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Abstract: As train loads and travel speeds have increased over time, railway axle bearings 

have become critical elements which require more efficient non-destructive inspection and 

fault diagnostics methods. This paper presents a novel and adaptive procedure based on 

ensemble empirical mode decomposition (EEMD) and Hilbert marginal spectrum for 

multi-fault diagnostics of axle bearings. EEMD overcomes the limitations that often 

hypothesize about data and computational efforts that restrict the application of signal 

processing techniques. The outputs of this adaptive approach are the intrinsic mode 

functions that are treated with the Hilbert transform in order to obtain the Hilbert 

instantaneous frequency spectrum and marginal spectrum. Anyhow, not all the IMFs 

obtained by the decomposition should be considered into Hilbert marginal spectrum. The 

IMFs’ confidence index arithmetic proposed in this paper is fully autonomous, overcoming 

the major limit of selection by user with experience, and allows the development of on-line 

tools. The effectiveness of the improvement is proven by the successful diagnosis of an 

axle bearing with a single fault or multiple composite faults, e.g., outer ring fault, cage 

fault and pin roller fault. 

Keywords: ensemble empirical mode decomposition; Hilbert transform; axle bearing; fault 

diagnostics; intrinsic mode function; marginal spectrum 
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1. Introduction 

Fault diagnosis based on the analysis of vibration signals has shown a great development, based on 

the characterization of mechanical system condition and allowing early detection of a possible fault. 

Whatever the mechanical system, the evaluation of both type and the fault position allows the 

reduction of the plant standstill time. Therefore, from an industrial point of view, a proper diagnostic 

approach reduces both the time and the costs required for repairs [1–3]. Rail vehicle axle-bearings are 

one of the most important components of railway vehicles regarding transportation safety. Due to all 

the factors such as design, installation technology, use conditions and sudden load, it is hard for 

railway axle bearings to avoid wear, pitting, crack, stripping and abrasion and so on. These failures are 

serious issues, often resulting in service delays and potentially fires and derailments, with obvious 

risks to life [4,5]. In July 2008, an ICE3 high speed train rated for 330 km/h service speed derailed 

during departure from Cologne, Central Station, Germany, due to the fatigue failure of one of the 

driving axles. It is shown that a “dead” train on the railway line has implications for customer 

perception, operator and manufacturer reputation, along with large costs from penalties, recovery, train 

availability and repairs [6–8].  

In recent years, railways have experienced significant changes in the vehicle-track interaction, 

caused by the increase in axle load and operational speed. The advent of high speed traffic on railways 

has increased the importance of avoiding hot axle bearings. The dangers of overheating of axle 

bearings of railway coaches in motion has necessitated the provision of means of early warning. Various 

technologies and approaches have been adopted to continuously monitor the state of axle bearings. Hot 

axle box detection (HABD) has been used in the UK national rail network for decades as a safety 

requirement. The HABD is sited either on-train for inboard or high-speed bearings, or trackside for 

outboard axle-boxes. Approximately 220 trackside HABD detectors are currently installed in the  

UK [9]. A bearing that is creating sufficient heat to trigger an HABD will already be in full failure 

mode. Therefore, the train has to be stopped immediately causing disruptions to passengers and railway 

traffic. For train operators in the UK, two approaches to degradation diagnostics are currently available: 

one is the trackside system, e.g., Railway Bearing Acoustic Monitoring, Trackside Acoustic Detection 

System developed by the American Transportation Technology Centre, both employing microphones to 

listen to passing wheel-set bearings [9], or “black-body” radiation, which is used for temperature 

measurement by infra-red detectors [10]; the other is the on-board system developed by Perpetuum  

Ltd. [11]. The latter approach (the subject of this paper) provides local real-time vibration monitoring of 

each wheel bearing using accelerometers. In China, the Axle Temperature Alarming Device (ATAD), 

as an important vehicle monitoring instrument, that must be installed on each railway passenger 

vehicle, and ensures all being always working and available [12], which is also on-board detection. 

Neither method of detection (track-side or on-board) will prevent early bearing degradation, but each 

will alert the operators so early intervention (before HABD) is possible, preventing catastrophic 

outcomes and reducing maintenance costs. 

Using the on-board condition monitoring sensor, an operator can not only look for changes in 

vibration/temperature, but also evaluate both the fault type and the fault position, which is of direct 

engineering significance. There are various signal processing approaches in fault diagnostics, which  

are based on different theoretical backgrounds, and also the results obtained are often different. Some 
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techniques may be more suitable than others for a specific system or component, depending also on the 

environmental conditions. Therefore, it is important to choose an approach that is the most effective 

for the case and the situation under testing for a reliable mechanical analysis. 

An advanced fault diagnostics method suitable for railway axle bearings in general should 

accomodate non-stationary and non-periodic vibration signals, meaning that the analysis is based 

intrinsically on data, and suitable for on-line diagnosis. The empirical mode decomposition (EMD) and 

the following Hilbert transform (HT) and marginal spectrum belong to this kind of methods. The EMD 

presented in 1998 by Huang et al. [13] is a signal processing method appropriate for analyzing 

nonlinear and non-stationary signals. Differently from other transformations, EMD is an adaptive 

decomposition, and no hypothesis about signal periodicity or stationary must be respected for EMD 

applications. The EMD method is developed from the simple assumption that any signal consists of 

different simple intrinsic modes of oscillations, which is useful for the extraction of the intrinsic mode 

functions (IMFs), or monocomponent functions, composing the original signal, while HT of the 

extracted functions is used for the instantaneous frequency evaluation. The major drawback of the 

original EMD is the mode mixing [14,15], which is the consequence of signal intermittence. The 

intermittence could cause the aliasing problem and makes the physical meaning of the IMF unclear. To 

overcome the mode mixing separation problem, a new noise-assisted data analysis (NADA) method 

was proposed by Wu and Huang [16]. This method is named the Ensemble EMD (EEMD) [16]. It 

defines the true IMF components as the mean of an ensemble of trials, each consisting of the signal 

plus white noise of finite amplitude. Compared with EMD, EEMD is more accurate and effective for 

rotating machinery fault diagnosis [17–20].  

Mahgoun et al., presented a brief description of the algorithm used to get the residual signal from 

the EEMD method, and the residual signal is obtained by removing some IMFs which represent the 

noise; Kurtosis is used in the measurement of impulsiveness, and signals that have a Kurtosis less or 

equal to 3 were eliminated [2]. Ricci et al., used the merit index, EMD and HT to diagnose gear faults 

and a merit index was introduced that allows the automatic selection of the intrinsic mode functions. 

The merit index as a matter of fact is a linear combination of two indexes: the first is a measure of the 

periodicity degree of the IMF, while the second one is represented by its absolute skewness value [3]. 

Yan et al., presented a weak signal detection methodology based on the improved Hilbert-Huang 

transform, and replaced the original signal with a residual signal by reconstructing IMFs from the 

denoised detail coefficients and approximated coefficients through the inverse wavelet transform [21]. 

Eftekhar et al., utilized sliding overlapped windows to execute the EMD algorithm in real-time [22]. A 

review of the available literature on EMD algorithms demonstrates a need for a local and online 

method. This paper thus aims to propose such an improved ensemble EMD algorithm for real-time 

applications. It is an idea-screening process for building IMFs’ confidence index to discriminate axle 

bearing faults, which is adaptive and automatic. HT is then applied to IMFs selected by the confidence 

index to obtain the corresponding Hilbert spectrum, that is, these IMFs are expressed in the  

time-frequency domain, and then these IMFs’ Hilbert spectrum will be aggregated to order marginal 

spectrum derived in the feature extraction stage. Using the IMFs’ confidence index and HT marginal 

spectrum become an advanced fault diagnostics tool having the characteristic previously listed with a 

high degree of automation and self-adaption.  



Sensors 2015, 15 10994 

 

 

The rest of this paper is organized as follows: in Section 2, the ensemble EMD algorithm, HT and 

its marginal spectrum are reviewed. Section 3 presents the IMFs’ confidence index algorithms; In 

Section 4 shows the experimental test. The algorithms application and experimental results are shown 

and discussed in Section 5. The conclusions about the effectiveness and the diagnostics capability of 

the method are reported in Section 6. 

2. Basic Theory of EEMD and Marginal Spectrum  

2.1. Principles of EMD and EEMD 

A quick review of the EMD algorithm is conducted based on [13]. The EMD algorithm includes 

two loops. The inner loop is called the sifting process. The main task of the sifting process is to view 

the investigated signal as the approximation and detail parts, and to separate them from each other. 

Thanks to the definition of the interpolating splines, the extraction of a mean function m(t) is possible 

and it can be removed from the initial signal x(t) in order to obtain: 

)()()( tmtxtx −=1  (1)

The obtained signal x1(t) is now examined with the aim to evaluate if it respects the intrinsic mode 

functions (IMF) definition. In this way, it can smooth uneven signals, and each signal could be decomposed 

into a number of IMFs, each of which must satisfy the following definition [13]: in the whole data set, 

the number of extreme and the number of zero-crossings must either equal or differ at most by one; at 

any point, the mean value of the envelope defined by local maxima and the envelope defined by the local 

minima is zero. 

An IMF represents a simple oscillatory mode compared with the simple harmonic function. If the 

two previous conditions are not satisfied, the resulting signal x1(t) is not an IMF, and the previous checks 

are repeated. The sifting process runs until the extracted signal respects the two IMF conditions; then the 

function obtained represents the first intrinsic mode function c1(t) and it is subtracted from the  

initial signal: 

)()()( tctxtr 11 −=  (2)

where r1(t) is the residual signal, which represents the input for the second IMF calculation by means 

of the sifting process. The EMD algorithm, applied to the original x(t), stops when the residual signal  

rn(t) is a constant or monotonic function. From the above and with the definition, any signal x(t) can be 

decomposed as: 

)()( trctx n

n

i
i +=

=1

 (3)

The original signal can be expressed as the sum of all the IMFs and the residue. The IMFs include 

different frequency bands ranging from high to low. EEMD’s procedures are as follows [16–20]: 

(1) Add a random white noise signal nj(t) to x(t). 

)()()( tntxtx jj +=  (4)

where xj(t) is the noise-added signal, j = 1, 2, 3, …, M, and M is the number of trials. 
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(2) Decompose xj(t) into a series of intrinsic mode functions ci,j utilizing EMD as follows: 

J

j

N

N

i
ijj rctx +=

=1

)(  (5)

where cij denotes the ith IMF of the jth trial, rNj denotes the residue of jth trial and Nj is the 

IMFs number of the jth trial. 

(3) If j < M, then repeat steps 1 and 2, and add different random white noise signals each time. 

(4) Obtain I = min(N1, N2, …, NM) and calculate the ensemble means of corresponding IMFs of the 

decompositions as the final result  

Mcc
M

j
iji )(

=

=
1

 (6)

where i = 1, 2, 3, …, I; ci (i = 1, 2, 3, …, I) is the ensemble mean of corresponding IMF of  

the decompositions. 

2.2. Hilbert Transform and Hilbert Marginal Spectrum 

For each IMF ci(t), we can obtain its Hilbert transform, and f(t) can be expressed by convolution of 

f(t) and 1/πt. In order for the numerical implementation, the discrete form 
1 1 t

t

− −
π

（ ）
 is used instead of 

1/πt, where t = 1, 2, …, M. Then the Hilbert transform of ci(t) can be expressed as: 
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0
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ˆ ( ) ( )

2 1

t M
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k
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c t c t

t k

−

=

− − − −
= ∗ =

π π −  (7)

Thus the analytical signal of the original signal is obtained by: 
( )ˆ( ) ( ) ( ) ( ) ij t

i i i iz t c t ic t a t e θ= + =  (8)

Instantaneous frequency is expressed by: 

( )
( )

( )
i

i

d t
t

d t

θω =  (9)

After performing the Hilbert transform on each IMF component, the original signal can be 

expressed as the real part (Re) in the following form: 

0
( )( )

1 1 1 1

( ) ( ) Re ( ) Re ( ) Re ( )
T

i
i

n n n n j t dtj t
i i i i
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x t c t z t a t e a t e
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= = = =

= = = =     (10)

Here we left out the residue rn on purpose, for it is either a monotonic function or a constant. 

Meanwhile, for the same signal x(t), the Fourier expansion can be expressed as: 


∞

=

=
1i

tj
i

ieatx θ)(  (11)

From Equations (10) and (11), it is shown that the Fourier transform is a special form of the HT. 

Amplitude variation and instantaneous frequency not only improve the effectiveness of decomposition 
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significantly, but also make HT based on EEMD suitable for non-stationary signals. The 

transformations of amplitude and frequency can be clearly separated by using each IMF component’s 

expansion, which mitigates Fourier transform’s limitation in terms of invariable amplitude and 

frequency [23]. The time-frequency-amplitude distribution is designated as the signal’s Hilbert 

spectrum H(ω, t), which can accurately describe amplitude changes with time and frequency and 

further reflect the signal’s inherent time-varying characteristics. With the Hilbert spectrum defined, the 

Hilbert marginal spectrum can be shown as: 

0
( )

0

( ) ( , ) Re ( )
T

i
n j w t dt

i
i

h H t dt a t e dt
+∞ +∞

−∞ −∞
=

ω = ω =    (12)

Obviously, the Hilbert spectrum offers a measure of amplitude distribution from each frequency and 

time, while the marginal spectrum gives a measure of the total amplitude distribution from each frequency. 

3. IMFs’ Confidence Index Algorithms 

EEMD algorithms adaptively decompose the signal into different simple intrinsic modes of 

oscillations which are extracted to form the IMFs, and then the choice of the IMFs actually is a process 

to filter and reduce noise in the signal. In general, the choice of the IMFs to be analyzed is realized by 

means of visual or experience criteria of the user. In this way, for all that the ensemble EMD 

arithmetic is fully adaptive, the subsequent calculation process cannot continue to be automatic and 

some interaction with the user is required. This becomes the key limitation of practical applications. If 

the arithmetic can build up the confidence of IMFs independently, and those IMFs which are worthwhile 

and meritorious for fault diagnosis are automatically selected, it would be a major breakthrough to solve 

practical problems in engineering. 

To make the EEMD and calculations faster and automatic, a confidence (C.) index is introduced. 

The implemented index, as a matter of fact, is a computational procedure, shown as Figure 1. 

 

Figure 1. IMFs’ confidence index algorithm computational procedure. 

There are four indexes involved in the arithmetic. The first is a measure of the self-correlation 

degree of each IMF, named self-correlation (Sc.) quality. The Sc. quality is represented by the standard 

deviation of the self-correlation coefficient to state the interaction of the data set, which is calculated 

by Equation (13). The second index is represented by the absolute skewness value of each IMF, named 

)(tci
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skewness (S.) absolute. Skewness is to detect the asymmetry of the probability distribution of the data 

set, which may be positive or negative, but the size is the focus to measure, so S. is calculated by 

Equation (14). Kurtosis is one dimensionless parameter to reflect the distribution features of vibration 

signals, and is particularly sensitive to impact signals. The square of the reciprocal of kurtosis is used to 

measure the fault feature visibility of each IMF in the IMF’s confidence index algorithm, and this index 

is called kurtosis (K.) characteristics, represented by Equation (15). Finally the fourth index also 

concerns the impact in signala, used to measure the degree of influence of impact responses and named 

Impact (I.) allowance. The impact points in this paper are the maximum value points exceeding the 

square root of the maximum value envelope mean for each IMF, and the reciprocal of the standard 

deviation of two consecutive impact points with respect to wheel rotation period is defined as the  

I. allowance shown in Equation (16): 

( ), ( 1). ( )
i ic t c tSc quality r −= σ  (13)

where )(),( 1−tctc ii
r  is the self-correlation coefficient of each IMF: 

( )icSkewabsolutS =.  (14)

[ ]21 )(. ickurtosissticscharacteriK =  (15)

If the number of detected maximum values i.e., impact points (IP) is l, and the wheel rotational 

period is T, then: 

1

1
.

l l

I allowance
IP IP

T
+

=
− σ 

 

 
(16)

If there is much noise in a signal, the relevance of the data set is inevitably small, then the IMF 

containing the fault signature generally has a high correlation degree. The standard deviation of an 

IMF’s self-correlation coefficient represents the possibility of a fault feature existing, and the 

evaluation threshold value for the experimental cases presented here is 0.1: if the IMF is less-than the 

threshold value, it would be removed; otherwise it is selected for further calculations automatically. 

When a fault appears in a bearing, the impact pulse will be generated by the fault in the rotation period. 

The greater the fault, the larger the amplitude of the shock response is and the more obvious the failure 

phenomenon is. The kurtosis coefficient represents the probability of failure formation of the appeared 

large amplitude pulse, while the square of the reciprocal of the kurtosis coefficient is a measure of the 

fault feature visibility, which is implemented to subtract the Impact allowance to obtain the visibility 

of the fault feature’s essential characteristics. To appraise the Impact allowance, the IMF envelope is 

calculated to obtain its impact points exceeding the extraction of the root of the envelope average. The 

differences between the abscissas of two consecutive impact points are then evaluated in terms of 

number of points. Then the differences normalized with respect to wheel rotation period make up a set 

of data. The reciprocal of the standard deviation of the resulting data set represents the impact response 

influence degree of the IMF. Since no information about data set symmetry is taken into account by  

I. allowance and K. characteristics, skewness of the IMF is calculated in order to check the distribution 

of the data set about the zero value. Since high absolute skeness values can be obtained for asymmetric 
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data sets or high impact influence time series, then the IMFs’ confidence index expressed in Figure 1 

assumes positive values for containing fault signature IMFs.  

The IMF selection is very related with the confidence index: one IMF is transformed with HT if it is 

not removed by the index arithmetic computational procedure. It is worth noting that the whole 

arithmetic computational procedure does not require any assumptions and empirical estimation, and is 

quite fully automated and adaptive. 

4. Experimental Tests 

An experiment test on railway axle bearings was performed in the test-rig shown in Figure 2. It can 

control the motor rotation speed, i.e., the wheel speed, and the axle-box vibration acceleration is 

collected through an IMC data acquisition system using a strain sensor with a sample frequency of  

10 kHz. The failure parts of railway axle bearings contain outer ring faults, cage faults and pin roller 

faults. These failure parts were emphasized and re-introduced artificially based on the original and 

weak faults of these axle bearings generated during in-service train: there are three grooves ablated 

with depth of 1 mm on the inner surface of the bearing outer ring presenting a 120°-angle distribution 

as shown in Figure 3a, and there is a fracture on the bearing cage between rollers in Figure 3b.  

Figure 3c shows the pin roller ablated fault with a depth of 1 mm. 

Figure 2. Railway axle bearing test-rig. 

 
(a) (b) (c) 

Figure 3. Axle bearing parts with different faults: (a) outer ring fault; (b) cage fault;  

(c) pin roller fault. 

Multiple experimental schemes are designed, including single type of fault experiments, and two or 

three types of fault combination tests. Different working conditions have been considered: the 
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experimental tests have been carried out at the different wheel speeds and the different categories of 

failures are included. The local damage occurs in the rolling bearing, which will produce the 

corresponding vibration frequency, referred to as the fault characteristic frequency. The characteristic 

frequency of each kind of fault is always different from others. Since the axle bearing is characterized 

by a smooth behavior due to the high contact ratio, defects could be hidden during the operation and 

their detection allows evaluating the effectiveness of EEMD and IMFs’ confidence index algorithms. 

For fault diagnosis of railway axle bearing, the fault characteristic frequency of the bearing 

vibration signal is the most intuitive and direct analysis method. The bearing vibration signal is quite 

informative and complex sampled by sensors, so the fault characteristic frequencies of the bearing are 

calculated in advance: 

60

n
fi =  (17)

1
(1 cos )

2a i

d
f Z f

D
= − α  (18)

1
(1 cos )

2b i

d
f f

D
= − α  (19)

2
21 cos

2c i

D d
f f

d D

  = − α  
   

 (20)

According to Equations (17)–(20), the characteristic frequencies of a single bearing fault would be 

calculated. The fi, fa, fb and fc represent the rotation frequency of the bearing inner ring, outer ring fault 

characteristic frequency, cage fault characteristic frequency and pin roller fault characteristic frequency, 

respectively. In Equations (17)–(20), n is the inner ring speed of bearing, d is the diameter of roll, D is 

the average value of the inner ring and outer ring diameter, Z is the number of rolling element, and α is 

the pressure angle (contact angle). The actual calculated values of fault characteristic frequencies when 

the wheel experiment speed is 100 km/h are shown in Table 1. It is worth noting that just one fault’s 

corresponding characteristic frequency is acquired by Equations (18)–(20). Under the same fault 

condition, if there is more than one damage point, the corresponding fault characteristic frequency is a 

multiple of the single fault characteristic frequencies, and the multiple size is determined by the 

number of damage points, e.g., there are three damage points on the bearing outer ring, so the fault 

characteristic frequency of the outer ring fault for the axle bearing is 3 × fa. 

Table 1. Axle bearing characteristic frequencies at a wheel experiment speed of 100 km/h. 

Axle Bearing Parameter and Faults Fault Characteristic Frequency (Hz) 

Rotation frequency of inner ring (fi) 10.2865 
Outer ring fault (fa) 83.2979 

Cage fault (fb) 4.3898 
Pin roller fault (fc) 33.9294 
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5. Algorithm Applications  

The algorithm applications for axle-box vibration signals acquired by means of the vertical 

accelerometer for the undamaged and damaged axle bearing are reported respectively in Figure 4a–d. 

The wheel runs at a speed of 100 km/h for a period of two minutes for each working condition. Only 

an arbitrary portion of the complete acquired signal, lasting 0.35 s, is analyzed. By comparing the four 

time histories, it is easy to note that the highest and sudden variations of vibration occur when the pin 

roller fault bearing happens, and the most cyclical and regular variation of vibration occurs in cage fault 

bearing vibrations. The former fact can be explained by the different alignment conditions during the 

tests, or the essential characteristics of the fault similar with the latter fact, which occurs at the damage 

point. The simple comparison of the four signals in time-domain is misleading and this makes it 

difficult to evaluate the axle bearing state. 

(a) (b) 

(c) (d) 

Figure 4. Axle-box vibration signals with undamaged and damaged axle bearings:  

(a) undamaged bearing; (b) outer ring fault bearing; (c) cage fault bearing; (d) pin roller 

fault bearing. 

To discriminate the four conditions, the EEMD is applied to all of these original signals: there are  

12 IMFs decomposed in total for the four vibration signals, and the twelfth IMF is the residue on 

behalf of the trend. All the IMFs extracted are reported in Figures 5–8, respectively.  

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
-20

-10

0

10

20

30

Time [s]

A
m

p
lit

u
d
e
 [

m
/s2 ]

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
-20

-10

0

10

20

Time [s]

A
m

p
lit

u
d

e 
[m

/s2 ]

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
-30

-20

-10

0

10

20

30

Time [s]

A
m

p
lit

u
d

e
 [m

/s2 ]

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
-50

0

50

Time [s]

A
m

p
lit

u
d
e
 [

m
/s2 ]



Sensors 2015, 15 11001 

 

 

 

Figure 5. IMFs for the undamaged axle bearing vibration signal. 

 

Figure 6. IMFs for the axle bearing vibration signal with outer ring fault. 
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Figure 7. IMFs for the axle bearing vibration signal with cage fault. 

 

Figure 8. IMFs for the axle bearing vibration signal with pin roller fault. 

By examining the functions resulting from the decomposition, it appears that, independently from 

the axle bearing condition, the first IMFs describe high frequency phenomena while the last one is 

related to the low frequency components of the signals that could have not physical meaning and could 

be due to the stop criteria set in the sifting process. Considering that the fault signature is related to the 

rotation frequency, very low frequency components should not be of interest. In any case the selection 

of the IMFs on the basis of the IMFs’ confidence index algorithms allows these spurious IMFs to be 

always and automatically discarded from the set used for any future analysis. The one-to-one 

comparison between IMFs of the same order highlights differences in both shape and amplitude 
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depending on the health condition. However, the fault detection is quite difficult in spite of the visible 

differences of the IMF features between the pin roller fault and the others: hidden variations that could 

be related to the fault can be traced in the decompositions, even if in different IMFs. Obviously, in 

accord with the previous remarks, not all the IMFs are considered for fault diagnostics.  

When the faults occur in the bearing, the energy of the bearing vibration signals would change 

strongly in local frequency bands, while in other frequency bands the energy maybe change weakly. 

Analyzing the whole process of the Hilbert transform for the IMFs, it is obvious that both frequency 

and amplitude of each IMF are the function of time, meaning the Hilbert instantaneous frequency 

spectrum, which offers a measure of amplitude distribution with change of every time and frequency, 

while the marginal spectrum gives a measure of the total amplitude distribution from each frequency. On 

another hand, the local damage in the bearing will always generate the corresponding fault characteristic 

frequency, and the corresponding energy of this frequency band will also change, which can be presented 

distinctly by the amplitude of the marginal spectrum. Therefore, this is a feasible way to use the marginal 

spectrum to capture the fault characteristic frequency.  

The Hilbert marginal spectrums of all IMFs of axle bearing vibration signals under four working 

conditions are calculated for the comparison with the minority IMFs selected by the proposed method, 

showed as Figure 9a–d, respectively. The Hilbert marginal spectrum represents the fluctuation of the 

energy distribution of axle bearing vibration with frequency, and the larger the amplitude, the more the 

energy distribution of the frequency band is. There is a main frequency peak approximating 51 Hz, 

which is consistent in each marginal spectrum in Figure 9, and corresponds to the five multiplier rotation 

frequency of the axle bearing at the wheel speed of 100 km/h.  

(a) (b) 

(c) (d) 

Figure 9. Hilbert marginal spectrum of all IMFs for axle bearing vibration: (a) undamaged 

bearing; (b) outer ring fault bearing; (c) cage fault bearing; (d) pin roller fault bearing. 
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Figure 9 shows that the Hilbert marginal spectrum can extract the fundamental and multiplier 

frequency of rotation effectively, but this way calculating with all IMFs leads to the fault features 

submerging in fundamental frequency of vibration signal. The core target of IMF’s confidence index 

algorithm is to eliminate the effect of the overlap frequency that submerges fault features and highlight 

the failure characteristics.  

According to Section 3, the confidence index for each IMF is evaluated: the values assumed by the 

parameter for the four health condition axle bearings are reported in Tables 2–5, respectively. These 

positive values of confidence index based on the self-correlation quality screening are obtained: IMFs 

1, 5 and 9 are selected for the undamaged axle bearing; IMFs 4, 5 and 6 are selected for the axle 

bearing with outer ring fault; only IMF 8 is selected for the axle bearing with cage fault; and IMFs 6 

and 8 are selected for the axle bearing with pin roller fault. These are the IMFs chosen by the IMFs’ 

confidence index algorithm and subjected to further analysis, to verify whether these IMFs provide 

enough confidence to diagnose the faults. 

The Hilbert marginal spectra of axle bearing vibration signals for four working conditions with 

different faults are shown in Figures 10–13, respectively. Figure 10 shows the Hilbert marginal 

spectrum of selected IMFs for undamaged axle bearing vibration signal. There are multiple frequency 

peaks, and the main frequency band cannot be found. This can be explained by the fact that the energy 

distribution is uniform in the frequency direction when there is nothing damaged on the axle bearing. 

Table 2. IMFs’ confidence index calculation for the undamaged axle bearing vibration. 

IMF Sc. Quality  S. Absolute  K. Characteristics I. Allowance C. Index E. Result 
1 0.1233 0.1219 0.1009 0.0168 0.0378 √ 
2 0.0361 0.0107 0.1607 0.0787 −0.0712 × 
3 0.0382 0.0119 0.0248 0.0860 0.0731 × 
4 0.0941 0.0208 0.0638 0.0479 0.0048 × 
5 0.1571 0.1554 0.0995 0.0426 0.0985 √ 
6 0.1290 0.0531 0.1203 0.0489 −0.0183 × 
7 0.3991 0.0499 0.4197 0 −0.3698 × 
8 0.1830 0.0375 0.0750 0 −0.0375 × 
9 0.3238 0.2692 0.2642 0 0.0050 √ 

10 0.2757 0.1138 0.1764 0 −0.0625 × 
11 0.3774 0.2020 0.3620 0 −0.1600 × 

Table 3. IMFs’ confidence index calculation for the axle bearing vibration with outer ring fault. 

IMF Sc. Quality S. Absolute K. Characteristics I. Allowance C. Index E. Result
1 0.1029 0.0162 0.0979 0.0183 −0.0634 × 
2 0.0334 0.0189 0.1286 0.1570 0.0473 × 
3 0.0775 0.0297 0.0195 0.0463 0.0565 × 
4 0.1310 0.0569 0.1092 0.0555 0.0032 √ 
5 0.2247 0.0546 0.1315 0.0794 0.0024 √ 
6 0.1739 0.1301 0.1365 0.1624 0.1559 √ 
7 0.3459 0.2384 0.2909 0 −0.0524 × 
8 0.2806 0.0119 0.2031 0.1812 −0.0100 × 
9 0.2142 0.1108 0.1433 0 −0.0325 × 

10 0.3421 0.2046 0.2077 0 −0.0031 × 
11 0.4201 0.1138 0.3385 0 −0.2247 × 



Sensors 2015, 15 11005 

 

 

Table 4. IMFs’ confidence index calculation for the axle bearing vibration with cage fault. 

IMF Sc. Quality S. Absolute K. Characteristics I. Allowance C. Index E. Result
1 0.1386 0.0893 0.1152 0.0126 −0.0132 × 
2 0.0338 0.0117 0.1891 0.0428 −0.1346 × 
3 0.0397 0.0235 0.1146 0.0760 −0.0151 × 
4 0.0902 0.0217 0.0421 0.0538 0.0334 × 
5 0.1528 0.0323 0.1248 0.0614 −0.0311 × 
6 0.2273 0.0386 0.1706 0.1042 −0.0279 × 
7 0.3987 0.0316 0.4159 0 −0.3843 × 
8 0.2037 0.2907 0.1249 0.3760 0.5417 √ 
9 0.2794 0.0631 0.0783 0 −0.0153 × 
10 0.2745 0.2204 0.2357 0 −0.0153 × 
11 0.4293 0.2687 0.4586 0 −0.1899 × 

Table 5. IMFs’ confidence index calculation for the axle bearing vibration with pin roller fault. 

IMF Sc. Quality S. Absolute K. Characteristics I. Allowance C. Index E. Result

1 0.1108 0.0115 0.0229 0.0102 −0.0013 × 
2 0.0366 0.6663 0.0011 0.0169 0.6822 × 
3 0.0407 0.1776 0.0034 0.0365 0.2107 × 
4 0.0788 0.0131 0.0812 0.0495 −0.0186 × 
5 0.1503 0.0234 0.1473 0.0686 −0.0553 × 
6 0.1192 0.1695 0.1241 0.0859 0.1313 √ 
7 0.3899 0.0323 0.3718 0 −0.3395 × 
8 0.1720 0.1565 0.1170 0.3013 0.3408 √ 
9 0.2833 0.1551 0.1840 0 −0.0289 × 
10 0.2775 0.0842 0.2428 0 −0.1586 × 
11 0.3230 0.2157 0.2698 0 −0.0541 × 

 

Figure 10. Hilbert marginal spectrum of selected IMFs for the undamaged axle bearing 

vibration signal. 
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Figure 11 shows the Hilbert marginal spectrum of selected IMFs for axle bearing vibration signals 

with outer ring faults, where the main frequency band is mainly concentrated at approximately 200 Hz; 

nonetheless the frequency multiples of the characteristic fault frequency are quite evident: the fault 

characteristic frequency of the outer ring fault for the axle bearing is 3 × fa in this experimental test, 

and there are obvious frequency peaks corresponding to the frequencies of 2 × fa, 3 × fa and 6 × fa. 

 

Figure 11. Hilbert marginal spectrum of selected IMFs for axle bearing vibrations with 

outer ring faults. 

Figure 12 presents the Hilbert marginal spectrum of selected IMFs for axle bearing vibration signals 

with cage faults, where the main peaks correspond to the frequencies of 2 × fb, 5 × fb and 7 × fb. The 

cage fault diagnosis result is a quite gratifying.  

 

Figure 12. Hilbert marginal spectrum of selected IMFs for axle bearing vibrations with  

cage faults. 
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Figure 13 presents the Hilbert marginal spectrum of selected IMFs for axle bearing vibration signals 

with pin roller faults. There is a mass of sidebands around the several main frequency peaks, but the 

frequency multiples of the fault characteristic frequency are well-marked and substantive: 2 × fc, 3 × fc, 

5 × fc and 6 × fc. 

 

Figure 13. Hilbert marginal spectrum of selected IMFs for axle bearing vibrations with pin 

roller faults. 

Due to the bearing rolling features and the fault characteristics, it is impossible to cause a sort of 

“regularization” of the peaks, i.e., the relative increase of the components due to the fault with respect 

to the components due to the rotation and with a period related to fault presence, which is described  

in [3]. According to Figures 11–13, the fault characteristic frequency and different fault diagnostics 

results are highlighted by the Hilbert marginal spectrum with concentration and intuitive effect. With a 

comparison of the fault diagnosis ability of the Hilbert marginal spectrum using all the IMFs and 

selected IMFs by the presented method, the latter has quite a high presentation in spectral resolution 

and failure signature. 

From what has been discussed and analyzed above, using the IMF’s confidence index and Hilbert 

marginal spectrum to diagnose axle bearing faults is an advanced algorithm and signal processing 

technique. Since no hypothesis about the stationary and the periodicity of the signal must be respected 

for EEMD and marginal spectrum applications, the presented approach is tested on data collected for 

an axle bearing with a specific and single fault. The next question is whether the algorithms and signal 

processing by the IMF’s confidence index and Hilbert marginal spectrum can maintain their usefulness 

in a combined faults test. The vibration signal of an axle bearing with a composite of three kinds of faults: 

outer ring fault, cage fault and pin roller fault, as described as Figure 3a–c, is shown in Figure 14. 

EEMD is applied and the corresponding IMFs extracted for this axle bearing vibration signal are 

reported in Figure 15. The fault signature is already apparent at this stage: the fifth and sixth IMFs are 

affected by a modulated amplitude variation.  
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Figure 14. Vibration signal of an axle bearing with a composite of three kinds of faults. 

 

Figure 15. IMFs for the axle bearing vibration signal with a composite of three kinds of faults. 

Table 6. IMFs’ confidence index calculation for axle bearing vibration with a composite of 

three kinds of faults. 

IMF Sc. Quality S. Absolute K. Characteristics I. Allowance C. Index E. Result
1 0.0906 0.1622 0.0621 0.0087 0.1088 × 
2 0.0283 0.1265 0.0212 0.0165 0.1219 × 
3 0.0339 0.0245 0.0151 0.0263 0.0357 × 
4 0.0711 0.0276 0.0766 0.0538 0.0048 × 
5 0.1364 0.0777 0.0782 0.0327 0.0323 √ 
6 0.1362 0.1419 0.1002 0.0765 0.1182 √ 
7 0.3832 0.0513 0.3657 0 −0.3144 × 
8 0.2034 0.0616 0.0754 0 −0.0138 × 
9 0.2875 0.1360 0.1090 0 0.0269 √ 
10 0.2999 0.0208 0.2815 0 −0.2607 × 
11 0.3371 0.2812 0.2851 0 −0.0039 × 

Based on the IMF’s confidence index arithmetic, the IMFs 5, 6 and 9 selected and evaluated can 

diagnose the faults with a high degree of confidence showed in Table 6. The Hilbert marginal spectrum 

has also been estimated in this case. Its energy distribution with frequency is shown in Figure 16. The 
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presence of the faults is evident by that where the main peaks lie corresponds to the frequencies of  

3 × fa, 3 × fb and 6 × fc, which represent the outer ring fault, cage fault and pin roller fault, respectively. 

 

Figure 16. Hilbert marginal spectrum of selected IMFs for axle bearing vibration signals 

with a composite of three kinds of faults. 

The diagnosis result for composite fault detection by means of the Hilbert marginal spectrum is 

more gratifying, which seems more evident for the last case considered, with composite faults, than for 

the previous one. This remark is very important, above all from an operational point of view: the 

robustness and the diagnostics effectiveness of this arithmetic and technique make it very useful for 

on-line diagnostics of railway axle bearings. Based on the EEMD method as a data-based 

decomposition and Hilbert marginal spectrum as the energy distribution evaluation method with 

frequency, it is possible that the positive results obtained from practical axle bearing fault detection 

applications can be still improved for more complex mechanical systems.  

6. Conclusions 

The aim of the paper was the improvement of EEMD and the Hilbert marginal spectrum by means 

of the introduction of an IMF’s confidence index that allows the adaptive self-selection of the IMFs. 

Indeed, not all the IMFs obtained by the decomposition should be considered in the Hilbert marginal 

spectrum. The IMF’s confidence index arithmetic is fully adaptive, overcoming the major limitation of 

selection by users with experience, and allows the development of on-line tools. Of course, the 

automatic identification of characteristic fault frequencies in the final diagnostic step based on the 

Hilbert marginal spectrum still needs improvement. The proposed adaptive selection allows successful 

diagnosis of railway axle bearings with different faults: outer ring faults, cage faults and pin roller 

faults. Whether for a single fault or multiple composite faults, a satisfactory diagnosis result is always 

obtained. In this way, the powerful characteristics of the EEMD and Hilbert marginal spectrum are 

fully exploited.  
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