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Abstract

Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility

complex (MHC) class I molecules have been developed over the last decades. However, the multi-

tude of available prediction tools makes it non-trivial for the end-user to select which tool to use for

a given task. To provide a solid basis on which to compare different prediction tools, we here de-

scribe a framework for the automated benchmarking of peptide-MHC class I binding prediction

tools. The framework runs weekly benchmarks on data that are newly entered into the Immune

Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations

of all participating tools. To overcome potential selection bias in the data included in the IEDB, a

strategy was implemented that suggests a set of peptides for which different prediction methods

give divergent predictions as to their binding capability. Upon experimental binding validation,

these peptides entered the benchmark study.

Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17

MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results

allows the end-user to make educated selections between participating tools. Of the four participat-

ing servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB.

Availability and implementation: Up-to-date performance evaluations of each server can be found

online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to

participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/

mhci/join.

Contact: mniel@cbs.dtu.dk or bpeters@liai.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cytotoxic T-cell lymphocytes (CTLs) play a pivotal role in the im-

mune control in vertebrates. CTLs scan the surface of cells and are

able to recognize and destroy cells harboring intracellular threats.

They do this by interacting with complexes of peptides and major

histocompatibility complex (MHC) class I molecules presented on

the cell surface.

Many events influence which peptides from a given non-self pro-

tein will become epitopes, including processing by the proteasome

and TAP (Androlewicz et al., 1993; Rock and Goldberg, 1999;
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Rock et al., 1994; Sijts and Kloetzel, 2011), peptide trimming

(Serwold et al., 2002; Weimershaus et al., 2013) and T-cell precur-

sor frequencies (Jenkins and Moon, 2012; Wang et al., 2007).

However, the single most selective event is binding to the MHC class

I (MHC-I) molecule (Yewdell and Bennink, 1999). Given this, large

efforts have been dedicated over the last decades to the development

of prediction methods capable of accurately predicting peptide bind-

ing to MHC-I molecules (Hattotuwagama et al., 2004; Hoof et al.,

2009; Karosiene et al., 2012; Lundegaard et al., 2008; Nielsen et al.,

2007; Shen et al., 2014; Wan et al., 2006).

The large number of different methods poses a significant chal-

lenge for the end-user in terms of selecting which method is most

suitable to solve a given question. Several articles have been pub-

lished with the aim of dealing with this, using different strategies

such as conducting a large-scale benchmark of prediction tools (Lin

et al., 2008a, 2008b; Zhang et al., 2009a, 2012), benchmarks where

prediction methods are trained and evaluated on identical datasets

(Peters et al., 2006), making large, static benchmark datasets avail-

able (Peters et al., 2006) or by hosting a machine learning competi-

tion that serves as a benchmark itself (Zhang et al., 2011).

Such large-scale benchmarks of prediction tools are essential for

researchers looking to make use of the predictions, as well as for

tool developers, as it allows them to evaluate how novel prediction

algorithms and training strategies increase predictive performance.

However, performing such benchmarks in an optimal manner,

where all participating methods are trained and evaluated on identi-

cal datasets, is a highly computationally complex task, limiting par-

ticipation to expert users. Another issue is the time lag between

when the benchmark is performed and when the manuscript describ-

ing the results is published. During this time, developers may have

updated or improved their prediction tools, meaning some of the

benchmark results are instantly outdated. Finally, when it comes to

static benchmark datasets, a risk of ‘overfitting’ exists leading to de-

velopment of sub-optimal methods lacking generalizability to novel

data. This is simply due to the fact that the same data are used re-

peatedly to evaluate and select the most optimal methods.

Another critical issue of benchmark studies relates to the trans-

parency of both the data used in the study and the evaluation meas-

ures. The machine learning competition in immunology (MLI) 2010

hosted by Zhang et al. (2011) was a well-supported competition,

gathering a total of 20 participating prediction tools. Likewise, the

2012 MLI competition attracted significant attention from the com-

munity with 32 submissions for the competition (bio.dfci.harvar-

d.edu/DFRMLI/HTML/natural.php). Being the first of their kind,

these benchmarks have been of high relevance for both users and de-

velopers of MHC-I binding prediction tools. However, for both end-

users and tool developers, certain aspects of the competitions were

sub-optimal. For instance, the benchmark data for the 2010 compe-

tition of MHC-I binding prediction methods were generated using a

commercial assay used in few academic settings with a criterion for

binding that could not readily be compared with more commonly

used KD/IC50/half-life data. Likewise, the MLI 2012 competition of

ligands eluted from MHC-I molecules did not clarify up front how

negative peptides would be chosen, how peptides for different

lengths would be dealt with, nor how the performance would be

scored. As participants in these competitions, we felt that it was un-

fortunate that this information was not provided up front and that

the best way to reduce such uncertainties was to completely auto-

mate the benchmarking process to make it completely transparent.

Here, we seek to provide a complimentary approach to bench-

marking prediction tools that addresses some of the issues listed

above. Our approach consists of two steps. First, we have developed

a framework for the automated benchmarking of MHC-I binding

prediction methods. Earlier similar approaches have been taken to

evaluate prediction of protein structure (Eyrich et al., 2001;

Kryshtafovych et al., 2014; Tai et al., 2014). The participating

methods are run via a RESTful web service (henceforth referred to

as servers) hosted locally for each participating method, making the

effort involved in joining the benchmark minimal for tool devel-

opers. The benchmark is run weekly on data newly submitted to the

Immune Epitope Database (IEDB) (Vita et al., 2010), thus making

the source and nature of the evaluation data fully transparent.

Furthermore, to achieve the maximum degree of transparency, the

benchmark evaluation criteria are outlined explicitly. The results of

all benchmark evaluations are made publicly available, giving the

public access to frequent, up-to-date performance evaluations of all

participating methods.

Second, to overcome the problem of selection bias in the data

that are included in the IEDB (which is often pre-selected based on

certain prediction algorithms), we have developed an approach that

selects a set of peptides that is highly informative in the sense that

different prediction methods disagree on how well the peptides

bind. We plan to run this approach once a year and test a set of the

resulting peptides. To provide complete transparency, the script se-

lecting the peptides in the benchmark will be made publically avail-

able. The script takes a list of peptides and returns a subset of the

peptides that should be measured experimentally. The resulting pep-

tides and measurements can then be submitted to the IEDB where

they will automatically be identified and included in the benchmark.

Every step from peptide selection to comparison of predicted and ex-

perimental values is performed without manual intervention.

2 Materials and methods

2.1 Participating prediction methods
Four prediction methods participated in the initial run of the auto-

mated MHC-I server benchmark. All the methods predict peptide-

MHC-I binding affinity and are trained on binding affinity data.

SMM (Peters and Sette, 2005), ANN (Lundegaard et al., 2008) and

ARB (Bui et al., 2005) are hosted at the La Jolla Institute for Allergy

& Immunology and NetMHCpan (Hoof et al., 2009) is hosted at

the Center for Biological Sequence Analysis at the Technical

University of Denmark. The different methods are described in de-

tail in the Supplementary Material.

2.2 Data
Data for the benchmark are retrieved from the IEDB. Because of the

nature of submissions to the IEDB, where journal articles are cura-

ted for peptide-MHC binding data, a multitude of measurement

data types are currently found in the IEDB database. To ensure that

as much data as possible can be included in the benchmark, we cur-

rently support five different measurement types: KD (thermo-

dynamic constant), IC50 (inhibitory concentration to outcompete

50% of a high affinity reference ligand, can approximate KD),

EC50 (concentration needed to half-saturate the receptor, approxi-

mates KD), t1/2 (half-life of binding) and binary (peptides solely

classified as positive or negative for binding based on some thresh-

old that is consistent within the curated reference). As IC50 and

EC50 measurements can approximate KD, these three data types are

combined and will be referred to as IC50 henceforth.

The benchmark is performed only on peptides of lengths 8–11

that are annotated to bind one of the MHC molecules available in

the NetMHCpan method. The benchmark therefore only includes
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measurements to exactly identified MHC molecules (excluding, for

instance, the imprecise serotype HLA-A2, which could refer to dif-

ferent HLA molecules identified by complete two-field typing such

as HLA-A*02:01 or HLA-A*02:06). NetMHCpan was chosen for

this filtering as this method provides predictions for by far the most

MHC molecules including all molecules covered by the other meth-

ods. A list of supported alleles can be found at: http://tools.iedb.org/

auto_bench/mhci/alleles.

The IEDB makes new data publically available on a weekly

basis, and the weekly benchmark is run on this new data prior to its

public release, ensuring that participating methods will not have the

opportunity to train on the benchmark data (except if a group has

access to the data outside of the IEDB).

2.3 Benchmark setup
The automated benchmark is set up in a decentralized fashion,

where each participating method is hosted externally as a RESTful

web service. We chose this type of setup because it grants the most

flexibility to participating developers. Developers are free to imple-

ment their prediction methods on their own servers and may make

changes to their implementations as they see fit. They may also re-

train their methods as often as they see fit and are indeed encour-

aged to do so. The IEDB releases datasets that were used to train the

predictions methods hosted on their site. These can be found at

http://tools.iedb.org/main/datasets/. Note that although the use of

the latest IEDB training dataset is encouraged, it is not a require-

ment for participation. Developers are also free to add data from

other sources to their own training datasets. The only requirements

for participants are that their web services must accept input and de-

liver output in defined formats. For RESTful web service templates

and other details, see http://tools.iedb.org/auto_bench/mhci/join.

Once data have been retrieved from the IEDB, each peptide and

the corresponding allele will be sent to each participating prediction

method in a customizable format and the benchmark server will re-

trieve the individual predictions. All measurements and predictions

are stored in databases on the benchmark server.

2.4 Evaluation
The data are split into homogenous evaluation datasets consisting of

unique combinations of measurement type, allele and length. As an

example, all peptides reported in a single reference that have length

10, were measured for binding to the MHC molecule HLA-A*02:01

and had their measurements reported as half-life make up one evalu-

ation dataset. An evaluation dataset must have at least 10 measure-

ment data points and at least two positive and two negative

measurement data points to be included in the benchmark. Each ser-

ver is evaluated on each evaluation dataset using the area under the

receiver operating curve (AUC) and the Spearman rank correlation

coefficient (SRCC). For AUC evaluations, continuous measurement

data are categorized as follows: for IC50 data, measurements less

than 500 nM are considered positive, for t1/2 data, measurements

over 2 h are considered positive. In the case of SRCC evaluations,

both continuous and binary measurement data were used.

For each evaluated dataset, a percentage rank score is calculated

for each participating server. The rank scores lie between 0 and 100,

with the best performing server scoring 100, the worst performing

server scoring 0 and the remaining servers receiving scores evenly

spaced between 0 and 100. Thus, for an evaluated dataset where

predictions for three servers are available, the scores 100, 50 and 0

are assigned. When predictions from four servers are available, the

scores 100, 67, 33 and 0 are assigned and so on. In the case of ties,

all methods receive the highest rank score. For example, in a bench-

mark with four servers where two servers have equal performance

and are ranked to be second best, the scores 100, 67, 67, and 0 are

assigned. Each server receives a percentage rank score based on its

AUC performance and a percentage rank score based on its SRCC

performance.

For each server, an overall ranking score is calculated, summariz-

ing its overall performance across all MHC molecules, peptide

lengths and measurement data types. The ranking score is calculated

as the average of the percentage rank scores of the individual evalu-

ation datasets covered by the given method. Evaluated datasets must

have predictions from at least two servers to be included in the cal-

culation of the ranking score. In addition to the overall ranking

score, AUC and SRCC ranking scores are also calculated and are

based solely on either AUC or SRCC performances, respectively.

Using this schema, servers are not penalized for only covering a sub-

set of the datasets included in the benchmark, yet servers that pro-

vide predictions for poorly understood MHC molecules with few

measurement data points available for training, are also not penal-

ized for doing so. When new data are benchmarked, each server re-

ceives both a weekly ranking score, based only on datasets

submitted that given week, and a cumulative ranking score that

takes into account datasets submitted within the past 3 months.

2.5 Generation of an information rich peptide dataset
As peptide data submitted to the IEDB might have a certain bias due

to selection strategies applied by the originating publications, we

included an additional dataset with large divergences between pre-

dicted binding values of different prediction servers to complement

the IEDB data. For this dataset, only 9mer peptides were included.

The peptide set was constructed to highlight differences in perform-

ance between the three best performing servers in the initial IEDB

benchmark (ANN, NetMHCpan and SMM). Predictions for 6000

unique 9mer peptides to HLA-A*02:01, HLA-B*07:02, HLA-

B*35:01, HLA-B*44:03, HLA-B*53:01 and HLA-B*57:01 were

generated from NetMHCpan, SMM and ANN. These predictions

were then used to assign each peptide a rank score for each server

and allele. In this case, we assigned the peptide with the strongest

predicted binding a rank score of 1.

Divergently predicted peptides were selected by comparing the

rank scores of the top 1% scoring peptides for a server with the rank

scores of the same peptides for each other server in a pairwise fash-

ion. For each pairwise comparison, the 10 peptides with the largest

difference in rank were selected for the performance test dataset.

This was repeated for each of the six MHC molecules. As we are

only comparing the top 1% scoring peptides for a server, comparing

server A with B is distinct from comparing server B with A and will

in most cases yield a new subset of peptides.

Although this selection scheme provides 60 data points (10 pep-

tides selected from each of the six pairwise method comparisons) to

compare servers per allele, in practice many of the selected peptides

provided data points for multiple pairwise comparisons at the same

time. For example, if servers A and B agree strongly in their predic-

tions for a peptide but disagree with server C, the same peptide pro-

vides a data point for both the A–C and B–C pairwise comparison.

Therefore, the number of unique divergently predicted peptides for

each allele was less than 60. The number of selected peptides per al-

lele ranged from 28 to 43, with a total of 208 being selected for all

six MHC molecules combined.

In addition to the set of divergently predicted peptides, we also

generated a set of peptides for which all servers tended to agree in
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their predictions of the peptides being strong binders, weak binders

or non-binders. The strong binders were selected by assigning each

peptide a single rank score equal to the worst rank score it achieved

across all three servers. As an example, a peptide that received the

ranks 1, 5 and 20 would be assigned the rank 20. Using this ranking,

the 10 highest ranked peptides were selected. All peptides selected,

apart from one, had rank scores in the top 2%. Weak binders were

selected by identifying peptides with rank scores within the 3–5%

interval for each of the three servers. Five of these peptides were

then selected randomly. For non-binders, a summed rank score was

calculated for each peptide by summing its rank scores from each

server. The five peptides with the numerically largest summed rank

scores were then selected. Using the approach, 20 peptides (10

strong binders, five weak binders and five non-binders) were se-

lected per allele. We term these peptides consistently predicted pep-

tides. Some of these peptides overlapped with the divergent peptides

and were discarded. In summary, a total of 104 consistently pre-

dicted peptides were added to the final dataset.

2.6 Binding affinity measurements
The peptide-MHC binding assay has been described in detail else-

where (Sidney et al., 2001). Briefly, purified MHC molecules, test

peptides and a radiolabeled probe peptide are incubated for 2 days

at room temperature in the presence of human B2-microglobulin

and a cocktail of protease inhibitors. After the 2-day incubation,

binding of the radiolabeled peptide to the corresponding MHC-I

molecule is determined by capturing peptide-MHC complexes on

W6/32 antibody (anti-HLA-A, B and C) coated plates and measur-

ing the bound cpm using a microscintillation counter.

3 Results

3.1 Initial IEDB benchmark
The automated MHC-I server benchmark was initially performed

on data added to the IEDB from January 1, 2013 to March 1, 2014.

During this time, 71 references containing MHC ligand assays were

added to the IEDB. These references were either direct submissions

to the IEDB or data curated from journal articles. The 71 IEDB ref-

erences were parsed for peptide binding affinity measurement data

with supported measurement types, MHC molecules and peptide

lengths. After filtering for peptides with appropriate lengths and

measurements against accepted MHC molecules, 36 datasets, from

12 different IEDB references, contained sufficient data to be eval-

uated. These 36 evaluated datasets contained 3791 peptide-MHC

measurements spread across 14 MHC molecules. Performance

scores for each server on these 36 datasets are listed in Table 1.

To summarize the overall performance of different methods, we

calculated percentage rank scores for each of the 33 datasets for

which predictions were made by two or more different methods

(Supplementary Table S1). As shown in the ranking scores depicted

in Figure 1, the ANN and NetMHCpan servers were the best per-

forming with comparable ranking scores, followed by SMM and fi-

nally ARB. Comparing the rank scores in Supplementary Table S1

to the absolute SRCC and AUC scores in Table 1, it becomes appar-

ent that averages over the ranks are preferable as an overall sum-

mary of relative prediction performance given the fact that not all

methods cover the same datasets. For example, the ARB server was

unable to provide predictions for three datasets covering the mol-

ecules HLA-C*07:01 and HLA-C*07:02. Only a small number of

training data are available for these MHC molecules, and as such, it

is expected that servers will perform poorly on these datasets, as was

indeed the case for the three other methods. Thus, methods attempt-

ing to make predictions for poorly characterized MHC molecules

would be punished unequally when considering average absolute

performance measures, while the use of rank scores, which are cen-

tered around 50 for all datasets, avoids this bias.

3.2 Weekly IEDB benchmarks
After the initial IEDB benchmark, the automated framework began

running weekly benchmarks on March 21, 2014. Figure 2 shows the

accumulative number of peptides benchmarked after each weekly

benchmark. In general, less than 20 measurements are added to the

IEDB each week, stemming from curated scientific literature. These

measurements are often distributed among different MHC mol-

ecules or lengths, or are measured using different assays, meaning

they are not large enough to meet the inclusion criteria for a bench-

mark dataset. This can be seen in Figure 2, as in most weeks, no new

data are included. However, based on past experience and the sub-

mission statistics from 2013, every 3–6 months a large amount of

data are added to the IEDB, often in a single submission. Data from

these large submissions make up the bulk of the measurement data

run by the automated benchmark. Figure 3 shows the number of

unique alleles in the automated benchmark with at least a single

evaluated dataset. The number of unique alleles will likely increase

with upcoming large data submissions to the IEDB.

Cumulative ranking scores for each participating server were cal-

culated each week during the first 2 months of automated weekly

benchmarks. The scores are plotted in Figure 4. As benchmarks are

run so frequently with the automated framework, there was a risk

that the top-performing server (which users will be recommended

for their prediction) also changes frequently. Figure 4 shows that

this is not the case, as each server’s position in terms of ranking

score is relatively stable. This is at least partially due to the fact that

during the first 2 months of weekly benchmarks, only seven new

datasets were benchmarked. This corresponds to roughly 20% of

the datasets present in the initial IEDB benchmark. As the cumula-

tive ranking score takes into account all datasets submitted within

the three previous months, the newly added datasets did not have

enough weight to significantly impact the performance rankings.

3.3 Dedicated dataset benchmark
The results above demonstrate that the continuous addition of data

to the IEDB provides a stream of benchmark datasets that can be

used to compare prediction performances of MHC-I binding predic-

tion methods in an automated manner. On the other hand, there are

downsides to relying on IEDB datasets for benchmarking. Peptides

in the IEDB datasets are often chosen because of their high predicted

affinity. It is thus possible that gaps in our knowledge remain for

peptides in poorly covered sequence spaces. Also, for many peptides,

all methods make very similar predictions, and such data points will

not help discriminate which methods perform better. To deal with

these issues, we generated a dedicated peptide dataset by making

predictions for a large number of peptides and asking which pep-

tides would be most information rich when it comes to differentiat-

ing between individual prediction methods (see Section 2 for

details). A total of 312 unique peptide-MHC combinations were se-

lected of which 208 were divergently predicted peptides and 104

were consistently predicted peptides (Supplementary Table S2). We

term this set of peptides the dedicated dataset. The peptides were

synthesized and binding affinities were measured for each peptide-

MHC combination and submitted to the IEDB as a regular data
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Table 1. Server performance values for the initial IEDB benchmark

IEDB reference Allele
Peptide

length

Peptide

count

Positive

count

Measurement

type

NetMHCpan SMM ANN ARB

SRCC AUC SRCC AUC SRCC AUC SRCC AUC

1026840 HLA-A*02:01 9 24 14 IC50 0.340 0.671 0.327 0.636 0.265 0.593 0.402 0.693

1026941 HLA-A*02:01 9 10 6 IC50 0.677 0.917 0.791 0.958 0.864 1.000 0.717 0.917

1026371 HLA-A*02:01 9 85 49 t1/2 0.559 0.812 0.557 0.811 0.576 0.819 0.563 0.811

1026840 HLA-A*02:01 9 24 7 t1/2 0.439 0.739 0.382 0.748 0.321 0.689 0.447 0.706

1026840 HLA-A*02:01 9 357 76 Binary 0.576 0.906 0.568 0.900 0.547 0.886 0.564 0.898

1026941 HLA-A*02:01 9 10 6 Binary 0.711 0.917 0.782 0.958 0.853 1.000 0.711 0.917

1026371 HLA-A*02:01 10 22 12 t1/2 0.152 0.567 0.144 0.558 0.191 0.583 0.106 0.533

1026891 HLA-A*11:01 9 22 19 Binary 0.094 0.579 0.115 0.596 0.136 0.614 �0.115 0.404

1026840 HLA-A*24:02 9 20 12 IC50 0.209 0.667 0.400 0.771 0.209 0.635 0.046 0.500

1026840 HLA-A*24:02 9 357 49 Binary 0.444 0.873 0.405 0.839 0.438 0.868 0.404 0.836

1026891 HLA-A*24:02 9 21 16 Binary 0.129 0.587 0.000 0.500 0.037 0.525 0.000 0.500

1026840 HLA-A*30:01 9 349 8 Binary 0.160 0.809 0.151 0.791 0.141 0.771 0.108 0.708

1026840 HLA-A*30:02 9 56 35 IC50 0.011 0.483 0.121 0.569 0.134 0.601 0.269 0.661

1026840 HLA-A*30:02 9 56 14 t1/2 0.053 0.503 0.065 0.502 0.185 0.554 0.152 0.523

1026840 HLA-A*30:02 9 360 109 Binary 0.425 0.767 0.361 0.728 0.403 0.753 0.249 0.661

1026840 HLA-A*68:01 9 35 13 IC50 0.631 0.843 0.625 0.794 0.651 0.843 0.526 0.774

1026840 HLA-A*68:01 9 35 19 t1/2 �0.316 0.322 �0.425 0.253 �0.407 0.266 �0.385 0.308

1026840 HLA-A*68:01 9 436 43 Binary 0.385 0.873 0.374 0.863 0.383 0.871 0.336 0.791

1026371 HLA-B*07:02 9 43 17 t1/2 0.858 0.952 0.790 0.959 0.839 0.964 0.529 0.783

1026840 HLA-B*07:02 9 296 25 binary 0.375 0.889 0.387 0.903 0.385 0.899 0.366 0.880

1026371 HLA-B*07:02 10 25 9 t1/2 0.663 0.785 0.577 0.729 0.583 0.736 0.568 0.715

1026891 HLA-B*40:01 9 20 9 Binary 0.671 0.889 0.532 0.808 0.619 0.859 0.566 0.828

1026897 HLA-B*40:01 9 18 5 Binary 0.466 0.800 0.562 0.862 0.466 0.800 0.466 0.800

1026897 HLA-B*40:01 10 12 2 Binary 0.648 1.000 0.648 1.000 0.648 1.000 0.722 1.000

1026897 HLA-B*55:02 9 11 3 Binary 0.645 0.917 — — — — — —

1026840 HLA-B*58:01 9 35 17 IC50 0.362 0.716 0.319 0.668 0.267 0.650 0.209 0.546

1026840 HLA-B*58:01 9 35 5 t1/2 0.162 0.553 0.151 0.613 0.224 0.627 0.180 0.593

1026840 HLA-B*58:01 9 437 46 Binary 0.385 0.862 0.400 0.879 0.380 0.857 0.361 0.840

1026891 HLA-B*58:01 9 20 12 Binary 0.637 0.875 0.442 0.760 0.638 0.875 0.584 0.844

1026897 HLA-B*58:01 9 25 5 Binary 0.485 0.850 0.541 0.890 0.485 0.850 0.416 0.800

1026897 HLA-B*58:01 10 18 3 Binary 0.330 0.756 0.101 0.578 0.129 0.600 0.537 0.889

1026891 HLA-C*03:04 9 20 11 Binary 0.706 0.909 — — — — — —

1026840 HLA-C*07:01 9 18 12 IC50 �0.181 0.542 �0.013 0.389 0.166 0.611 — —

1026840 HLA-C*07:01 9 439 31 Binary 0.248 0.780 0.134 0.654 0.229 0.758 — —

1026891 HLA-C*07:02 9 20 7 Binary 0.245 0.648 0.391 0.736 0.409 0.747 — —

1026891 HLA-C*08:01 9 20 12 Binary 0.566 0.833 — — — — — —

Total: 3791 738 Average: 0.388 0.761 0.355 0.733 0.376 0.749 0.353 0.722

Each dataset has a unique combination of allele, peptide length and measurement type. Only datasets with a peptide count of at least 10 and at least 2 positive

and 2 negative measurements are reported.

Fig. 1. Ranking scores for the initial IEDB benchmark. The scores for each ser-

ver are calculated based on AUC performance, SRCC performance and both

performance measures

Fig. 2. The accumulated number of peptide-MHC measurements bench-

marked by the automated benchmarking framework during its first 2 months.

A total of 311 new measurements were identified and run during this time

period
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submission. The measurement data can be found online at: http://

www.iedb.org/refid/1028554.

Submitting the dedicated dataset to the IEDB triggered its inclu-

sion in the same prediction evaluation pipeline that is used for all

other IEDB submissions. AUC and SRCC performance metrics for

each server for five of the MHC molecules are listed in Table 2 and

corresponding percentage rank scores in Supplementary Table S3.

The HLA-B*53:01 dataset was automatically excluded from the

benchmark as none of the peptides in the dataset were measured to

be positive binders. The average rank scores for the dedicated data-

set are displayed in Figure 5 and show that ANN was the best per-

forming server with an overall ranking score of 70, followed by

NetMHCpan with 63, SMM with 53 and finally ARB with a low

score of 13.

Thus, the overall performance ranking of the methods in the

initial IEDB benchmark and the dedicated dataset benchmark is

in agreement. An interesting observation is that the SMM

method performed much better in terms of AUC than in terms of

SRCC performance. This trend was also true for the initial IEDB

benchmark above and was observed by us on other occasions previ-

ously. This suggests that the neural-network-based methods, com-

pared with the SMM method, are better at correctly ranking

individual peptides beyond the classification task into binders and

non-binders.

3.4 Online results
The automated MHC-I server benchmark is run weekly on new data

submitted to the IEDB. As such, server rankings are updated each

time a sufficient amount of new measurement data are identified

and run through the benchmark pipeline. Up-to-date performance

evaluations of each server can be found online at http://tools.iedb.

org/auto_bench/mhci/weekly/. A screenshot of the results page is

shown in Figure 6. The overall conclusion from running this bench-

mark for a period of 2 months is hence that the relative performance

ranking from best to worst of the four participating predictions

methods is NetMHCpan and ANN closely tied with overall ranking

scores of 67 and 66, respectively, followed by SMM with a score

of 48 and finally ARB with a score of 29. These results are based on

a large dataset covering 17 HLA alleles and more than 4000 pep-

tide-MHC measurements and are hence expected to be as un-

biased as possible given the fact that prediction methods in many

situations are used to guide peptide selection prior to experimental

validation.
Fig. 3. The number of unique alleles benchmarked by the automated bench-

marking framework

Fig. 4. The accumulated ranking score for each participating server, calcu-

lated after each weekly benchmark run during the first 2 months

Fig. 5. Ranking scores calculated based on performance values from the dedi-

cated dataset benchmark

Table 2. Server performance values for the dedicated dataset benchmark

IEDB

reference
Allele

Peptide

length

Peptide

count

Positive

count

Measurement

type

NetMHCpan SMM ANN ARB

SRCC AUC SRCC AUC SRCC AUC SRCC AUC

1028554 HLA-A*02:01 9 44 7 IC50 0.696 0.888 0.581 0.898 0.620 0.828 0.507 0.761

1028554 HLA-B*07:02 9 52 6 IC50 0.617 0.772 0.661 0.851 0.698 0.884 0.654 0.757

1028554 HLA-B*35:01 9 56 3 IC50 0.364 0.679 0.206 0.591 0.273 0.566 0.260 0.642

1028554 HLA-B*44:03 9 46 3 IC50 0.457 0.612 0.466 0.752 0.559 0.651 0.249 0.558

1028554 HLA-B*57:01 9 53 10 IC50 0.619 0.863 0.331 0.765 0.519 0.944 0.124 0.628

Total: 251 29 Average: 0.551 0.763 0.449 0.771 0.534 0.775 0.359 0.669
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4 Discussion

Prediction of peptide binding to MHC molecules has over the last

decades become a key and critical component of most rational epi-

tope discovery projects, and large efforts have been invested in de-

veloping methods with high accuracy in making such predictions.

Given the large number of available methods, it is difficult for the end

user to judge which method is optimal for a given task. Here, we have

designed a pipeline for the automated benchmarking of methods pre-

dicting peptide binding to MHC-I molecules, where methods are eval-

uated on data submitted to the IEDB prior to the data being made

publicly available. To enable easy access to participation in the bench-

mark, the requirements to join are limited to a minimum and partici-

pants are only required to set up and host a simple RESTful web

service. The benchmark is run on a weekly basis, and the results are

reported at a publicly available website in terms of both an overall

and easy interpretable performance score for each participating

method, as well as in terms of the detailed performance numbers for

each method for each benchmark dataset included in the evaluation.

This type of reporting makes the evaluation and calculation of evalu-

ation scores fully transparent to the community.

While setting up the automated benchmarking framework, we

chose to include only a limited set of methods initially. We chose

four representative methods, with two matrix-based methods (SMM

and ARB) and two neural-network-based methods (ANN and

NetMHCpan) where one was a pan-specific method. Moving for-

ward, we will add multiple additional methods, including

SMMPMBEC (Kim et al., 2009), an updated version of SMM that

has shown superior predictive performance compared with SMM in

previous benchmarks; IEDB consensus (Moutaftsi et al., 2006), the

consensus method currently recommended at the IEDB Analysis

Resource (Kim et al., 2012) as well as the consensus method

NetMHCcons (Karosiene et al., 2012) and the pan-specific method

PickPocket (Zhang et al., 2009b).

In creating a scoring scheme for the automated benchmark, we

wanted to utilize a metric that both accurately reflects performance

and is easily understood. For ease of comparison, we wanted to cre-

ate a single summary metric that allows users to compare two or

more methods. However, we acknowledge that a single summary

ranking will not in all situations accurately reflect performances. We

are currently aware of at least two weaknesses that may become

problematic in the future. As there is no penalty for not providing

predictions for any given allele, it is currently possible for a method

to obtain a high ranking score by opting to only participate on al-

leles for which the method is known to have a strong performance.

Although this is currently not a problem, we are prepared to alter

the scoring scheme if this becomes a practical issue. This will entail

introducing a set of ‘representative alleles’ for which a large amount

of training data are available and for which all participating meth-

ods must provide predictions or suffer a penalty. Another weakness

is that each dataset has an equal impact on the final ranking scores,

in spite of the fact that some datasets will inherently be more diffi-

cult to predict correctly than others (Kim et al., 2014). Inspired by

the evaluation strategy used in CASP (Cozzetto et al., 2009), we are

considering adding an evaluation weight to each dataset based on

the Z score of the performance evaluations. Thus, a dataset where

all methods have similar performances will be weighted low,

whereas a dataset where some methods perform well and others

poorly will be weighted high.

Another critical issue for the automated benchmark relates to

how performance should be reported for methods that join the

benchmark at different times. In the benchmarks described here, this

has not been a critical issue, as all methods have been part of the

automated benchmark from the beginning. In the future when novel

methods will join the benchmark at different time points, it is critical

to define how the performances of the different methods will be re-

ported. Ideally, the performance reported for the different methods

participating in the benchmark should be evaluated on an identical

dataset for the performance values to be comparable. On the other

hand, it would be important for the method developers joining the

benchmark to see the performance of their method compared with

others as quickly as possible. To deal with this issue, the following

enrollment and evaluation strategy has been implemented. The over-

all benchmark performance score is calculated in a time window of

3 months. Novel methods can join the benchmark at any point but

will only be included in the cumulative ranking comparison with

other methods after participating in the benchmark for 3 months.

This way, all methods are evaluated on identical datasets when it

comes to the overall ranking score. Performance measures on indi-

vidual datasets will be available with no time delay and all partici-

pating servers will receive weekly ranking scores as soon as new

data are benchmarked. An archive of historical benchmark datasets

and server evaluations is kept and made publicly available.

The results presented in Table 1 show that server performance

rankings may vary substantially between different datasets. For ex-

ample, of the six HLA-A*02:01 9mer datasets, ANN was the top

performing method for three datasets yet in last place for the other

three. Given the small size and heterogeneous sources of some data-

sets, such variability is not unexpected. We expect that the 3-month

accumulated ranking scores will help minimize the inherent per-

formance variations by giving users ranking scores based on a large

number of datasets. We strongly recommend that users refer to these

scores when choosing which prediction tool to use.

It is important to keep in mind that the ranking scores do not

provide information about the absolute predictive performance of

the methods. The scores are only meaningful in the context of each

Fig. 6. A screenshot of the results page for the automated MHC-I benchmark.

The individual dates may be clicked on to view detailed information on the

evaluation datasets benchmarked that week
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other, as they show how the methods rank among each other. For

example, a method with a ranking score of 100 is per definition the

best performing method across all datasets. However, the method

may have achieved this with AUC scores of 0.75 and SRCC scores

of 0.5, as long as the rest of the methods scored lower. On the other

hand, a method with a ranking score of 0 may still provide good pre-

dictions, the other methods simply performed better.

The benchmark has been running stably since March 2014 with

four participating prediction methods (SMM, ANN, NetMHCpan

and ARB). The overall conclusion taken from the benchmark results

is that the best performing method is NetMHCpan with an accumu-

lated overall ranking score of 67, followed by ANN with a score of

66, SMM scoring 48 and ARB scoring 29.

We believe this pipeline will be an important help for future pre-

diction tool developers as both the benchmark evaluation data and

predictions from all participating servers are made publicly available

to the community. Given the minimal effort involved in joining the

benchmark, we expect that the pipeline will act as the common

benchmark platform for evaluation of future peptide-MHC-I bind-

ing prediction methods. The use of a common benchmark platform

will be of significant importance to the end-user working within epi-

tope discovery, enabling an educated selection of which prediction

tool to use for the given task at hand.

This is the first automated benchmark platform developed

within the field of immunoinformatics. In the future, we expect to

expand the platform to cover other aspects of epitope identification,

including prediction of naturally processed ligands, T-cell epitopes

and B-cell epitopes.
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