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Abstract

Motivation: Similarity search is the foundation of bioinformatics. It plays a key role in establishing

structural, functional and evolutionary relationships between biological sequences. Although the

power of the similarity search has increased steadily in recent years, a high percentage of sequences

remain uncharacterized in the protein universe. Thus, new similarity search strategies are needed to

efficiently and reliably infer the structure and function of new sequences. The existing paradigm for

studying protein sequence, structure, function and evolution has been established based on the as-

sumption that the protein universe is discrete and hierarchical. Cumulative evidence suggests that

the protein universe is continuous. As a result, conventional sequence homology search methods

may be not able to detect novel structural, functional and evolutionary relationships between pro-

teins from weak and noisy sequence signals. To overcome the limitations in existing similarity search

methods, we propose a new algorithmic framework—Enrichment of Network Topological Similarity

(ENTS)—to improve the performance of large scale similarity searches in bioinformatics.

Results: We apply ENTS to a challenging unsolved problem: protein fold recognition. Our rigorous

benchmark studies demonstrate that ENTS considerably outperforms state-of-the-art methods. As

the concept of ENTS can be applied to any similarity metric, it may provide a general framework

for similarity search on any set of biological entities, given their representation as a network.

Availability and implementation: Source code freely available upon request

Contact: lxie@iscb.org

1 Introduction

Recent advances in whole-genome sequencing and high-throughput

techniques have generated a vast amount of sequence and omics data.

One critical bottleneck in the post-genome era is the discernment of

the biological meaning of uncharacterized sequences in the context of

complex phenotypes. Similarity search, as the foundation of bioinfor-

matics, plays a key role in establishing structural, functional and evo-

lutionary relationships between biological sequences. In the case of

protein function annotation and structure determination, although

the power of the similarity search has increased steadily in recent

years, the protein universe still contains a high percentage of ‘dark

matter’, which consists of proteins that cannot be characterized by

existing experimental or computational techniques (Levitt, 2009).

Thus, new similarity search strategies are needed to identify homologs

of new sequences efficiently and reliably and to infer their structures

and functions in the context of biological systems via integrating het-

erogeneous omics data.
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An increasing body of evidence suggests that protein space is

continuous in general, although there exist discrete islands

(Berezovsky and Trifonov, 2001; Efimov, 1997; Kolodny et al.,

2006; Lupas et al., 2001; Nepomnyachiy et al., 2014; Pascual-

Garcia et al., 2009, 2010; Petrey et al., 2009; Sadowski and Taylor,

2010; Sadreyev et al., 2009; Shindyalov and Bourne, 2000; Skolnick

et al., 2009; Szustakowski et al., 2005; Taylor, 2002; Tendulkar

et al., 2004; Tsai et al., 2000; Xie and Bourne, 2008; Zhang et al.,

2010). It implies that two proteins could be related even if their pair-

wise similarity is undetectable. Thus, the protein universe is better

represented as a graph, where each node is a protein. Two nodes are

connected if there is a detectable relationship between them

(Dokholyan et al., 2002). In this way, two remotely related proteins

can be connected through a transitive path (Nepomnyachiy et al.,

2014). However, widely used sequence similarity search methods

such as PSI-BLAST (Altschul et al., 1997) and hidden Markov model

(HMM, Eddy, 1998), and conventional protein sequence and struc-

ture classification schema such as Pfam (Finn et al., 2008), structural

classification of proteins (SCOP, Murzin et al., 1995) and CATH

(Orengo et al., 1997) are built on the assumption that protein space

is discrete and hierarchical. As a result, novel structural and func-

tional relationships can be missed if two sequences are very diver-

gent. A network-based method, which connects all sequences into a

graph model and exploits the global network structure of similarity

relationships between proteins in a database, provides an alternative

solution to explore the protein space in a continuous fashion (Chen

et al., 2011a, b; Chipman and Singh, 2009; Melvin et al., 2009;

Singh-Blom et al., 2013; Vanunu et al., 2010; Wang et al., 2013;

Weston et al., 2004). Although it has demonstrated its potential in

detecting novel relationships that could be missed by the pairwise-

based method (Atkinson et al., 2009), the existing network-based

method has two fundamental limitations. First, it provides the rank-

ing of similarities but gives no information on their reliabilities. A

model that can assess the statistical significance of similarity is one

of the key components in both pairwise-based and profile-based

methods and is critical in distinguishing true and false positives and

enhancing the sensitivity of a similarity search. Second, few net-

work-based methods can combine sequence and structural similar-

ity. The incorporation of structural similarity into sequence profile

has been successfully applied to detecting novel sequence–structure

relationships, as the structure is more conserved than the sequence

(Petrey et al., 2003; Tang et al., 2003).

In this article, we introduce a new similarity search method,

Enrichment of Network Topological Similarity (ENTS), to address

challenges in protein similarity search in terms of the continuous

protein space. ENTS synthesizes several concepts: network inference

to detect the global similarity of a protein, grouping of relevant pro-

teins as a network profile, incorporation of structural information

into the sequence search and an efficient statistics model to assess

the reliability of the network topological similarity profile. We apply

ENTS to a challenging unsolved problem: protein fold recognition.

Our rigorous benchmark studies demonstrate that ENTS signifi-

cantly outperforms state-of-the-art profile- and network-based

methods for protein structure prediction. Moreover, ENTS can inte-

grate different similarity measurements (e.g. sequence similarity and

structure similarity) and biological classifications (e.g. SCOP) to

infer novel protein structure and function. As the principal concept

of ENTS can be applied to any similarity metric, ENTS provides a

new general framework to boost the performance of the similarity

search and may inspire novel methodologies in broad areas of bio-

informatics, such as RNA structure prediction and disease gene

identification.

2 Methods

2.1 Overview
The rationale of ENTS is that when clusters of instances share com-

mon features, a cluster ranked closely together is more likely similar

to the new instance than a cluster ranked randomly or spread out

across the ranking. In addition, network topological similarity pro-

vides more robust and accurate global ranking across an entire hy-

pothesis space than pairwise similarity does. Unlike conventional

local ranking (e.g. k-nearest neighbors), global instance ranking

can support statistical enrichment analysis because it draws valu-

able information on the ranking for all instances in a cluster from

lower, non-randomly ranked cases. Figure 1 shows the scheme of

ENTS.

2.2 A weighted graph representation of structural

similarity
To initialize ENTS for structure prediction, ENTS builds a structural

similarity graph of protein domains, which is essentially the same as

the protein domain universe graph described by Dokholyan et al.

(Dokholyan et al., 2002). The structural similarity graph is a

weighted graph with one node for each structural domain and an

edge between two nodes only if their pairwise similarity exceeds a

certain threshold. In this article, the structural similarity score is

determined by TM align (Zhang and Skolnick, 2005). The threshold

is 0.4 of the TM align score. In other applications, the threshold de-

pends on the features and the pairwise similarity metric. Any simi-

larity metric (e.g. Euclidean distance, Jaccard index, HMM and

kernel-based similarity) can be applied here.

2.3 Classification or clustering of protein structural

domains
Next, some or all the structural domains in the database are

labeled with SCOP (Murzin et al., 1995). If pre-classification is not

used, clusters of structural domains can be assembled using

structural similarity under unsupervised clustering techniques

(Estivill-Castro, 2002) such as k-means (Hartigan and Wong, 1979),

mean-shift (Comaniciu and Meer, 2002), affinity propagation

(Frey and Dueck, 2007) or p-median model (Brusco and Kohn,

2008), etc. These domain clusters are applied to the next step. In

general, the labeled clusters are not necessarily disjointed. They can

overlap.

2.4 Network topological similarity
Given a query domain sequence and the goal to predict its structure,

ENTS first links the query to all nodes in the structural similarity

graph. The weights of these new edges are based only on the se-

quence profile-profile similarity derived from HHSearch (Soding,

2005). Then random walk with restart (RWR) is applied to perform

a probabilistic traversal of the instance graph across all paths lead-

ing away from the query, where the probability of choosing an edge

will be proportional to its weight. The algorithm will output a list of

all instances in the graph, ranked by the probability tiq that a path

from the query will reach the node i. In this way, RWR can capture

global relationships that may be missed by pairwise similarity (Tong

and Faloutsos, 2006).

We modified the RankProp algorithm (Melvin et al., 2009), a

variant of RWR and implemented it using the boost library (http://

www.boost.org). The graph is represented as an adjacency list to

save memory and speed up the iterative algorithm. The current im-

plementation is scalable to a graph with millions of nodes and hun-

dreds of millions of edges.
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2.5 Statistical significance of network topological

similarity
A network topological search only ranks instances based on their

similarity and gives no information on the reliability of the ranking.

To assess the statistical significance of the ranking of a structural

cluster Ci generated previously, ENTS compares the score distribu-

tion of the cluster Ci with that of a randomly drawn cluster of the

same size. When the mean of global topological similarity scores X

in a cluster is used as the statistic, an efficient random-set method is

used for the parametric approximation of the null distribution

(Newton et al., 2007). The random-set method compares an en-

riched cluster of size m with all other distinct clusters of size m

drawn randomly from a case graph on N nodes. The exact distribu-

tion of X is intractable but can be approximated by the normal dis-

tribution with mean and variance as follows:

l ¼ 1

N

XN

j¼1
pj

r2 ¼ 1

m

N �m

N � 1

� �
1

N

XN

j¼1
p2

j

� �
� 1

N

XN

j¼1
pj

� �2
" #

Where pj is the global topological similarity score of the structure

j in the graph to the query.

The enrichment score of the cluster Ci is then normalized with

Z ¼ X� l
r

2.6 Benchmark
The SCOP database (Murzin et al., 1995) version 1.75B is used as a

gold standard for benchmarking. SCOP manually classifies approxi-

mately 40% of protein structures in the RCSB Protein Data Bank

(PDB, Deshpande et al., 2005) based on similarities in their three-di-

mensional shapes (i.e. folds) and amino acid sequences. If two pro-

teins have a similar sequence, they are classified into a common

‘family’. If two proteins have dissimilar sequences but similar folds

and common evolutionary origin, they belong to the same ‘super-

family’. Two proteins from different superfamilies may share the

same fold. The benchmark in this study is to recognize the fold of a

protein by searching for a database that does not include any protein

that shares the same family and superfamily as that of the query

protein. The SCOP 1.75B release includes 1195 folds and 1962

superfamilies. A list of 36 003 non-redundant protein structural do-

mains with sequence identity less than 40% (termed the 36 003 set)

and their pairwise structural similarity that is determined by

FATCAT structural comparison software (Ye and Godzik, 2003)

were downloaded from the RCSB PDB (August 2013) (Deshpande

et al., 2005). These proteins and their similarities were used to build

graph models for the structure prediction. It is noted that only

23.9% of the structure domains in the 36 003 set have the SCOP

classification. If a structure domain does not have a SCOP assign-

ment, it was assumed that the non-SCOP-assigned domain shares

the same superfamily as that of the SCOP-assigned domain to which

it is the most structurally similar. It is noted that temporary SCOP

assignments were not used for the gold standard to evaluate the per-

formance of algorithms but only for building a benchmark (details

below). To reduce the bias in the existing fold coverage of the pro-

tein universe, one structural domain was randomly selected from

each SCOP superfamily as a benchmark if its SCOP fold had more

than one superfamily. A list of structural domains was compiled (the

885-set). Then a separated subset Bi of the 36 003 set was assigned

to each structure Si in the 885 benchmark structures, such that all

structures that have the same SCOP superfamilies (including the

temporarily assigned SCOP superfamilies) as that of Si were

removed from the original 36 003 set. Overall, the benchmark is de-

signed to evaluate the performance of algorithms in detecting novel

structural relationships when sequence similarity is weak and noisy.

2.7 Performance evaluation
For a given benchmark structure Si, a true positive is defined as a

correctly recognized fold when searching Si against its corresponding

Bi. The incorrectly assigned folds are false positives. In total, there

were 885 searches and 1 057 575 combined fold hits, including 885

true positives and 1 056 690 false positives. To reflect the situation

in the real application, the performance of the algorithms was eval-

uated by the ratio of true positives on the top-N ranked hits

(N<¼2000).

2.8 Experimental design
2.8.1 HMM-HMM similarity of protein sequence

An HMM sequence profile model was built for the amino acid se-

quence of each structural domain in the 36 003-set and 885-set using

the HH-Suite package (Soding, 2005). The UniProt20 sequence

database (Apweiler et al., 2004) was used to generate multiple

Fig. 1. Schema of ENTS-Struct, a special case of ENTS. ENTS-Struct connects protein structural domains (hexagons) into a graph whose edges are weighted by

their structural similarity. Structure domains are grouped by their structural or functional classifications (e.g. SCOP). Each group is assigned with a label Fi (e.g.

SCOP fold). A query sequence Q is linked to the graph using the sequence profile-profile similarity. RWR computes global similarity scores for the query to all

structure domains in the graph. In the figure, darker nodes denote stronger similarities. Set enrichment analysis calculates statistically significant differences be-

tween observed distributions of similarity scores for each labeled group and a random one and ranks the labeled groups for the query with statistical significance

(z-score)

2108 J.Lhota et al.

Structural Classification of Proteins (
)
3D
``
''
``
''
,
36
,003
36
,003
-
,
36
,003
-
,
36
,003
-
36
,003
-
1
,057
,575
1
,056
,690
,
36
,003


sequence alignment. The similarity between two HMM profiles was

determined using HHSearch (Soding, 2005). All parameters to build

and align HMMs used the default setting of the programs.

2.8.2 Fold recognition by HHSearch

Given a query sequence Si and its corresponding HMM profile, its

HMM-HMM similarity to each HMM sequence profile of struc-

tural domains in the set of Bi was determined by HHBlits. HHBlits

is a fast implementation of HHSearch, but the performance of each

implementation is comparable (Remmert et al., 2012). For each

SCOP fold Fj, its association score hij with the Si was assigned the

best HMM-HMM probability score of the HMM hits that were

classified as Fj. All hij were ranked. The top-ranked statistically sig-

nificant Fj is the candidate fold assignment to Si. It is noted that the

HHSearch probability score incorporates the similarity of secondary

structures.

2.8.3 Fold recognition by CNFpred

Fold recognition of each query sequence Si was also done using

CNFpred, another fold recognition program that correlates various

sequence and structure features by using a conditional neural field’s

model (Ma et al., 2012). The same procedure is applied as

HHSearch.

2.8.4 Construction of homology models

The three-dimensional homology model is constructed using the se-

quence alignment derived from CNFpred by Modeller v9.14 (Sali

and Blundell, 1993).

2.8.5. Construction of HMM-HMM similarity graph

An HMM-HMM similarity graph GH
i was constructed for each Bi

in which each structural domain was a node. Two nodes were con-

nected if they had detectable HMM-HMM similarity according to

HHSearch. Each edge was assigned with a weight whose value was

the probability score of similarity determined by HHSearch (ranging

from 0.0 to 1.0).

2.8.6 Construction of structural similarity graph

All-against-all pairwise structural comparisons of non-redundant

structural domains were downloaded from the RCSB PDB

(Deshpande et al., 2005). A structural similarity graph GS
i was con-

structed for each Bi in which each structural domain was a node.

Two nodes were connected if they had similar structure, which was

determined by TM align (Zhang and Skolnick, 2005) (0.4<¼TM-

align score < 1.0). Each edge was assigned a weight whose value

was the TM-align structural similarity score.

2.8.7 Fold recognition by network topological similarity search

Given a query sequence Si, the RankProp algorithm was applied to

rank all structures in GH
i or GS

i to Si based on their network topo-

logical similarity score. For each fold, the fold association score of Si

was assigned using the same method as the fold recognition by

HHSearch. The RankProp is called RankProp-HHSearch and

RankProp-Struct, respectively, when applied to GH
i or GS.

2.8.8 Fold recognition by ENTS

As shown in Figure 1, ENTS was determined as follows:

1. All structures that were classified as the same SCOP fold were

put into a commonly labeled set.

2. A query sequence Si was connected to its corresponding similar-

ity graph GH
i or GS

i. The edges and edge weights between Si and

GH
i (or GS

i) were determined by HMM-HMM similarities.

3. The RankProp algorithm was applied to rank all structures in

GH
i or GS

i to Si based on their network topological similarity

score.

4. The distribution of the topological similarity score in each

labeled SCOP set was determined. Set enrichment analysis was

applied to each set in terms of its score distribution. A z-score Zij

was calculated for each set that corresponds to a single fold Fj.

Zij was the fold association score between Si and Fj.

5. For the purpose of benchmark comparison, all Zij from 885 ex-

periments were combined and ranked.

6. When applied to GH
i or GS, ENTS was called ENTS-HHSearch

or ENTS-Struct, respectively.

3 Results

3.1 Overview of ENTS algorithm
We have developed a new algorithm, ENTS of Structure (ENTS-

Struct), to infer protein structure based on the network topological

similarity of a protein structure similarity network. As shown in

Figure 1, ENTS-Struct consists of four key steps. First, we connect

non-redundant protein structure domains found in the PDB into an

all-against-all structure similarity network (referred to as

StructWeb) based on a pairwise structural comparison. Second, if a

structural domain has an existing annotation (e.g. SCOP), the struc-

tural domain is labeled with this annotation. Third, given a query

protein, we connect the query to the StructWeb based on HMM-

HMM similarity from HHSearch (Soding, 2005) and apply an RWR

algorithm to define the network topological similarity between the

query protein and other proteins in the StructWeb. Finally, to assess

the statistical significance of the topological rank derived from the

RWR, we apply random set theory to estimate the enrichment of a

protein set that is associated with a structural or functional class

(e.g. SCOP or GO) in terms of the distribution of its network topo-

logical similarity scores. The final output of ENTS-Struct is the stat-

istical significance (z-score) of a list of inferred putative structures or

functions for the query protein.

3.2 ENTS-Struct considerably improves the

performance of fold recognition
The performance of ENTS-Struct was evaluated using HHSearch

and CNFpred as baselines. HHSearch is one of the most sensitive se-

quence profile-profile comparison methods developed so far, outper-

forming PSI-Blast and HMMER (Eddy, 1998). In addition,

secondary structural similarity is incorporated into the probability

score of HHSearch. CNFpred correlates various sequence and struc-

ture features by using a conditional neural field’s model (Ma et al.,

2012). As shown in Figure 2, ENTS-Struct (black line) clearly out-

performs the state-of-the-art algorithm HHSearch (red line) and

CNFpred (purple line). With the same number of the highest ranked

hits, ENTS-Struct consistently identifies more true positives than

HHSearch. There are approximately 50% more true positives in the

top 1000 ranked hits identified by ENTS-Struct than those identified

by HHSearch. Although CNFpred improves the quality of sequence

alignment, it does not perform as well as HHSearch in the fold rec-

ognition in our benchmark set.

The improved performance of ENTS-Struct benefits from the use

of the structural similarity network StructWeb. As a comparison, an

all-against-all HMM-HMM profile similarity network of structural
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domains was constructed using HHSearch (referred to as ProfWeb).

The ENTS procedure as shown in Figure 1 is applied to ProfWeb ex-

cept that the StructWeb is replaced by the ProfWeb. The resulting al-

gorithm is referred to ENTS-HHSearch. The performance of ENTS-

HHSearch (orange line in Fig. 2) is much worse than ENTS-Struct.

Although ENTS-HHSearch has the potential to identify more true

hits than HHSearch, the false-positive rate is high in the top ranked

regions. This is not surprising as the structural similarity detection is

more accurate and less noisy (few false positives and false negatives)

than the HMM-HMM similarity in terms of detecting remote rela-

tionships between proteins.

ENTS-Struct shares the RWR as a key component with

RankProp, but ENTS-Struct is distinguished by its set enrichment

analysis for statistical assessment of the ranking. Both ENTS-Struct

and ENTS-HHSearch outperform their corresponding RankProp al-

gorithm—RankProp-Struct (blue dashed line in the Fig. 2) and

RankProp-HHSearch (green dashed line in the Fig. 2), respectively.

It is noted that the sensitivity of RankProp is not as good as

HHSearch for the top-ranked hits.

When only the top ranked hits are considered regardless of their

statistical significance, the percentage of queries that can detect

the correct fold at the top 1 and top 3 are shown in Fig. 3. The

overall performance is ENTS-Struct>Rankprop-Struct�ENTS-

HHSearcn>Rankprop-HHSearch>HHSearch>CNFpred. ENTS-

Struct ranks approximately 25% and 100% more true positives

than the baseline HHSearch at top 1 and top 3, respectively.

A recent study suggests that the continuity of protein space is de-

pendent on the structural class of the protein (Nepomnyachiy et al.,

2014). The proteins belonging to SCOP a=b class can be linked with

each other through an evolutionary path. However, other classes are

relatively discrete (Nepomnyachiy et al., 2014). Consistent with this

observation, Table 1 shows that the performance of ENTS varies

when applied to different structural classes. ENTS improves the fold

recognition in all classes. In regard to the ratio of true positives

ranked at the top 3, the order of performance by both ENTS

and HHSearch is a=b> all b> aþb> all a, as the a=b class is

more evolutionarily related than the a, b and aþb classes, as

observed by Nepomnyachiy et al. (2014). However, the improve-

ments of ENTS relative to HHSearch vary by class, in the order of

all b> aþb> all a> a=b. This implies that different network topo-

logical search parameters may be needed for different structural

classes to balance the global and local perspective of structural simi-

larity network.

3.3 Application of ENTS-Struct to hard targets of

CASP11
To further test the performance of ENTS-Struct, we carried out a

blind test of its performance on fold recognition for hard targets of

CASP11. The hard targets are selected such that the highest

HHSearch probability of profile–profile similarity between the

CASP11 target and the PDB structural domain is <95.0% (e-

value>0.1). It is noted that all structural domains used in the

benchmark were released by PDB prior to August 2013, 1 year ear-

lier than that of CASP11. Table 2 lists nine hard targets that have

released PDB structures, their most similar SCOP folds, the top 1

prediction from ENTS-Struct with medium and high confidences,

their confidence levels, GDT-4.0 score (the percentage of residues

in the model structure falling within 4.0 Å of their positions in

the experimental structure) and root mean square deviation. Among

these targets, ENTS-Struct correctly predicts the folds for the

five domains of four targets (T0765, T0769, T0781 C-terminal,

and T0808 N-terminal and C-terminal). Five structural domains of

these targets (T0761, T0763, T0767, T0771 and the N-terminal

domain of T781) do not have closely similar structures in the PDB.

ENTS-Struct has four false-positive predictions and two true-

negative predictions. Overall, the successful rate of ENTS-Struct is

63.5% (7 correct predictions over 11 cases) with a sensitivity

of 83.3% and a specificity of 40.0%. It is noted that ENTS

only assesses the statistical significance and re-ranks the hits of the

structure prediction. The quality of homology models is dependent

on the third party software for the alignment and model

construction.

Using target T0769 as an example, Figure 4 and Table 3 demon-

strate how ENTS-Struct improves the performance of fold recogni-

tion over HHSearch and RankProp-Struct. HHSearch only detects

extremely weak similarity between T0769 and several structures

that belong to SCOP fold d.58 (e-value ranges from 3.7 to 13). In

addition, there are two false-positive hits d1ghha_ (SCOP fold d.57)

and d3bypa1 (SCOP fold d.52). They rank above the correct hits.

These highest ranked hits of HHSearch are corrected as a graph, as

shown in Figure 4. There are multiple edges linking the target to

structures that belong to SCOP fold d.58. As a result, RankProp-

Struct improves the ranking of d.58 to rank 2. By applying the set

enrichment analysis of the RankProp score distribution, ENTS-

Struct correctly ranks d.58 as the top 1 hit. Moreover, ENTS-Struct

Fig. 2. True-positive ratio for all queries ranked with statistical significance by

ENTS and three other algorithms HHSearch, CNFpred and RankProp for fold

recognition Fig. 3. True-positive ratio for each query ranked at the top 1 and top 3 regard-

less of statistical significance by ENTS and three other algorithms HHSearch,

CNFpred and RankProp
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provides reliability information on the ranking, which is missed by

RankProp.

In summary, the superior performance of ENTS-Struct comes

from its addition of global set statistics of topology similarity scores

as well as hybrid HMM-HMM and structural similarity onto the

RWR topological similarity ranking of protein space. The RWR

captures the global structure of protein space. However, conven-

tional statistics models may fail when applied to global similarity

problems, as it is not straightforward to normalize topological prop-

erties. Global set statistics is more powerful than the fitted paramet-

ric statistical model. However, it is less useful when only the nearest

neighbors are considered, as the scores of most entities in the set are

zeros, providing no information for hypothesis testing. When ENTS

is applied to HHSearch directly, its performance is worse than se-

lecting the hit that scored highest in a set of hits belonging to the

same fold (data not shown). ENTS by integrating RWR and global

set statistics provides a general framework to enhance similarity

search and association detection. Although this article focuses on its

application to protein structure prediction, it is expected that ENTS

may improve the performance of other bioinformatics applications

such as drug target identification, RNA structure prediction and dis-

ease gene identification.

4 Discussions

4.1 Potential broad applications of ENTS
In this article, we introduce the new computational framework

ENTS to assess the reliability of network topological ranking and

Table 1. The percentage of true positives at tops 1, 3 and 10, which are ranked by HHSearch and ENTS-Struct, for four SCOP classes

All a All b a/b aþb

Top 1 Top 3 Top 10 Top 1 Top 3 Top 10 Top 1 Top 3 Top 10 Top 1 Top 3 Top 10

HHSearch 15.1 19.1 20.4 28.3 34.6 37.1 38.7 42.4 45.3 15.2 23.9 26.6

ENTS-Struct 14.9 27.4 52.5 38.5 63.8 77.0 43.2 55.1 69.5 19.4 37.4 55.0

ENST-Struct versus HHSearch 0.99 1.43 2.57 1.36 1.84 2.08 1.12 1.30 1.53 1.28 1.56 2.07

Table 2. CASP11 hard targets

Target PDB Id Similar SCOP fold(s)

(FATCAT P value)

ENTS-Struct top 1

predicted SCOP folds

ENTS-Struct

confidence

GDT-4.0 (%) RMSD (Å)

T0761a 4pw1 — d.304 Medium — —

T0763a 4q0y — k.17 Medium — —

T0765 4pwu d.58 (2.4e-8) d.58 High 59.33 2.77

T0767a 4qpv — d.120 High —

T0769 2mq8 d.58 (2.4e-7) d.58 Medium 64.12 1.87

T0771a 4qe0 — — — — —

T0781 4qan N: — — — —

C: d.17 (1.4e-2) d.17 High 61.21 3.56

T0800 4qrk b.80 (1.0e-2) d.131 High 18.16 9.24

T0808 4qhw N: b.18 (1.1e-3) b.18 High 76.90 1.94

C: b.29 (8.4e-4) b.29 Medium 50.09 3.05

RMSD, root mean square deviation. GDT-4.0 score is defined as the percentage of residues in the model structure falling within 4.0 Å of their positions in the

experimental structure.
aNo reliable homology models are built for targets due to poor alignments.

Fig. 4. The graph representation of linkage of T0769 to StructWeb. For simpli-

city, only SCOP domains that are directly connected to T0769 are shown. The

thickness of an edge is proportional to the edge weight. Domains are clus-

tered by SCOP domains (open ovals). The size of the open oval is approxi-

mately proportional to the number of structural domains in the cluster

Table 3. Ranking of similar fold to target T0769 by HHSearch,

Rankprop-Struct and ENTS-Struct, respectively

Fold Ranking

HHSearch Rankprop-Struct ENTS-Struct

(confidence)

d.58 3 2 1 (medium)

d.57 1 3 2 (medium)

d.224 4 4 3 (low)

d.52 2 1 5 (low)

b.36 5 6 10 (low)

a.43 6 5 17 (low)
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apply ENTS to the challenging problem of fold recognition.

Network topological rankings have been widely applied in bioinfor-

matics, such as in the cases of homology detection (Weston et al.,

2004), gene-disease association (Chen et al., 2011a, b; Li and Patra,

2010; Singh-Blom et al., 2013; Vanunu et al., 2010), genetic inter-

action prediction (Chipman and Singh, 2009), drug target prediction

(Wang et al., 2013), side effect prediction (Berger et al., 2010)

and drug repurposing (Ng et al., 2014). However, they lack an

efficient and generalized statistical model to normalize the ranking

and to assess its reliability. As a result, it is not straightforward

to determine a threshold for the selection of ranked hits in practice,

especially when dealing with data on a large scale. In one applica-

tion, the top first ranked hit could be a false positive. In another ap-

plication, multiple top ranked hits can be true positives. The set

statistical model introduced in ENTS is applicable to any similarity

metric. Our benchmark studies clearly demonstrate that the applica-

tion of ENTS to network topological rankings improves both the

sensitivity and specificity of similarity search. Thus, it is expected

that ENTS may have broad applications in bioinformatics and other

domains.

Another unique feature of ENTS is that it can integrate heteroge-

neous similarity metrics. In the case of fold recognition, both reliable

protein structural similarity and noisy sequence profile-profile simi-

larity are used in the construction of the network. The integration of

multiple omics data, which are often noisy, biased and incomplete,

is one of the great challenges in the post-genome era. ENTS presents

an alternative approach to integrate reliable and complementary re-

lationships between biological entities with noisy data from hetero-

geneous data sources into a unified network model. As shown in our

benchmark studies, the direct incorporation of structural similarity

into sequence similarity search improves the performance of fold

recognition. Similar strategies may be applicable to other bioinfor-

matics problems.

4.2 Improvement of global topological similarity
ENTS can be improved in several aspects. The RWR step in the cur-

rent iterative implementation of ENTS is computationally intensive.

More efficient RWR implementation will make ENTS feasible for

handling big data. Recent MapReduce-based graph querying and

mining systems [e.g. GBase (Kang et al., 2011, 2012)] can support

graphs with billions of nodes. They can be incorporated into ENTS.

In principle, all steady-state probabilities of RWR are defined by the

inversion of matrix Q¼ I � bW, where 1�b is the restart probabil-

ity and W is the edge weight matrix. If Q�1 is pre-computed, instant

query response can be achieved. For graphs with specific block-lin-

ear structures that are common in biological and chemical networks,

efficient linear system solvers that balance the pre-computational

cost and on-line query response are available (Tong et al., 2006,

2008).

Other methods for computing global topological similarity may

possess advantages over RWR. One of the disadvantages of RWR is

that the convergence requires the normalization of edge weights.

The normalization may result in the loss of similarity information

between instances. For example, one instance has a similarity score

of 1.0 with respect to its two neighbor instances. Another instance

has the similarity score of 0.1 with respect to its two neighbor in-

stances. After normalization in a graph representation, all edge

weights may become 0.5. It has been suggested that diverse k-short-

est paths analysis may overcome the shortcomings of RWR, thereby

improving the detection of global topological relationships (Shih

and Parthasarathy, 2012).

4.3 Improvement of set enrichment analysis
The mean set statistic calculation and the significance assessment

using random set theory in the current implementation of ENTS are

computationally efficient but may be suboptimal for performance,

as the mean score distribution may not follow the normal distribu-

tion. Several other choices for the set statistic are available, for ex-

ample, Kolmogorov–Smirnov statistics (Subramanian et al., 2005),

maxmean statistics (Efron and Tibshirani, 2007), Wilcoxon rank

sum test statistics and the conditional local false discovery rate

(Efron, 2008). To assess significance, a non-parametric permutation

test by shuffling labels may provide more accurate estimation when

the underlying probability distribution is unknown. It is possible to

adopt a two-step procedure for the significance assessment. The ran-

dom-set method is first applied to filter out less significant hits, so

only significant hits will be subject to the permutation test.

4.4 Integration with other methods for structure

prediction
When ENTS is applied to protein structure prediction, it relies on a

protein threading algorithm to link a query sequence to the struc-

tural similarity network and to align the sequence to the structure

template. The threading method must detect structures similar to

the query sequence, although confidence level does not need to be

high. Indeed, the performance of ENTS is strongly dependent on the

threading algorithms which are applied. The sequence similarity

based on HHSearch outperforms that based on PSI-BLAST and the

performance based on PSI-BLAST is better than that based on

BLAST (data not shown). Thus, the incorporation of state-of-the-art

protein threading algorithms such as MRFalign (Ma et al., 2014)

into ENTS may further improve the performance of ENTS for struc-

ture prediction.

Although ENTS improves the performance of fold recognition

over existing methods, the false-positive rate is still high. One pos-

sible solution is to build multiple conformational models for all top

ranked hits. Then energy-based scoring functions can be used to dis-

tinguish true and false positives (Petrey et al., 2003). In addition, the

nodes in the existing structural similarity network are structural do-

mains. SCOP domain classification is used as the node label, mainly

for the purpose of performance evaluation. If the query has a novel

fold, the prediction is doomed to be a false positive. In principle, any

structural classification, either automatic or manual, can be used to

label the structure. Moreover, it is possible to use the recurrent

structural fragment as a node to construct the structural similarity

network. The query may have multiple statistically significant frag-

ment hits. Many structure prediction methods [e.g. I-TASSER

(Zhang, 2008)] then could be applied to assemble these fragments

into a final structure.

5 Conclusion

Similarity is a fundamental concept in bioinformatics and the emerg-

ing discipline of data science, which seeks to harness big data to im-

prove data-driven decision making. In this article, we propose a new

method for computing statistically significant similarity via integrat-

ing similarity profiles, network topological similarity and set enrich-

ment analysis. Because ENTS applies to any similarity metric, it is

poised to make several contributions to bioinformatics. Individual

predictive reliability is essential in risk-sensitive applications. ENTS

is able to determine the statistical significance of any similarity met-

ric and provides guidance for reliable discovery in large data sets.

Robustness to noisy and incomplete data sets is important in
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bioinformatics applications. Many bioinformatics tasks need to han-

dle data sets that are partially and/or positive-only labeled. ENTS

provides a new approach to handling noisy and incomplete data.

Thus, it is expected that ENTS has broad applications in

bioinformatics.
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