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Abstract

Summary: High-throughput omics datasets often contain technical replicates included to account

for technical sources of noise in the measurement process. Although summarizing these replicate

measurements by using robust averages may help to reduce the influence of noise on downstream

data analysis, the information on the variance across the replicate measurements is lost in the aver-

aging process and therefore typically disregarded in subsequent statistical analyses.

We introduce RepExplore, a web-service dedicated to exploit the information captured in the

technical replicate variance to provide more reliable and informative differential expression and

abundance statistics for omics datasets. The software builds on previously published statistical

methods, which have been applied successfully to biomedical omics data but are difficult to use

without prior experience in programming or scripting. RepExplore facilitates the analysis by pro-

viding a fully automated data processing and interactive ranking tables, whisker plot, heat map and

principal component analysis visualizations to interpret omics data and derived statistics.

Availability and implementation: Freely available at http://www.repexplore.tk

Contact: enrico.glaab@uni.lu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Technical noise is a common limitation in many high-throughput

biological experiments. Both mass spectrometry devices for prote-

omics and metabolomics profiling as well as gene and protein micro-

array platforms can only provide a limited reproducibility

(Albrethsen, 2007; Chen et al., 2007). In combination with the bio-

logical variance observed across different omics samples under the

same condition, the technical variability can significantly aggravate

the statistical analysis of the data, increasing the risk for spurious

and misinterpreted results.

A common approach to reduce the influence of noise on the stat-

istical analysis of omics data is to use technical replicate measure-

ments, e.g. for mass spectrometry data collecting three technical

replicates per biological sample is a typical setting. During data pre-

processing the replicate measurements are summarized to average

values, by determining the mean, median or a trimmed mean, to re-

duce the influence of noise in downstream data analysis. However,

the variance across replicate measurements often differs significantly

between the biological samples and this data on measurement uncer-

tainty is not retained by the summarization and consequently not

considered in following statistical analyses.

Approaches to exploit technical variance information to improve

robustness and sensitivity in downstream data analyses have been

developed in recent years for differential expression analysis (Liu

et al., 2006), principal component analysis (PCA; Sanguinetti et al.,

2005) and differential pathway analysis (Glaab and Schneider,

2012). To enable users with limited or no programming experience

to benefit from these new techniques to propagate variance informa-

tion to downstream analyses, we have developed RepExplore, a

web-service to analyze proteomics and metabolomics data with

VC The Author 2015. Published by Oxford University Press. 2235
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 31(13), 2015, 2235–2237

doi: 10.1093/bioinformatics/btv127

Advance Access Publication Date: 25 February 2015

Applications Note

http://www.repexplore.tk
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv127/-/DC1
;
 Albrethsen, 
2007
In order t
http://www.oxfordjournals.org/


technical and biological replicates. The software takes advantage of

available replicate variance data to derive more robust and inform-

ative differential expression and abundance statistics, whisker plot

and PCA visualizations for omics data interpretation. All results,

including interactive ranking tables, 2D and 3D PCA visualizations,

bar charts and heat maps are generated automatically within few

minutes for a typical dataset.

2 Workflow and methods

Analyzing omics data with RepExplore requires only the upload of a

tab-delimited dataset containing both technical and biological repli-

cates (all parameter settings on the web-interface are optional). The

data is processed automatically and the results can be explored inter-

actively in the web-browser.

Input: The only input required for RepExplore is a pre-processed

proteomics or metabolomics dataset of log-scale intensity measure-

ments in tab-delimited format with labels for biological and tech-

nical replicates (example data can be downloaded or analyzed

directly on the main web-interface). Optionally, the user can choose

to include further normalization procedures, e.g. to ensure that all

samples have the same median value (using a median scaling nor-

malization) or to remove dependencies between the signal variance

and average signal intensity (using a variance-stabilizing normaliza-

tion, see Huber et al., 2002).

Processing: After submitting an analysis task, the data is pro-

cessed in the background and a temporary status page is loaded, re-

directing the user to the results page after a short waiting time

(typically up to a few minutes depending on the dataset size; for

large datasets with a limit of 100 MB the status page can be book-

marked). During the statistical data processing, information on

measurement uncertainty derived from the variance across technical

replicates is exploited using the probability of positive log ratio

(PPLR) statistic (Liu et al., 2006; Pearson et al., 2009) to score the

differential abundance/expression of biomolecules across the biolo-

gical conditions. This method takes both summarized point esti-

mates and variation across the replicates into account to obtain a

more robust ranking of biomolecules [for comparison, results on the

mean-summarized replicates are generated additionally by applying

the widely used empirical Bayes moderated t-statistic, here referred

to as eBayes (Smyth, 2004)]. Similarly, to generate PCA results, the

replicate variance data is extracted and used to reduce the influence

of noise on the PCA computation (see Sanguinetti et al., 2005).

Output: The main result of a submitted analysis is an interactive,

sortable ranking table, listing the PPLR and eBayes significance

scores and the fold-changes as effect size measure for each biomol-

ecule and allowing the user to generate whisker plots for all table

entries of interest. If the user has chosen to generate a PCA visualiza-

tion, a 2D plot of the first two principal components is shown, re-

vealing potential grouping patterns among the samples or

facilitating the recognition of outlier samples. Additionally, the user

can view a navigable 3D PCA visualization (Glaab et al., 2010) of

the first three principal components by using a VRML browser plu-

gin or an offline VRML-viewer (see Tutorial section on the web-

page). Finally, to investigate the separability of sample sub-groups a

web-based, interactive heat map visualization using average linkage

hierarchical clustering is provided for the top-ranked biomolecules

(Deu-Pons et al., 2014).

Methods and previous validation: In functional genomics data-

sets the measured signal for a biomolecule on logarithmic scale is

commonly assumed to have an approximate normal distribution

(Karpievitch et al., 2009; Sabatine et al., 2005; Sjögren et al., 2007)

and to depend on the mean expression/abundance level li and the

between-replicate variance ki for biological conditions indexed by i.

If the technical replicate variance �ij for condition i and replicate j is

taken into account additionally and assumed to follow a normal dis-

tribution centered at zero, the measured signal yij can be modeled as

follows (Liu et al., 2006):

yij � Nðli; ki þ �ijÞ (1)

where the parameters li and ki are to be determined. The PPLR ap-

proach estimates these parameters using a variational Expectation-

Maximization (EM) algorithm, modeling them as independent and

k as shared across the biological conditions. The parameter esti-

mates are then used to calculate a differential expression/abundance

score, reflecting the PPLR between specified conditions in the input

data.

In the same spirit, to reduce the influence of technical noise in

PCA, a further dedicated approach has been developed to exploit

replicate variance information for PCA computation (Sanguinetti

et al., 2005). This method is derived from the interpretation of PCA

as the maximum likelihood solution of a probabilistic factor analysis

model (Tipping and Bishop, 1999) into which the technical variance

is integrated as an additional term (for the detailed derivation, see

Sanguinetti et al., 2005). Optimal model parameters are again esti-

mated using an iterative EM algorithm.

These statistical methods have previously been validated on

benchmark omics datasets, resulting in improved accuracy in iden-

tifying differential abundance patterns (Liu et al., 2006) and tighter

sample clusterings (Sanguinetti et al., 2005). In the Supplementary

Material, we use multiple proteomic and metabolomic datasets to

compare the results obtained from the PPLR method with the

eBayes approach, a modification of the classical t-statistic using an

empirical Bayes method to shrink the estimated sample variances to-

wards a pooled estimate, providing a more stable inference for small

numbers of samples (Smyth, 2004). As a final supplemental analysis,

we compare the PPLR results obtained for different numbers of tech-

nical replicates on simulated data, showing that the ranking statis-

tics improve with increasing numbers of replicates.

3 Results

To illustrate RepExplore’s features and the results obtainable on

typical experimental data, we have applied the software to a metab-

olomics dataset comparing wild-type samples from the plant

Arabidopsis thaliana against the mutant mapk phosphatase 1

(mkp1), which is more resistant to bacterial infection

(Anderson et al., 2014, see datasets overview in the Supplementary

Material).

As shown in the whisker plot in Figure 1a, for the top-ranked

metabolite identified using a standard eBayes analysis with mean-

summarized intensities (L-valine) the overlap of the value ranges for

the technical replicates across the two sample groups covers the

complete value range of the wild-type samples (only the summarized

intensity values are non-overlapping and would suggest a significant

difference in the metabolite abundance between the groups). By con-

trast, for the top-ranked metabolite according to the PPLR score

(L-proline), the value ranges of the technical replicates do not display

any overlap across the sample groups and the overall replicate vari-

ance is significantly smaller (see Fig. 1b). Thus, the whisker plots

reveal that the evidence for the induction of L-proline is more

reliable than for L-valine, highlighting the benefit of accounting for
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replicate variance information within the differential abundance

statistic.

Ranking tables of metabolites comparing the PPLR and eBayes

statistics, heat map visualizations of the metabolite abundance dif-

ferences between the knockdown and wild-type samples, and further

whisker plots for this and other datasets are provided in the

Supplementary Materials. The same metabolomics and proteomics

example datasets can also be analyzed in an automated fashion on

the RepExplore web-application, which enables an interactive ex-

ploration of the results (ranking tables are sortable and support the

generation of whisker plots for chosen metabolites; the 3D PCA

plots provides zoom, pan and rotate functionality, and meta-

information is displayed when clicking on a chosen column/row

entry in a heat map or on a data point in the 3D plots).

In summary, RepExplore interlinks the automated application of

statistical analyses exploiting technical replicate variance informa-

tion with web-based features to facilitate data exploration via inter-

active ranking tables and visualizations of the differential

expression/abundance patterns. In addition to the public web-

application, an exposed programmatic web-service API can be used

to control the software, enabling an efficient analysis of multiple

large-scale omics datasets.

4 Implementation

Statistical data processing and analysis methods were all imple-

mented in the R statistical programming language. The web-applica-

tion providing access to these statistics is written in PHP and runs

on an Apache web-server. To guide the user on how to use the soft-

ware, a detailed tutorial, help windows for specific features and ex-

ample datasets from different case/control and wild-type/knockout

studies are provided on the web page at http://www.repexplore.tk.
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Fig. 1. (a) Whisker plot for the top differentially abundant metabolite (L-valine)

in the Arabidopsis dataset according to the eBayes approach applied to the

mean-summarized replicates; (b) Whisker plot for the top differentially abun-

dant metabolite (L-proline) according to the PPLR score (circle and triangle

symbols represent the sample averages of mutant, resp. wild-type samples,

vertical lines represent the technical error per biological sample)
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