1000*jEj times (jEj is the number of edges in the network) as sug-

gested in the previous study (Milo et al., 2003).

As we focus on finding cancer drivers belonging to the same

pathways and their mutual exclusivity patterns, we utilized a func-

tional interaction network, HumanNet downloaded from http://

www.functionalnet.org/humannet/ and performed the ME test to

classify the interacting pairs into different ME classes. HumanNet is

a functional gene network, including 18 714 validated protein-

encoding genes of Homo Sapiens and 474 913 interactions. The

Fig. 1. Examples of Mutual Exclusivity Classes. The top bar in each figure shows cancer samples in their cancer type color (see the legend above for the color

coding of cancer types) and each row below the top bar indicates the presence or the absence of alteration of a given gene in the corresponding cancer samples.

The insets show the zoom-in views for the set of patients with alterations in at least one gene. (A) RB1 and EGFR show WITHIN_ME pattern with respect to GBM.

While, in the inset, we can see that the exclusivity may also be present in other cancer types it is not statistically significant (compare the width of the altered sam-

ples to the width for all samples in the top bar) (B) VHL, APC and EGFR show BETWEEN_ME pattern. VHL mutation is specific for KIRC, APC is enriched in CRC

and EGFR in GBM. (C) and (D) show the examples of ACROSS_ME. The CDKN2A and RB1genes shown in panel C also satisfy WITHIN_ME with respect to GBM

and LUSC while the ARID1B, KRAS pair shown in panel D is not significant in any TS_test of individual cancer type separately
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network is significantly dense compared with other available human

interaction networks as the network is constructed by a Bayesian in-

tegration of 21 different types of ‘omics’ data including expression

profiles, protein interactions, genetic interactions etc. We tested

with another interaction network and found similar results (Section

3.3 and Supplementary Material). We also tested non-interacting

pairs and discuss the results in Section 3.3.

Among more than 450 K pairs we tested, there are over 3000

pairs of genes that are significant in the TO_test (P<0.01) but none

in other tests. The gene pairs in the category are most likely to have

BETWEEN_ME relationships and each gene has its distinct tissue

specificity. To confirm that these genes indeed have tissue specificity,

we performed a hypergeometric test for each cancer type and exam-

ined if the gene is significantly tissue specific, i.e., has significantly

more (or less) mutated samples in a given cancer type (P-value

cutoff<0.01). For example, VHL mutation is significantly overre-

presented in KIRC and underrepresented in all other cancer types.

Mutually exclusive tissue specificity for a pair of genes is subse-

quently tested by checking if there is at least one cancer type in which

the mutation of one gene is overrepresented and the other is underre-

presented (or vice versa). We found that for the pairs that were sig-

nificant only in the TO_TEST, 73% of the interactions (2405 out of

3292 pairs) have mutually exclusive tissue specificity and thus con-

firmed that they can be properly assigned to the BETWEEN_ME

class while for the interactions in other categories, only 29% of them

(1753 out of 5986 pairs) have mutually exclusive tissue specificity.

We also note that 135 interactions were found to be significant

in more than one cancer types in TS-test (P<0.01) and all but 15 of

those interactions were also captured by TR_test, suggesting

TR_test captures most of ACROSS_ME pairs. In addition, there are

almost 4000 pairs that are significant in the TR_test but none in the

TS_test, demonstrating the increased power of the TR_test by com-

bining samples from multiple tissue types.

2.4 ACROSS_ME pairs are clustered
We conjectured that if the existence of ACROSS_ME pairs is due to

the fact that the corresponding genes belong to the same pathways,

the ACROSS_ME pairs should be close to each other in an interaction

network. To examine if ME edges are more clustered than expected,

we selected 4722 edges with empirical P-value<0.01 (TR_TEST) and

constructed a subnetwork consisting of those selected edges. The net-

work included 217 connected components with only 160 edges

(�3%) not adjacent to other ME edges. We also created 100 random

subnetworks using a random sampling of the same number of edges

(a degree preserving permutation test via edge shuffling is not applic-

able in this case because ME scores are tied with gene pairs and ori-

ginal ME scores cannot be preserved after shuffling edges) and found

that the random networks have an average of over 853 connected

components with more than 603 single edges on average. The ME

subnetwork also has a clustering coefficient of 0.015, confirming it is

more clustered than expected (empirical P-value<0.01). We note

that nodes with high degree in HumanNet are more likely to have ME

edges (Spearman Correlation Coefficient: 0.41) and the clustering of

ME edges can be due to the existence of those hubs. However, we

found that random subnetworks of the same size have even higher

correlation in degree distributions (the Average Spearman Correlation

Coefficient¼0.59) i.e., hubs are more likely to be selected in random

sampling but the random networks are not as clustered as the ME net-

work. This suggests that ME edges are clearly not randomly placed in

the network but there may be some nodes incident to many ME edges,

namely ME hubs. For example, KRAS and TP53 have as many as 236

and 141 ACROSS_ME edges, respectively. ME hubs may not neces-

sarily be the nodes with the highest degree in the original network.

We discuss ME hubs in more detail below (Section 3.3). The ME de-

gree of a node (the number of ME edges incident to the node) also has

a slight correlation with the number samples for which the gene is

altered (Spearman Correlation Coefficient¼0.19).

3 Finding pan-cancer dysregulaed modules using
functional network and mutual exclusivity

3.1 The MEMCover algorithm
Motivated by the fact that ME edges are more clustered than ex-

pected, in the next step we aim to find a set of gene modules where

Fig. 2. Illustrations of Different Permutation Tests. (A) TS Test: the first two rows of each panel show the mutation profiles of gene 1 and gene 2 and the bottom

row shows the samples covered by either gene 1 or gene 2. The darker gray color means that the samples are covered by both of the genes. The permuted in-

stances cover less samples than the original mutation profile, indicating the significance of mutual exclusivity (B) TR test: when two cancer types are considered

together, gene 1 and gene 2 are mutually exclusive in both cancer types but they may not be statistically significant when tested separately in each cancer type

as only small subset of samples have mutations. The mutual exclusivity of rare mutations can be picked up when the samples are combined and tested together.

(C) TO versus TR test: When the mutations of a pair of genes have BETWEEN_ME relationship, they will not be found statistically significant in TR test as permuta-

tion is performed separately, but may be significant in TO test
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genes in the same module are mutually exclusive and/or functionally

related. We adapted the Module Cover algorithm, which was de-

veloped to identify a set of disease signature modules and success-

fully uncovered several important cancer related subnetworks in

GBM and Ovarian Cancer samples (Kim et al., 2013). In the

Module Cover algorithm, genes are greedily selected to cover disease

samples while simultaneously creating modules of ‘closely related’

genes. In MEMCover, we improved the method by utilizing

ACROSS_ME levels obtained in the previous section when we com-

pute the weights of edges.

Like Module Cover, MEMCover finds a set of modules with the

minimum total cost while covering all disease samples at least k

times. We say that a gene covers a sample [cover(c, g)¼1] if the

gene is altered in the sample. Because we assume that each cancer

case has more than one driver gene, we require that each sample has

to be covered at least k times where k is the input parameter of algo-

rithm (see parameter selection in Supplementary Material).

Formally, the goal is to find a minimum cost set of modules

(subnetworks) that covers all disease cases at least k times. In other

words, we search for a module set S0 ¼ M1; M2; . . . ; Mtf g that

minimizes
P

Mi2S0 Cost Mið Þ while for each disease sample c,P
Mi2S0

P
g2Mi coverðc; gÞ�k. Module cost Cost(M) is computed

based on the edge weights inside module M as follows:

CostðMÞ ¼ jMj �
X

x 2 M

avg weightðxÞ (1)

where avg weight xð Þ ¼
P

y2Mn xf gw x; yð Þ=ðjMj � 1Þ. The module

cost decreases as the average weight inside module increases, which

ensures a selection of subnetworks with heavy weight edges. We de-

fine edge weight (�1 � w(x, y) � 1) based on the confidence score

in HumanNet and its ACROSS_ME score. We describe the choice

of edge weights in Section 3.2 and the parameter selection section in

the Supplementary Material in more detail.

Because the optimization problem defined above is NP-hard,

MEMCover greedily selects genes and creates modules: in each iter-

ation, we greedily choose a gene with minimum IC(g)/Benefit(g).

Benefit(g) is defined to be the number of samples covered by a gene

g which are not yet covered k times. The increase in the cost when

adding a gene g depends on whether the gene creates a separate

module by itself or is added to an existing module. The cost is 1 if

it creates a separate module and for the latter case (added to

an existing module), the cost is defined as IC(g)¼minMi e P(g)

(Cost(Mi[ gf gÞ�Cost(Mi))), where P(g) is the subset of existing

modules connected to g. The gene is added in a way that it incurs

the minimum increased cost. If the minimum cost of gene g is

obtained when gene g is added to an existing module M, the module

is updated accordingly otherwise a new module gf g is created. We

repeat this until we cover all samples by the required number of

times.

3.1.1 Post-processing

In the post-processing in MEMCover, we refined the modules by (i)

merging two modules if the average edge weight between them is

positive, (ii) allowing a gene to be added to more than one module if

the average edge weight between the gene and a module is positive.

i. Merging modules: we consider all possible pairs of selected

modules and greedily merge two modules if the average weight

between module pairs is positive. More specifically, in each iter-

ation, we take the module pair with the heaviest average weight

between the two modules and repeatedly merge them until there

is no such pair.

ii. Overlapping modules: so far a gene can belong to only one mod-

ule. In the overlapping phase, we consider every pair of a se-

lected gene and a module (which does not already include the

gene) and check if the average weight between the gene and the

module is positive. As in the merging step, we start overlapping

with the highest weight pairs first until there is no pair satisfying

the condition.

3.2 ME scores help finding cancer signature modules
We utilize the CNV and mutation data for the same 3182 Pan-

Cancer samples described in Section 2 and performed MEMCover.

A simple extension of the MEMCover method allows us to assign a

different coverage rate for different type of alterations. Because som-

atic mutations are relatively rare and accurate compared to CNV

data (Hofree et al., 2013), we weight the coverage rate higher for

somatic mutations than CNV. Among different parameters, we

chose k¼15 and the coverage rate of mutations (mr)¼3 [i.e. cov-

er(c, g)¼3 if g has mutation and cover(c, g)¼1 if g has CNV]. The

parameters result in selecting 5–15 covering alterations for each can-

cer sample, a number roughly consistent with the expected number

of cancer drivers. See Supplementary Materials B for further discus-

sion on the parameter selection.

The edge weight w(e) is defined for each interaction e in

HumanNet to be (hn(e)þme(e))/2�f(h), where hn(e) (0 < hn(e) � 1)

is the normalized HumanNet confidence score and me(e) is the nor-

malized �log(P-value) in TR_test (both values are normalized by

dividing by the maximum of each). f(h) is a parameter that we can

use to control the trade-off between the number of modules and the

average weights within each module; that is to determine how low

the two scores (hn(e) and me(e)) are allowed to include a gene in a

module instead of creating a separate module. We define h to be the

percentage of edges whose weights remain positive and f(h) is the

corresponding weight threshold (when edges are sorted by their un-

adjusted weights). Recall that by the definition of the module cost in

(1), positive edge weights reduce the module cost and therefore, the

bigger h is [and the less f(h)], the more edges have positive scores

and MEMCover will select bigger modules in general. To compare

the impact of combining mutual exclusivity scores in the edge

weights, we also ran the algorithm with HumanNet-only weight

scheme where w(e)¼hn(e)�f(h).

To examine the quality of modules, we utilized a set of 138

known cancer driver genes in (Vogelstein et al., 2013), and checked

how many known cancer drivers were identified by MEMCover.

Although varying parameters gives different results in terms of the

number of selected genes, the number of selected drivers, etc., we

found that combining mutual exclusivity scores into edge weights

consistently improves the quality of modules as measured by iden-

tifying more known cancer drivers while selecting a less number of

candidate genes, thus having a high percentage of known cancer

drivers (Fig. 3). In particular, we ran MEMCover with varying h’s in

the range of 20, 30, 40 and 50% of the top weighted edges and

found that h¼40% finds the highest number and percentage of

known cancer drivers (72 out of 138). In the following subsections,

we presented a set of modules obtained with h¼40%.

3.3 Properties of pan-cancer dysregulated subnetworks

identified by MEMCover
3.3.1 MEMCover identifies subnetworks covering a high percentage

of pan-cancer cases

MEMCover algorithm selected 536 modules of size 1–8 (including

325 non-singletons) with 879 genes in total. Nearly half of the
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modules covered at least 5% of samples and 62 modules provide

coverage �10%. These statistics are based on the modules before

the post-processing extension to allow overlaps. After the overlap

allowing module extension, �10% of genes (86) belong to more

than one module while KRAS, TP53, EGFR, ERBB2, CTNNB1,

PPM1L, PRKACA belong to more than five modules. A representa-

tive subset of modules is shown in Figure 6 and the full list of mod-

ules is provided in Supplementary Materials.

3.3.2 Mutual exclusivity patterns in selected modules

The selection of modules in MEMCover is guided by not mutual ex-

clusivity only but also HumanNet connectivity and sample coverage.

Thus modules uncovered by MEMCover are not necessarily

required to contain mutually exclusive pairs. Indeed, as illustrated in

Figure 6, we observed modules with robust pairwise exclusivity pre-

sent between many different pairs, modules with mutual exclusivity

converging to only one ‘hub’ gene, modules with mutual exclusivity

significant in ACROSS_ME (but not WITHIN_ME), and modules

with no significant mutual exclusivity.

3.3.3 Mutual exclusivity hubs

Modules with mutual exclusivity involving one particular gene

strongly suggest the existence of ACROSS_ME/WITHIN_ME hubs.

To confirm this, we examined the distribution of the number of ME

partners among all the genes selected by MEMCover (Fig. 4). We

checked all pairs for their mutual exclusivity regardless of their con-

nectivity in HumanNet and chose the partner for which P-

value<0.01 in TR or TS test and where the P-value in TR/TS_test is

more significant than in TO_test). Indeed, such Mutual Exclusivity

hubs (ME hubs) can be clearly identified (with KRAS, TP53,

PIK3CA, CTNNB1, DVL3, GRB7, CTCF at the top of the list, see

the Supplementary Table for the extended list). Note that Mutual

Exclusivity hub partners are not necessarily HumanNet neighbors.

This suggests that ME hubs are likely to have more significant

growth advantages than other cancer driver genes. We found that

the ME degrees in known driver genes are significantly higher com-

pared with the ME degrees in other genes (P-value<10�3, Mann-

Whitney U test).

3.3.4 Non-interacting pairs are enriched with BETWEEN_ME class

The existence of ME hubs calls for re-examining the assumption

that mutual exclusivity occurs predominantly between drivers from

the same pathway. Towards this end we divided all possible pairs of

genes selected by MEMCover into two groups: those that are con-

nected in HumanNet and those that are not. We then considered the

distribution of mutual exclusivity classes within each of these two

groups. We found that despite the existence of ME hubs whose in-

fluence might extend beyond one pathway, the ACROSS_ME class

is enriched for HumanNet neighbors while non-HumanNet pairs

show a higher percentage of BETWEEN_ME pairs (Fig. 5A).

Interestingly, there is only one BETWEEN_ME edge in our top

modules (modules with 10% or better coverage)—the edge between

VHL and CDKN2A in the module related to the RB1/MDM2 path-

way. Although these two genes are connected in HumanNet, the

functional relation between them is not obvious. VHL gene (VHL

tumor suppressor, E3 ubiquitin protein ligase) is the primary gene

for the common, non-hereditary form of clear cell kidney cancer

(Cancer Genome Atlas Research, 2013) while CDKN2A and RB1

are hallmarks of lung squamous cell carcinoma (Cancer Genome

Atlas Research, 2012) and glioblastoma (Cancer Genome Atlas

Research, 2008). Thus, while CDKN2A and RB1 are mutually ex-

clusive within both cancer types, VHL and CDKN2A show between

type exclusivity only. We have also tested the hypothesis with an-

other network. The result with a PPI network (HINTþ) (Das and

Yu, 2012; Leiserson et al., 2014; Yu et al., 2011) was consistent

with the one with HumanNet (Fig. 5A) that across-cancer and

within cancer mutually exclusive pairs are enriched among pairs of

interacting genes while between-cancer exclusivities are enriched for

non-interacting gene pairs (Supplementary Material C for more dis-

cussion). Interestingly, we found that the physical network includes

a bigger proportion of within cancer exclusivity than the functional

interaction network does, which suggests that the mutations within

the same protein complex are likely to be cancer drivers for the same

tissue.

3.4 MEMCover identifies new pan-cancer dysregulated

subnetworks as well as known subnetworks
Due to their connectivity in HumanNet, modules uncovered by

MEMCover include genes from specific molecular pathways/com-

plexes and their regulators (Fig. 6). Despite very different algorith-

mic approach, differences in underlying interaction network, and

different search criteria, all but one (ASCOM complex) of the six

subnetworks with 10% or more coverage and most of subnetworks

with coverage 2–10% reported with HotNet2 (Leiserson et al.,

2014) overlap with our pathways. Because MEMCover is opti-

mized, among others things, to find subnetworks with high coverage

it found nearly all subnetworks with 10% or better coverage that

were reported in (Leiserson et al., 2014) and a large number of non-

reported subnetworks. Not surprisingly, our modules are not as

related to the sets of mutually exclusive Pan-Cancer genetic aberra-

tions identified in a recent study (Szczurek and Beerenwinkel, 2014),

in which they focused on the identification of exclusive cancer

Fig. 3. Genes Selected by MEMCover: more cancer driver genes were selected when ME data is combined. The results are shown for k¼15, mw¼3 and varying

h of 20–50% for top edges (x-axis) (A) Number of total genes selected (B) number of known cancer driver genes selected (C) percentage of known driver genes in

the selected gene set
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drivers and zoomed on tissue type specific genes (for example VHL,

APC, EGFR analyzed in Fig 1B) rather than genes which share com-

mon pathways (See also Supplementary Table A3).

In addition to finding expected subnetworks, an interesting ex-

ample we found is the subnetwork containing splicing factor 3B pro-

tein complex (SF3B) together with the RBMX gene—a gene

implicated in tissue-specific regulation of gene transcription and al-

ternative splicing of several pre-mRNAs and the SRSF2 gene—an

(SR)-rich pre-mRNA splicing factors, which constitute part of the

spliceosome. Indeed, SF3B1 and SRSF2 have been recently found

to be significantly mutated in chronic lymphocytic leukemia

(CMML) (Je et al., 2013; Wang et al., 2011). Our analysis shows

that spliceosomal machinery is dysregulated across many cancer

types and displays ACROSS_ME exclusivity between SF3B and

SRSF2 genes.

As for the cohesin complex, this multi-subunit protein complex

plays an integral role in sister chromatid cohesion, DNA repair, and

meiosis. Proteins from this complex are known to positively regulate

the transcription of genes known to be dysregulated in cancer, such

as Runx1, Runx3 and Myc as reviewed in (Rhodes et al., 2011). In

addition, a recent study reported recurrent mutations and deletions

involving multiple components of the cohesin complex, including

STAG2, RAD21, SMC1A and SMC3, in different myeloid neo-

plasms (Kon et al., 2013).

Finally, in the case of calcium channel, there is evidence that the

ryanodine receptor 3 gene (RYR3), which encodes a large protein

that forms a calcium channel, is important for the growth, morph-

ology, and migration of breast cancer cells (Zhang et al., 2011).

3.5 Comparison with alternative approaches
We compared our results with the pan-cancer subnetworks obtained

using HotNet2 (Leiserson et al., 2014). Different from our ap-

proach, the method is based on a heat diffusion method to identify

significantly mutated subnetworks and mutual exclusivity informa-

tion was not used in identifying the subnetworks. Leiserson et al. re-

ported that the results with two gene scoring schemes—frequency

and MutSig scores. Our results presented in Section 3.4 uses

frequency scores for cover rate. For comparison, we also ran

MEMCover using MutSig scores as gene cover rate (Fig. 5B). Note

that the number of genes selected is different depending on the meth-

ods and different parameters and that different networks have been

used. Here, we considered the genes selected by MEMCover in the

order in which they are added and counted the number of known

drivers in the selected subset of genes in each iteration. Our algo-

rithm consistently finds more known driver genes for the same num-

ber of selected genes compared with the set obtained by HotNet2.

We note that known drivers tend to have much higher MutSig

scores, and thus in the context of this comparison, the improvement

from using MutSig is expected. But using MutSig scores may reduce

the likelihood to find rare de novo cancer drivers as mentioned in

the article (Leiserson et al., 2014).

We also compared our results with the work related to mutual

exclusivity for Pan-Cancer (Kandoth et al., 2013; Szczurek and

Beerenwinkel, 2014). Their approaches differ from our work in that

the goal is to find a set of mutually exclusive genes regardless of their

interaction relationships. The outcomes of the algorithm include a

small number of modules (2–3 modules), resulting in 10–20 selected

genes in total, most of which are known drivers. As briefly men-

tioned in Section 3.4, while it is true that the identified genes are mu-

tually exclusive in Pan-Cancer samples, we found that they

predominantly have BETWEEN_ME relationships (Supplementary

Fig. S3). In particular, the first Pan-Cancer ME set identified by

Dendrix (Kandoth et al., 2013) is mostly in BETWEEN_ME class,

consistent with their claim (Supplementary Fig. S3A). The second

module identified after removing tissue specificity contained more

Fig. 4. The distribution of the number of mutually exclusive partners among

all the genes selected by MEMCover (regardless of the connectivity in

HumanNet)

Fig. 5. (A) The difference in the distribution in mutual exclusivity classes for interacting and non-interaacting pairs. The first row is for HumanNet and the se-

cond row for HINTþ (B) Comparison on the number of known drivers selected between MEMCover and HotNet2. MEMCover finds more driver genes than

HotNet2 for the same number of selected genes and the same gene scoring scheme
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ACROSS_ME pairs, which confirms that our classification of ME

types is valid. MEMCover identifies all 10 genes in both modules.

Three modules of size five are identified by another study of mutual

exclusivity in Pan-Cancer (Szczurek and Beerenwinkel, 2014). The

modules include three meta-genes (a meta gene is a group of

genes which have the same mutation profiles) and the modules are

highly overlapped. We classified all pairs (with one representative

from each meta-gene) in the modules into different ME types

Fig. 6. Representative modules obtained by MEMCover algorithm. Dashed lines correspond to HumanNet edges, solid lines are for WITHIN_ME colored by its

tissue type using Pan-Cancer color coding (see the legend in Fig. 1). Black and gray edges represent ACROSS_ME and BETWEEN_ME, respectively. For each

module, we show the percentage of samples with alterations in the module and a pie chart with the distribution of the number of samples with at least one muta-

tion in each tissue type. For genes belonging to more than modules, they were counted according to module membership before extending them to allow over-

lap (therefore counted only once). Genes are not counted for the coverage and for the pie chart in a given subnetwork are marked as light gray boxes. Not

pictured modules include, among others, an additional subnetwork related to SWI/SNF [PBRM1, TOX2, SMARCA4], MHC class one members [HLA, HLB], exocyt-

osis related group [TRPC4, EXOC4, EXOC3, EXOC7, RALA]. The full list of subnetworks is provided in Supplementary Materials. The networks are created using

Cytoscape (Shannon et al., 2003)
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(Supplementary Fig. S3C–E), and found most of genes have

BETWEEN_ME relationships and very few ACROSS_ME or func-

tional interactions.

MeMo took an approach similar to ours, combining permuta-

tion based mutual exclusivity scores with interaction data (Ciriello

et al., 2013) and identified cancer related modules in GBM and

ovarian cancer. Pan-cancer analysis with MeMo is not available and

was reported as challenging to scale the algorithm for Pan-cancer

samples (Ciriello et al., 2013; Vandin et al., 2012a, b).

4 Discussion

In this study, we focused on systematic analysis of mutual exclusiv-

ity in the context of Pan-Cancer data and on the application of this

principle for guiding discovery of Pan-Cancer dysregulated subnet-

works. It has been previously proposed that mutually exclusive gen-

omic events are suggestive of a functional linkage of the altered

genes. Indeed, classifying mutual exclusivity into three types,

BETWEEN_ME (mutual exclusivity between putative tissue-spe-

cific drivers), WITHIN_ME (mutual exclusivity observable in one

cancer type), and ACROSS_ME (common mutual exclusivity across

multiple cancer types based on type restricted permutation test), we

found that BETWEEN_ME is more frequent among functionally

unrelated genes. Thus, our analysis demonstrates the importance of

distinguishing mutual exclusivity classes in Pan-Cancer analyses.

Interestingly, the distribution of the number of partners in

ACROSS_ME or WIHIN_ME relationships has a scale-free prop-

erty and revealed the existence of ME hubs. We conjecture that these

hubs have growth advantages that exceed the growth advantage

imposed by other drivers. If so, ranking according to the number of

non-BETWEEN_ME partners could be used to prioritize cancer

drivers.

Our results indicate that mutual exclusivity analysis provides

valuable information which, when utilized together with interaction

data, can guide a discovery of Pan-Cancer dysregulated subnet-

works. Indeed, we found that our new algorithm, MEMCover that

uses the module cover optimization strategy to combine functional

interactions, mutual exclusivity and genomic aberration frequency,

identified many Pan-Cancer dysregulated subnetworks including

previously known subnetworks as well as several new subnetworks

whose across-cancer role has not been well appreciated previously
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