Skip to main content
. 2015 Apr 29;15(5):10100–10117. doi: 10.3390/s150510100

Algorithm 3. Evolving self-organizing map.

1. Start with k = 0, Inline graphic = ∅, Inline graphic = ∅.
2. Choose a new x ∈ Σ and compute:
Vm(x)={yV:Δ(x,y)<ϵ} (16)
If Inline graphicm(x) = ∅ go to 4.
3. Update:
V=V{x} (17)
E=E{(x,y1),(x,y2)} (18)
where:
Δ(x,y1)=min{y:yV} (19)
Δ(x,y2)=min{y:yy1,yV} (20)
and go to 5.
4. Let y* be such that:
Δ(x,y*)=min{Δ(x,y):yVm} (21)
and Inline graphic(y*) = {y : (y,y*) ∈ Inline graphic}. Update:
V={ϕ(y):yV} (22)
Where:
ϕ(y)={(1α)y+αxy{y*N(y*)}yotherwise (23)
and:
α=γe|Δ(z,x)|2/2σ2 (24)
5. Update the connection strengths as follows:
s(yi,yj)=ϵ/Δ(yi,yj) (25)
for any (yi, yj) ∈ Inline graphic × Inline graphic and ij.
6. Do k′ = k + 1; if mod (k′, τ) = 0, remove the weakest connection.
7. Do k = k′, Inline graphic = Inline graphic and Inline graphic = Inline graphic, and go to 2.