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Abstract

Motivation: RNA sequencing analysis methods are often derived by relying on hypothetical paramet-

ric models for read counts that are not likely to be precisely satisfied in practice. Methods are often

tested by analyzing data that have been simulated according to the assumed model. This testing strat-

egy can result in an overly optimistic view of the performance of an RNA-seq analysis method.

Results: We develop a data-based simulation algorithm for RNA-seq data. The vector of read

counts simulated for a given experimental unit has a joint distribution that closely matches the dis-

tribution of a source RNA-seq dataset provided by the user. We conduct simulation experiments

based on the negative binomial distribution and our proposed nonparametric simulation algo-

rithm. We compare performance between the two simulation experiments over a small subset of

statistical methods for RNA-seq analysis available in the literature. We use as a benchmark the

ability of a method to control the false discovery rate. Not surprisingly, methods based on paramet-

ric modeling assumptions seem to perform better with respect to false discovery rate control when

data are simulated from parametric models rather than using our more realistic nonparametric

simulation strategy.

Availability and implementation: The nonparametric simulation algorithm developed in this article

is implemented in the R package SimSeq, which is freely available under the GNU General Public

License (version 2 or later) from the Comprehensive R Archive Network (http://cran.rproject.org/).

Contact: sgbenidt@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past decade, new high-throughput next-generation

sequencing technology has become readily available for gene expres-

sion profiling of RNA samples. The new next-generation sequencing

technology has unseated the previous dominance of microarray

technology, offering low sequencing costs, more detailed sequencing

information and a wider range of signal detection.

A main focus in the statistical analysis of an RNA-seq dataset is

the detection of differential expression. A gene is considered to be

differentially expressed (DE) across a set of conditions if the

mean gene expression level (as measured by RNA-seq read count)

differs among any of the conditions. Otherwise, we say the gene is

equivalently expressed (EE) or is a null gene. For the sake of

exposition, we assume that the statistical analysis under discussion

is on the gene level, though our comments could apply equally well

to count datasets involving other genomic features for which counts

can be reliably obtained.

1.1 Benchmarks for simulation experiments
Many researchers design simulation experiments to study the effi-

cacy of their proposed methods over a range of differing situations.

In the case of RNA-seq data, such studies frequently rely on simulat-

ing counts from a known parametric distribution such as negative

binomial (NB), with parameters guided by a real RNA-seq dataset.

However, datasets simulated in this manner do not necessarily

match the complex structure of the RNA-seq datasets they attempt

to emulate. In this article, we propose a nonparametric simulation
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algorithm for the construction of an RNA-seq dataset with two in-

dependent treatment groups. The simulated dataset closely matches

the complex structure of real RNA-seq data. We refer to this data-

based simulation procedure as the SimSeq algorithm.

Data-based simulation procedures have been used to simulate

gene expression experiments. A data-based simulation procedure in-

volves subsampling from a large source dataset in such a way that

the underlying truth of the dataset is known, e.g. the null hypothesis

of no difference in population mean expression is satisfied. Gadbury

et al. (2008) proposed a simulation procedure for constructing

plasmode microarray datasets from a high dimensional microarray

dataset. Nettleton et al. (2008) developed a different data-based

simulation method for microarray data to validate a proposed multi-

response permutation procedure for gene set testing. Liang and

Nettleton (2010) made use of this same simulation strategy to evalu-

ate a hidden Markov model for microarray data. Robinson and

Storey (2014) used a resampling method based on the binomial dis-

tribution to determine optimal sequencing depth in an RNA-seq

experiment. Love et al. (2014) used a data-based simulation proced-

ure to support their DESeq2 methodology for RNA-seq data ana-

lysis. Griebel et al. (2012) developed an RNA-seq simulation

procedure that mimics the data generating process. Reeb and Steibel

(2013) developed another plasmode simulation algorithm for RNA-

seq datasets. Although the concept of data-based simulation in gene

expression experiments is not new, the novelty of our proposed

method lies in the specific implementation of our nonparametric

simulation algorithm for RNA-seq data.

We conduct two simulation studies, one using a standard para-

metric simulation approach based on NB distributions and the other

using our proposed nonparametric simulation algorithm. We do so

for a small subset of statistical methods in the literature: DESeq2

(Anders and Huber, 2010; Love et al., 2014), edgeR (McCarthy

et al., 2012; Robinson and Smyth, 2007, 2008; Robinson et al.,

2010), QuasiSeq (Lund et al., 2012), Voom (Law et al., 2014) and

SAMseq (Li and Tibshirani, 2013). Unlike most simulation studies,

the main focus of our work is a comparison of simulation methods

rather than a comparison of the analysis methods. We are unaware

of other RNA-seq simulation studies that conduct a side-by-side

comparison of a data-based simulation procedure and a parametric

simulation procedure.

We use the average false discovery proportion (FDP) compared

with nominal false discovery rate (FDR) as a benchmark of perform-

ance for a given statistical method. FDP is defined to be zero when-

ever no null hypotheses are rejected and is otherwise the number of

false positives (type I errors) divided by the number of rejected null

hypotheses. The FDR introduced by Benjamini and Hochberg

(1995) is the expected value of FDP. Thus, a comparison of average

FDP to nominal FDR allows us to empirically evaluate how well an

analysis method controls FDR for a given simulation method.

In our simulation experiments, we find that average FDP is typic-

ally lower under the standard parametric simulations. Thus, simula-

tion studies based on parametric simulations may give a misleading

view of the effectiveness of a proposed statistical method for RNA-seq

data analysis. We believe that using the nonparametric SimSeq algo-

rithm gives a more accurate picture of the performance of a given

method to detect differential expression while controlling FDR.

2 Preliminaries

2.1 Notation
Let Y be a matrix of RNA-seq read count data, and let ygit be a single

read count in Y, where g ¼ 1; . . . ;G indexes genes, i ¼ 1; . . . ;Nt

indexes experimental units within each treatment group and t¼1, 2

indexes the two treatment groups. Let G � f1; 2; . . . ;Gg be the

index set of all genes in Y. As explained in more detail in Section 3,

we assume that both N1 and N2 are relatively large. We refer to Y as

the source dataset and assume the entries of Y are arranged as

follows:

Y ¼

y111 y121 . . . y1N11 y112 y122 . . . y1N22

y211 y221 . . . y2N11 y212 y222 . . . y2N22

F F . .
.

F F F . .
.

F

yG11 yG21 . . . yGN11 yG12 yG22 . . . yGN22

2
6666664

3
7777775
:

2.2 Choice of normalization factors
In modeling the read counts within a given gene and treatment

group, we cannot assume that the data are identically distributed

due to differing levels of sequencing between the experimental units.

Therefore, we model the mean gene expression level within a given

gene g and treatment group t as having a common mean kgt that is

altered by an experimental unit-specific multiplicative normalization

factor cit, so that

EðygitÞ ¼ kgtcit

for g 2 G; i ¼ 1; . . . ;Nt and t¼1, 2.

There have been many methods proposed for calculation of

the multiplicative normalization factors. Bullard et al. (2010) sug-

gested taking the 0.75 quantile of all counts within an experimen-

tal unit, excluding genes with all zero counts across the entire

dataset. Anders and Huber (2010) proposed the following: within

each experimental unit i in treatment t, compute the ratio of the

count of gene g divided by the geometric mean of all counts for

gene g and then take the median of the computed values over the

set of all genes, skipping genes with a geometric mean of zero.

Robinson and Oshlack (2010) proposed the trimmed mean of M

values (TMM), which uses a weighted trimmed mean of log ex-

pression ratios. Of the three methods listed, the TMM method

offers the lowest coefficient of variation in expression (Dillies

et al., 2013).

2.3 Subsampling distributions
We make use of the following result in the SimSeq algorithm to

simulate DE genes. For a given gene g 2 G, let yg�1 ¼ ðyg11; . . . ;

ygN11Þ and yg�2 ¼ ðyg12; . . . ; ygN22Þ. Suppose we wish to sub-

sample y�1 ¼ ðy�11; . . . ; y�1nÞ from yg�1 and y�2 ¼ ðy�21; . . . ; y�2nÞ from

yg�2 where n�min fN1;N2g. Then the conditional distribution of

y�1 given yg�1 and the conditional distribution of y�2 given yg�2 are

known exactly and are different provided that yg�1 is not a per-

mutation of yg�2.

3 The SimSeq algorithm

SimSeq simulates a matrix of RNA-seq read counts by subsampling

columns from a large source RNA-seq dataset and then swapping in-

dividual read counts within genes adjusted by a correction factor to

create differential expression. The SimSeq algorithm takes the fol-

lowing as a set of inputs: a source RNA-seq dataset Y with two inde-

pendent treatment groups as described in Section 2.1; a vector c of

computed normalization factors with one element for each column

of the source dataset; the number of EE genes G0 and DE genes G1

in the simulated matrix where G0 þG1�G and the number of
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columns n in each of the two treatment groups in the simulated ma-

trix where n�min fN1; N2=2b cg where �b c is the floor function.

The SimSeq algorithm outputs a matrix of RNA-seq read counts

with G0 EE genes and G1 DE genes with n columns in each of two

independent treatment groups. Recall from Section 2.1 that G is the

index set of all genes in Y. The following algorithm describes the

simulation procedure:

1. For each g 2 G, calculate a P value from a test of differential ex-

pression using the Wilcoxon Rank Sum test.

2. Given the set of calculated P values, calculate the local fdr for

each gene (Strimmer, 2008a, b) using the fdrtool package.

3. A vector of probability sampling weights w is computed as one

minus the local fdr for each gene g scaled to sum to unity.

4. Randomly select G1 genes to be DE from G without replacement

according to the vector of probability sampling weights w and

denote this set G1.

5. Randomly select G0 genes to be EE from GnG1 without replace-

ment according to equal weights and denote this set G0. Let G�

� G0 [ G1 be the set of all EE genes and DE genes chosen in steps

1 and 2.

6. Randomly select one column y without replacement from the

first treatment group of Y. Subset y down to the set of genes G� to

create the column x1. Assign x1 to simulated treatment group 1.

7. Randomly select one column without replacement from each

treatment group in Y and denote these two columns as Y1 and

Y2. Let c1 and c2 be their corresponding multiplicative normal-

ization factors from c.

8. Subset the two columns Y1 and Y2 to the set of genes G�.
9. Create the column x2 in the following way. For each gene g 2 G�

let

x2g ¼
y1g if g 2 G0

y2g � c1=c2 þ 0:5
� �

if g 2 G1

;

(

where �b c is the floor function, so that y2g � c1=c2 is rounded to the

nearest integer. Let x2 be the vector whose entries are fx2g : g 2 G�g.
Assign x2 to simulated treatment group 2. (Note that c1=c2 is a cor-

rection factor to allow the read counts in x2 to have a consistent nor-

malization factor.)

10. Repeat steps 6–9 a total of n times with columns sampled with-

out replacement across each iteration.

We have then assembled a matrix of RNA-seq counts with G1 DE

genes and G0 EE genes with respect to the finite population of the

sampled data in the source dataset for each gene. There is no guar-

antee that a gene that is DE in the simulated dataset with respect to

this finite population is DE in a (hypothetical) population from

which the source dataset is a sample. However, this distinction is

not important for simulation purposes because we are sampling

from the finite population defined by the source dataset in which

differential expression is guaranteed (see Section 2.3).

A slight modification to the algorithm allows us to work with

source datasets with a paired treatment design. We now require that

2n�min fN1;N2g. In step 1, we use the Wilcoxon Signed Rank test

instead of the Wilcoxon Rank Sum test. We modify step 6, so that a

pair of columns stemming from one experimental unit is selected

without replacement, and we let column 1 of the pair be y. Then in

step 7, a pair columns stemming from another experimental unit is

selected without replacement, and we let column 1 in the pair be Y1

and column 2 of the pair be Y2. Then proceed as normal in steps

8 and 9. An illustration of this algorithm for paired data is given

in Figure 1.

In the algorithm, a vector of probability sampling weights w is

provided that allows the user to control the distribution of effect

sizes for the DE genes. As described in the algorithm above, one

minus the local fdr for each gene g 2 G is used to define the vector of

probability sampling weights w. One minus local fdr provides an

estimate of the conditional probability of differential expression,

given the P value in the context of the collection of observed P val-

ues for all genes. With this choice for w, genes exhibiting the most

evidence for differential expression in the source dataset are more

likely to be included in G1 than other genes. However, all genes with

local fdr less than one have some chance for inclusion in G1. This

strategy avoids problems with selection bias that could occur if only

the genes most DE in the source dataset were used to define G1.

However, users are free to use other choices for w to control the

extent of differential expression in their simulations. For example,

users could assign zero weight to genes exhibiting fold changes

below a specified minimal threshold if desired.

A straightforward extension allows for three or more independ-

ent treatment groups to be simulated from a source dataset with

only two treatment groups by repeated callings of the SimSeq algo-

rithm on the same set of genes. A more detailed description along

with example source code to simulate three treatment groups is pro-

vided in the Supplementary Materials.

One benefit of simulating an RNA-seq dataset using this algo-

rithm is that our method of simulation preserves much of the ori-

ginal complex gene dependence structure of the source dataset. This

is in contrast to parametric simulation algorithms that simulate data

independently for each gene. The algorithm also allows for extreme

values to be sampled from the source dataset that may not show up

under a parametric simulation procedure. A straightforward gener-

alization of the algorithm allows for three or more independent

treatment groups. One drawback to this method is that simulation

of more complicated designs, such as designs depending on covari-

ates, is not available. The SimSeq package implements the algorithm

for simulating two independent treatment groups, which is the type

of design most often studied in practice.

We suggest using source datasets with sufficiently large sample

sizes in each treatment group relative to the desired sample sizes in

each of the simulated treatment groups. Suppose a sample size of n

is desired in each of the simulated treatment groups. For a paired

source dataset, 2n pairs of columns are used in the simulation algo-

rithm, so that a minimum sample size of 2n in each treatment group

is required in the source dataset to run the algorithm. However, a

greater number of data columns in each group are recommended to

ensure that simulated datasets are sufficiently different from each

other. A minimum sample size of 4n in each treatment group seems

to be adequately conservative for values of n�5. If we were to hold

the same set of genes constant for each simulated matrix, there

would be at least
20

10

 !
10

5

 !
¼ 46 558 512 possible simulation

datasets based on this rule using a source dataset with paired data.

For smaller sample sizes in each simulated treatment group, a sam-

ple size of 8n for n¼3 or n¼4 and 16n for n¼2 is recommended to

increase the number of possible simulation datasets.

4 Preservation of source data characteristics

We assessed the ability of the SimSeq algorithm to preserve charac-

teristics of the Kidney Renal Clear Cell Carcinoma (KIRC) RNA-seq

dataset from The Cancer Genome Atlas project (The Cancer

Genome Atlas Research Network, 2013). We simulated two
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hundred SimSeq and NB datasets with 4000 EE genes and 1000 DE

genes each with a sample size of 10 in each treatment group (see

Section 5.3 for full details of the simulation algorithm).

Kernel density estimates of the empirical distribution of sample

average, sample variance and log base 2 fold change across genes

are presented in Figure 2. On average, the estimated empirical distri-

bution of the sample average, the sample variance and the log base 2

fold change across the set of simulated RNA-seq datasets matches

that of the original source dataset. The estimated empirical distribu-

tions of the log base 2 fold change exhibit more variation than the

estimated empirical distributions of the sample average and sample

variance.

Figure 3 plots histograms of Spearman’s rank correlation for a

fixed pair of genes involved in epithelial cell differentiation across

200 SimSeq simulated datasets and across 200 NB simulated data-

sets. For each simulated dataset, the computed value of Spearman’s

rank correlation in the fixed gene pair was based on the set of nor-

malized read counts [using TMM normalization (Robinson and

Oshlack, 2010)]within each gene. The empirical distribution of

Spearman’s rank correlation for the NB simulated datasets is cen-

tered at zero, whereas the empirical distribution is centered around

the Spearman’s rank correlation value of 0.817 in the KIRC dataset.

Figure 4 shows scatterplots of Spearman’s rank correlation for 28

genes involved in epithelial cell differentiation [GO:0030855

(Ashburner et al., 2000)] for one SimSeq simulated dataset versus

the KIRC dataset and one NB simulated dataset versus the KIRC

dataset. There is a strong positive linear trend for the SimSeq simu-

lated data, whereas no trend is apparent for the NB simulated data.

Figure 5 gives a smoothed kernel density estimate of the mean-

variance relationship for the KIRC dataset, one NB simulated data-

set and one SimSeq simulated dataset. The plot indicates that the

mean-variance relationship of both of the simulated datasets

matches that of the source dataset. Figure 6 gives a MA plot of the

log base 2 fold change versus the log base 2 concentration [log

counts per million or log CPM (Robinson et al., 2010)] for the

KIRC dataset, one NB simulated dataset and one SimSeq simulated

dataset. The empirical distribution of the log base 2 fold change of

both simulated datasets exhibits variability similar to that of the

source dataset.

5 Simulation study

We performed a parametric simulation study based on the NB

model and compared results with a nonparametric simulation study

using SimSeq. Rather than studying the entire corpus of statistical

methods available for RNA-seq data, we instead elected to focus on

several popular methods: DESeq2 (Anders and Huber, 2010; Love

et al., 2014), edgeR (McCarthy et al., 2012; Robinson and Smyth,

2007, 2008; Robinson et al., 2010), QuasiSeq (Lund et al., 2012),

Voom (Law et al., 2014) and SAMseq (Li and Tibshirani, 2013). We

used the Wald test from the DESeq2 package (Anders and Huber,

2010; Love et al., 2014), the GLM likelihood ratio test from the

edgeR package, the NegBinQLSpline method from the QuasiSeq

package, the voom method from the limma package and the

SAMseq method from the samr package. The following package ver-

sions were used: DESeq2 version 1.6.3, edgeR version 3.8.5,

QuasiSeq version 1.0-4, limma version 3.22.1 and samr version 2.0.

All default values of functions were used, except for the case of

DESeq2, which we explain in further detail in Section 5.1.

5.1 Gene filtering criteria
A common practice in RNA-seq analysis is to exclude genes with

average expression less than a particular threshold. Genes with low

Fig. 1. Illustration of the SimSeq algorithm for a source RNA-sequence dataset with a paired treatment design. A simulated dataset with n samples in each of two

independent treatment groups is created
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expression values tend to show little evidence of differential expres-

sion. By removing low count genes from the analysis, q values

(Storey, 2002) for the remaining genes may decrease, allowing for

more genes to be declared DE for a given multiple decision testing

rule. Removing low count genes may also reduce the computational

expense of subsequent analysis.

By default, DESeq2 applies two sets of filtering criteria (Love

et al., 2014). The first set of criteria is known as automatic inde-

pendent filtering. DESeq2 chooses a threshold for removal based on

the value that will maximize the number of genes declared DE using

a decision rule of estimated FDR (via Benjamini and Hochberg,

1995) less than 0.1. Because of computational stability of certain

methods and to ensure comparability between the methods, we

turned off the automatic independent gene filtering of the DESeq2

method and instead, applied a filtering rule where a given gene is

included only if it has an average read count of at least 10 and at

least two nonzero reads.

The second set of criteria DESeq2 uses is based on a Cook’s dis-

tance metric to flag outliers in the data. When sample size is between

three and six, DESeq2 automatically removes genes with counts

flagged as outliers, whereas for sample sizes of seven or more,

DESeq2 replaces counts flagged as outliers with a trimmed mean

over all samples in a given gene and treatment state, scaled by a nor-

malization factor. We ran each simulation experiment twice, once

with no Cook’s distance filtering and once with the DESeq2 Cook’s

distance filtering rule prior to further analysis by each of the four

methods.

5.2 Description of source dataset
We based our simulation experiments on the KIRC RNA-seq dataset

from The Cancer Genome Atlas project (The Cancer Genome Atlas

Research Network, 2013). The data were sequenced using the

Illumina HiSeq 2000 RNA Sequencing Version 2 analysis platform
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and the estimated raw count for each gene was computed using

RSEM software (Li and Dewey, 2011). The data are available

for download from The Cancer Genome Atlas: https://tcga-data.

nci.nih.gov/tcga/. The version of the KIRC dataset used was

unc.edu_KIRC.IlluminaHiSeq_RNASeqV2.Level_3.1.5.0.

The KIRC dataset includes 72 pairs of matched columns with

two samples from each individual affected with KIRC: one from a

tumorous region of the body and one from a non-tumorous region.

The dataset also contains additional columns of RNA-seq data from

KIRC tumor and unmatched non-tumor samples. There was also

one matched sample with a tumor type coded as an additional new

primary type as opposed to the primary solid tumor type. For simpli-

city of design, we subsetted the data down to the paired data and

omitted the additional new primary tumor type for a total of 72

pairs of matched columns of data over 20 531 genes.

5.3 Simulation experiments
In all our simulation experiments, 200 RNA-seq datasets were simu-

lated to contain 5000 total genes with 4000 EE genes and 1000 DE

genes. Genes in the simulated RNA-seq dataset that did not have an

average read count of at least 10 and at least 2 nonzero reads were

removed from the simulated matrix, and additional simulated genes

were added, so that gene counts remained constant at 4000 EE genes

and 1000 DE genes. We studied three different choices for the sam-

ple size within each treatment group: n¼5, n¼10 and n¼20. We

ran each set of simulations twice, once using DESeq2’s Cook’s dis-

tance filtering and once without the filtering criteria.

5.3.1 Nonparametric simulation

We shaped the KIRC dataset into the form of the source dataset

described in Section 2.1 and denote this dataset as Y. Let c be the vec-

tor of multiplicative normalization factors, which were computed by

applying the TMM method to Y using the calcNormFactors function

from the edgeR package. Let G be the set of all genes in Y.

For each simulated matrix of counts, the 1000 DE genes were se-

lected by the default weighting scheme discussed in Section 3 and de-

tailed as follows. Let i ¼ 1; . . . ; 72 index pairs of columns in Y, and

let ci1 and ci2 be the normalization factors for tumor and non-tumor

columns for pair I, respectively. Then for each gene g 2 G, let ygi1

and ygi2 be the tumor and non-tumor counts for pair i, respectively,

and let

dgi ¼ log
ygi1 þ 1

ci1

� �
� log

ygi2 þ 1

ci2

� �
for i ¼ 1; . . . ; 72:

Apply a Wilcoxon Signed Rank test on the differences,

dg1; . . . ; dg72, to obtain a P value for testing the null hypothesis of

Fig. 5. Mean-variance plots for (A) the KIRC dataset, (B) one SimSeq simulated dataset and (C) one NB simulated dataset. Each panel gives a smoothed kernel

density estimate of the mean-variance relationship
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Fig. 6. MA plots for (A) the KIRC dataset, (B) one SimSeq simulated dataset and (C) one NB simulated dataset
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no differential expression for each gene g 2 G. Given this set of

P values, the local fdr is computed by the fdrtool package

(Strimmer, 2008a, b). We then take one minus the local fdr for each

gene to determine the weight vector w. We then applied the SimSeq

algorithm for paired data (as described in Section 3) to obtain each

simulated dataset.

5.3.2 NB simulation

We simulated counts from an NB distribution with parameters

suggested by the KIRC dataset. For each g 2 G we modeled ygit as

NBðlgit;xgtÞ for i ¼ 1; . . . ;Nt and t¼1, 2, where EðygitÞ ¼ lgit

¼ kgtcit and VarðygitÞ ¼ lgit þxgtl2
git.

We estimated kgt based on the method of moments estimator

k̂gt ¼
P

iygitP
icit

. Because we seek to simulate NB data with respect to

two independent treatment groups, we estimated dispersions for

each gene and treatment group in the following manner. For each

gene g 2 G, let x̂g1 be the tagwise estimate from the edgeR package

using only the tumor treatment group data, rather than the paired

data in the source dataset. Similarly, let x̂g2 be the tagwise estimate

using only the non-tumor treatment group data.

To reduce Monte Carlo variability between the nonparametric

and parametric simulation procedures, we based the NB simulations

on the same set of randomly selected EE and DE genes and the same

set of randomly selected columns used in the nonparametric simula-

tion algorithm. For a given simulated matrix, let G0 be the set of

EE genes and G1 be the set of DE genes as randomly selected

in its corresponding nonparametric simulated matrix and let

G� ¼ G0 [ G1. Let c�11; . . . ; c�1n be the normalization factors from the

tumor treatment columns used to simulate the treatment group 1

data and c�21; . . . ; c�2n be the normalization factors from the tumor

columns used to simulate the treatment group 2 data in the nonpara-

metric simulation algorithm.

We simulate the matrix X with entries xgit where g 2 G�; i ¼ 1;

. . . ; n and t¼1, 2 as follows. For each gene g 2 G�, we simulate xgit

from NBðk�gtc
�
it;x

�
gtÞ where k�gt ¼ k̂g1 and x�gt ¼ x̂g1 if g 2 G0 and k�gt

¼ k̂gt and x�gt ¼ x̂gt if g 2 G1.

6 Simulation results

For each simulated matrix, the set of P values for each test of

differential expression was converted to q values (Storey, 2002) in a

manner equivalent to using the approach of Benjamini and

Hochberg (1995) for FDR control. The estimated FDR is c for

the multiple testing decision rule that rejects the null for the gth gene

if and only if its q value is no larger than cutoff c 2 ð0;1Þ. The

FDP at each cutoff was calculated as the number of type 1 errors

divided by the total number of genes declared DE. The average

FDP across replicate simulation runs provides empirical approxima-

tion of the true FDR for the q-value-based multiple testing decision

rule.

6.1 Results without Cook’s filtering applied
Figure 7 shows average FDP minus q-value cutoff plotted against its

corresponding q-value cutoff for each simulation algorithm (SimSeq

or NB) and analysis method without using Cook’s distance in gene

filtering. For the majority of statistical methods studied, the average

FDP minus the target FDR level was greater for SimSeq than for the

NB simulations. Using the voom method, average FDP minus the

target FDR level was slightly lower for SimSeq than for the NB

simulations at a sample size of 5 and showed little difference at a

sample size of 10. Under the SAMseq method, which is a nonpara-

metric method, there was little difference in terms of average FDP

between the simulation methods at a sample size of 10. When sam-

ple size was increased to 20, the same trend as when sample size

equaled 10 occurred.

Figure 8 contains boxplots of the 0.05 quantile of P values from

null genes grouped by simulation type. Ideally, P values from null

genes would be uniformly distributed on the interval (0, 1), so the

0.05 quantile of the null P values would be 0.05. For all of the para-

metric methods based on the NB distribution, the median 0.05

quantile of P values from null genes was lower than 0.05 under the

SimSeq simulations. Furthermore, for the parametric analysis meth-

ods based on the NB distribution, the median 0.05 quantile of P

values from null genes was lower when SimSeq was used to simulate

data than when data were simulated according to NB distributions.

In contrast, the median 0.05 quantile of P values from null genes

was higher under the SimSeq simulations for the SAMseq and voom

methods. This effect is consistent with average FDP minus the target

FDR level being greater under the SimSeq simulations for parametric

methods based on the NB distributions as smaller P values from null

genes will tend to increase the proportion of type 1 errors given a

multiple testing decision rule.

6.2 Results using Cook’s filtering
Figure 9 presents average FDP minus q-value cutoff plotted against

its corresponding q-value cutoff for each simulation algorithm and

analysis method with Cook’s distance filtering. At a sample size of

5, there were few differences in terms of FDR control between the

two simulation procedures. When sample size was increased to the

levels of 10 and 20, differences in FDR control between NB and

SimSeq simulations were again apparent for the parametric analysis
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methods based on the NB distribution, although the differences

tended to be somewhat reduced compared with the differences seen

(in Fig. 7) without Cook’s distance filtering. Boxplots of the 0.05

quantile of P values from null genes (not shown) are similar to those

in Figure 8 for the analysis without Cook’s distance filtering.

6.3 Simulating from a more homogeneous source

dataset
We repeated the simulation experiments described in Section 5.3

with a sample size of three using a dataset from Bottomly et al.

(2011) as the source RNA-seq dataset. The Bottomly et al. dataset

contains two genotypes of genetically identical mice with sample

sizes of 10 and 11 in the two genotype groups, which is in contrast

to the KIRC dataset that involves subjects from heterogeneous

human populations. Plots of average FDP minus target FDR level

with and without Cook’s distance filtering are provided in Figures 1

and 2 of the Supplementary Files. In general, the differences in the

point estimates of average FDP minus target FDR level between the

SimSeq simulations and the NB simulations were smaller than

observed in the results from the KIRC dataset analysis. This suggests

that the NB assumption for gene-specific marginal read count distri-

butions may be more reasonable for data from genetically identical

experimental units than it is for more heterogeneous experimental

units. Although the point estimates of the discrepancy between aver-

age FDP and target FDR were similar between the SimSeq and NB

simulations, variation in FDP remained much higher for SimSeq

simulation than NB simulation despite the greater homogeneity in

experimental units.

7 Discussion

The principal differences between the SimSeq algorithm for simulat-

ing RNA-seq data and the NB simulations are that the SimSeq algo-

rithm makes no parametric distributional assumptions and preserves

the complex gene dependence structure of the original dataset. In

contrast, the NB method simulates data for each gene independently

according to marginal NB distributions. Thus, we should expect

methods that are more robust to varying distributional assumptions

to behave more similarly between the two simulation methods.

Conversely, methods that are less robust to departures from the

parametric distributional assumptions on which they are based

should perform worse when applied to the SimSeq simulated data.

Under the SAMseq and Voom methods, which are not based on NB

assumptions, there is little difference between the two simulation

types in terms of average FDP. In contrast, we see substantial differ-

ences in FDR control properties across simulation types for the other

analysis methods that rely on NB assumptions.

The difference in the results between the two simulation

approaches in terms of FDR control is important to point out. Some

methods that appeared to control FDR or were slightly liberal with

respect to FDR control under the NB simulations failed to control

FDR under the SimSeq simulations. Further, the ranking of each of

the methods in terms of FDR control sometimes differed depending

on whether NB or the SimSeq simulation was used.

It is also worth discussing the liberalness of the DESeq2 and

edgeR methods in general. Although other simulation studies have

already indicated that both of these methods exhibit liberalness in

FDR control (Burden et al., 2014; Soneson and Delorenzi, 2013),

our simulation study shows even greater discrepancies between

nominal and actual FDR control when these methods are applied to

datasets simulated by SimSeq from the heterogeneous KIRC dataset.

When we repeated the simulation study using the Bottomly et al.

dataset as the source dataset (for which the NB assumption may be

more reasonable), the liberalness of the two methods decreased, al-

though both methods still remained liberal.

Using the additional Cook’s distance filtering criteria as imple-

mented in the DESeq2 package reduced the difference in average
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FDP between the nonparametric and parametric simulation proced-

ures. The nonparametric SimSeq algorithm is capable of sampling

extreme values that lie in the source dataset that are unlikely to be

generated by a parametric simulation algorithm. The presence

of such extreme values in SimSeq-generated data (that are not

subjected to Cook’s distance filtering) may partly explain the high

average FDP values for the fully parametric analysis methods.

Differences in FDR control across simulation strategies that remain

after Cook’s distance filtering show the effect of gene dependence

and departures of empirical data from NB distributions that cannot

be easily corrected by outlier removal.

One of the most striking features of Figures 2–4 (and

Supplementary Figs. S1 and S2) is the larger variation in simulation

results for SimSeq compared with the NB simulation method. This

larger variation is a consequence of the realistic dependence from

gene to gene in data simulated by SimSeq. Dependence among genes

leads to dependence among P values within each analysis. This de-

pendence among P values leads to greater variation in quantities

computed from P values, such as estimates of FDR and sample

quantiles of the P values from null genes. Results from NB simula-

tions with independent genes may lead researchers to underestimate

the uncertainty in simulation-based estimates of FDR. SimSeq cre-

ates a less optimistic but more accurate picture of the uncertainty

that can be expected when analysis methods are applied to real

RNA-seq data.

We also compared the performance of the four statistical meth-

ods using partial area under the receiver operating characteristic

curve (PAUROCC). PAUROCC indicates how well an analysis

method rank orders genes from most significant to least significant.

The specific value of PAUROCC utilized was calculated as the area

under the receiver operating characteristic curve for specificity val-

ues �0.95. These specificity values correspond to type I error rates

no larger than 0.05. PAUROCC was neither systematically higher

nor systematically lower under the NB simulations over the class of

statistical analysis methods studied.

A factor to consider when using the SimSeq package is the choice

of the source dataset. The source datasets used in this article were

the KIRC dataset from the Cancer Genome Atlas project and the

Bottomly et al. dataset. For the KIRC dataset, the samples stem

from a heterogeneous population crossing diverse factors such as

race, gender, age and ethnicity. This is in contrast to the Bottomly

et al. dataset that contains homogeneous samples with genetically

identical mice. The simulation experiments of Section 6 indicate that

there are larger differences in average FDP minus target FDR level

between the SimSeq simulations and the NB simulations for our

source datasets based on a heterogeneous population than for the

source dataset based on a more homogeneous population. To inves-

tigate the performance of analysis methods on relatively homoge-

neous observational or experimental units, more homogeneous

source datasets should be used. As more large RNA-seq datasets be-

come publicly available, the number and variety of source dataset

options will increase.

In conclusion, important performance benchmarks such as aver-

age FDP relative to nominal FDR can change drastically between

the two simulation procedures depending on the statistical method

used. The SimSeq algorithm simulates RNA-seq data that closely

matches the marginal distributions and complex dependence struc-

ture of real RNA-seq data. Simulation studies using this method

more accurately reflect average FDPs likely to be obtained in prac-

tice. Simulation experiments that rely on parametric models may

paint an overly optimistic picture for the efficacy of a given method.

As such, in evaluating current and future statistical methodologies in

gene expression analysis, we recommend using the SimSeq algorithm

because it more closely matches the complex structure of RNA-seq

data.
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