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Abstract
Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4

Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition

time or provide higher spatial resolution. However, significant challenges are presented due

to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity

to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air

pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imag-

ing (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these

artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high

angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/

mm2) and at least 30 diffusion-encoding directions are required. However, this results in

long image acquisition times unsuitable for live animal imaging. In this study, we describe

the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner

sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier

encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal

decay and distortion artefacts while maintaining a reasonably short acquisition time. The

final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI,

b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6

mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of

adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffu-

sion tensor imaging (DTI) derived parameters were measured. High-quality images with

high spatial and angular resolution, low distortion and low variability in DTI-derived parame-

ters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of

white matter (WM) diseases.
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Introduction
Diffusion-weighted imaging (DWI) [1, 2] allows extensive modelling of microscopic water dif-
fusion to characterise tissue structure. Diffusion tensor imaging (DTI) parameters such as frac-
tional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity
(MD), which is the average of DTI eigenvalues, have become indispensable quantitative tools
to study white matter (WM) structures and to determine the efficacy of therapeutic interven-
tions [3]. DTI has been also used to study neurological disease models in the rodent brain [4–
7], and spinal cord [8], as well as brain connectivity [9, 10] and development [4, 11].

To study rodent brain microstructure effectively, a high image resolution is required. The
typical minimum image resolution for mouse brain is approximately 0.1×0.1×0.1 mm3 as com-
pared to 2×2×2 mm3 for human brain, i.e. about an 8000 times increase in resolution. High
field MRI scanners, operating in the range of 4.7 T to 16.4 T, have become indispensable for
small animal imaging. In comparison, standard clinical MRI scanners operate in the range of
0.5 T to 3 T.

There are two major advantages of using ultra-high magnetic field scanners for diffusion-
weighted imaging. High-field MRI provides high SNR, allowing faster data acquisition or
increased spatial resolution[12]. High-field animal scanners are equipped with strong imaging
gradients, essential for high spatial resolution and strong diffusion gradient pulses. However,
increased sensitivity to artefacts demand careful optimization of MRI acquisition parameters
to deliver highest quality images [13].

Many DWI studies of the mouse brain have been performed using ex vivo imaging because
they provide high spatial resolution images and are free of motion artefacts compared to live
imaging. However, ex vivo imaging does not allow longitudinal monitoring of disease progres-
sion. In addition, ex vivo diffusion is affected by the fixation procedures, and therefore they
may show a different specificity compared to in vivo DWI [14].

Preclinical rodent in vivo DWI data has predominantly been acquired using the spin-echo
sequence (SE-DWI) [15–17] due to its greater immunity to magnetic susceptibility at high
magnetic field. This sequence, however, is time-consuming and allows a limited number of dif-
fusion encoding directions (6–12 directions) within a reasonable data acquisition time. There-
fore, in vivo SE-DWI data is best suited to conventional DTI processing and fibre tracking [2].
Other high angular resolution diffusion-weighted imaging (HARDI) techniques require at least
30 diffusion-encoding directions with reasonably high b-values (b>3000s/mm2) for accurate
measurement of fibre orientation distribution (FOD) and fibre tracking [18, 19]. These require-
ments for HARDI acquisition can be problematic for in vivo DWI, as high b-values result in
lower overall SNR, and the increased number of diffusion encoding directions result in a longer
acquisition time.

DWI with single-shot echo planar imaging readout (SS-EPI DWI) is widely used in clinical
imaging [1, 20]. The use of EPI readout provides several advantages: it reduces the susceptibil-
ity to bulk patient motion or physiological movements because the data is acquired in fractions
of a second [21, 22]; its short acquisition time allows HARDI acquisition with a large number
of diffusion-encoding directions; it can provide a high SNR per unit of scanning time, an
advantage for DWI [23, 24].

The application of SS-EPI DWI at ultra-high magnetic fields, especially at 16.4T, has its own
challenges. These include a fast signal decay due to shorter T2 and T2

�
relaxation times (the latter

due to increased magnetic susceptibility induced inhomogeneity), distortion artefacts (due to
poor shimming) and increased chemical shift artefact [25, 26]. DWI with segmented readout EPI
(segmented-EPI DWI) divides the k-space into multiple interleaved acquisitions. Segmented-EPI
DWI has the advantage of reducing susceptibility to off-resonance artefacts and T2/T2� decay
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times [27] while reducing the demand on pulsed gradient performance compared to SS-EPI
DWI [24, 28].

In this work, we describe the optimization of a segmented-EPI DWI sequence to acquire in
vivoHARDI data of adult C57BL/6 mice at 16.4 T at a high in-plane spatial resolution and
within an acceptable acquisition time. Our optimization of the sequence parameters addressed
technical challenges of DWI of the rodent brain in an ultra-high magnetic field, including the
effect of relaxation times, magnetic susceptibility, motion and chemical shift artefacts.

Optimization of the HARDI protocol for in vivo imaging at high
magnetic field

SE-DWI
The Stjeskal-Tanner spin-echo DWI (SE-DWI) sequence is the preferred imaging technique
for ex vivomouse brains because it maximises signal-to-noise ratio and spatial resolution given
no specific constraint on experiment time [5, 7, 10]. However, in vivomouse brain imaging is
time limited, requiring anaesthesia and consideration of animal wellbeing. SE-DWI is also
more susceptible to motion artefacts due to relatively long acquisition times required, resulting
in cumulative phase encoding errors [29]. The combination of phase errors and less time for
signal averaging result in reduced SNR. To compensate for this limitation, images are often
acquired with thicker slices resulting in increased adverse partial volume effects [5, 30]. With
such considerations, optimising SE-DWI acquisitions to achieve both high in-plane and slice
resolution, as well as a high number of diffusion encoding-directions, is problematic.

An alternative DWI method is the stimulated echo (STE)-DWI sequence. This sequence has
been tested at 7 T, but suffers from an inherent 50% reduction in SNR associated with the for-
mation of a stimulated echo [31]. Therefore this sequence was not assessed in this study.

EPI-Readout
Compared to the spin-echo sequence, EPI is more susceptible to a number of artefacts, such as
increased sensitivity to magnetic field inhomogeneity, image blurring, Nyquist ghosting, chem-
ical shift and eddy current artefacts [24, 32].

Geometric distortion. The major cause of distortion at high magnetic field is local mag-
netic field inhomogeneity due to magnetic susceptibility differences between adjacent tissues
[32]. EPI, consisting of a sequence of gradient echoes, suffers more severely from susceptibility
effects compared to spin-echo sequences, especially with increasing length of echo train and
echo spacing due to phase error accumulation [33]. These problems are more pronounced for
in vivomouse brain MRI than in human imaging because of the relatively small rodent brain
size compared to the affected areas and because of the higher field strengths generally associ-
ated with small animal imaging. Pronounced signal loss and distortion is observed around the
air cavities of the jaw, ear canals and olfactory bulb, and to a lesser extent, the brain-skull inter-
face [34].

Limited spatial resolution. The attainable spatial resolution in a single-shot-EPI is limited
as the length of the readout period is constrained by signal decay through T2 or T2

� processes.
As the magnetic field increases, T2

� and T2 decrease. Therefore, the imaging sequence echo
time (TE) must be minimised to allow echo acquisition with sufficient SNR [35].

Nyquist ghosting and eddy current artefacts. Nyquist ghosts are caused by EPI gradient
readout errors. Any mismatch between the alternating gradients due to eddy current effects
gives rise to phase errors causing ghosting in the phase-encoding direction [36]. Eddy currents
are residual magnetic fields induced by gradient switching. They persist after the gradients are
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switched off, even in self-shielded gradients, causing image distortion through scaling, shifting
and shearing in image slices [37].

The effect of eddy currents in DWI is magnified due to the large diffusion gradients
employed. DWI sequences using bipolar diffusion gradients [1, 32] can be used to minimize
this problem. However, if high b-values are required, bipolar gradients may require longer
echo times [38, 39]. We have noted that image distortion due to eddy current artefacts is negli-
gible in our scanner. Eddy current artefacts can be minimised with careful gradient eddy cur-
rent compensation (preemphasis) adjustment.

Chemical shift artefacts. Chemical shift artefacts are more severe at higher magnetic field
with the linear increase in resonance frequency separation of fat and water signals [36]. Nyquist
ghosting also deteriorates image quality further in the presence of chemical shift artefacts.
Chemical shift artefacts can be minimized using EPI with high receiver bandwidth to reduce
the sampling time and consequently the echo spacing, but at the expense of lower SNR. Fat
suppression (saturation) techniques are therefore necessary for EPI sequences [40].

Stejskal-Tanner DWI with segmented EPI readout
A combination of the segmented-EPI DWI sequence [41] with a partial Fourier acquisition
and reconstruction [42] is preferred for imaging at high magnetic fields as the TE can be signif-
icantly shortened. However, segmented EPI is more sensitive to bulk motion effects compared
to single-shot EPI sequences [42, 43]. Higher segmentation factors will result in increased accu-
mulation of phase errors.

Bulk motion results in variations in phase shift between successive echoes resulting in image
ghosting and the introduction of diffusion-weighting further complicates the correction of the
introduced phase error [44]. Several techniques have been developed to reduce the effect of
bulk motion on the quality of the acquired data through multi-shot DWI sequences, such as
navigator echoes and cardiac and/or respiratory triggering.

Navigator echo correction utilises non-phase encoding echoes before or after the imaging
echo to correct phase variations of the acquired imaging echoes. The echo position is used to
determine the shifts in k-space so that the data can be re-gridded accordingly [28, 45–47].

Immobilization of the subject is usually achieved with general anaesthesia and physical
restraint (head mask, tooth bar and tape). Administration of anaesthesia using isoflurane-oxy-
gen mixture inhalation is preferred over intraperitoneal injection because it allows for continu-
ous adjustment according to the condition of the animal throughout the duration of the
experiment [48, 49].

Respiratory monitoring and triggering during image acquisition reduces propagation of
motion artefacts. Sharp inhalation or exhalation or irregular patterns should be avoided.
Acquisition should be initiated during a plateau in the breathing cycle of the animal. Respira-
tory triggering, however, increases the experimental time by factor of approximately two [48,
50, 51].

A summary comparison of technical considerations of the SE-DWI and segmented-EPI-
DWI methods is presented in Table 1.

Materials and Methods

Animal preparation
All mice were housed and handled in accordance with Queensland Animal Care and Protec-
tion Act 2001 and the current NHMRC Australian Code of Practice for the Care and Use of
Animals for Scientific Purposes. The use of animals was approved by The University of Queen-
sland's Animal Ethics Committee under the following certificates: CAI/004/11 (Centre for
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Advanced Imaging) and CIPDD/170/11 (Centre for Integrated Preclinical Drug Development)
for the development of diffusion MRI sequence using live mice.

Anaesthesia was induced with 3% isoflurane/oxygen and maintained at 1–1.5%, at a flow
rate of 1 L/min during imaging experiments. Small adjustments to the isoflurane concentration
were used to maintain the respiratory rate between 60 and 75 beats per minute and the animal
body temperature was maintained at 30°C using warm water circulation of the MRI gradient
cooling system [13, 52].

Imaging Equipment
MRI data were acquired on a 16.4T vertical wide-bore microimaging system, running Paravi-
sion 5.1 (Bruker Biospin, Karlsruhe, Germany), using a micro 2.5 gradient coil and 20 mm
SAW volume head coil (M2M Imaging, Brisbane, Australia). To reduce geometrical distortion,
the mouse brain was initially shimmed globally using a standard free-induction decay (FID)-
based first order and Z2 shimming procedure. Then a Bruker Mapshim protocol, which
employs magnetic field-map information, was used to optimize the shimming of the whole
head volume using the first and second order shims. Finally, a localized shim was performed
on a rectangular voxel derived using the Point Resolved Spectroscopy (PRESS) method and
placed in the centre and encompassing the entire brain to refine the first and second order
shims [52]. The improvement obtained by localized field map shimming is shown in S1 Fig.

DWI imaging Sequences
Segmented-EPI DWI. A schematic diagram of the segmented-DWI EPI can be seen in

Fig 1. A Bruker Stejskal-Tanner pulse-field gradient spin-echo was interfaced with a segmented
EPI read-out sequence to acquire the data with the following parameters: repetition time
(TR) = 6000 ms, sampling bandwidth 500 kHz, a minimum echo time (TE) = 13.97 ms to
accommodate diffusion gradients with δ/Δ = 2.4/6.4 ms and a b-value of 3000 s/mm2. Four
dummy scans were employed to ensure steady state conditions. Sixty-four diffusion direction-
encoding measurements were acquired within approximately 55 minutes (without respiratory
triggering) and 2 hours (with respiratory triggering). The respiratory triggering was required to
minimize motion artefacts. Two excitation averages (NEX) were used to increase the SNR,
whilst maintaining a reasonable experimental time frame of 2 hours.

MRI data was acquired from 24 contiguous slices acquired at 0.6 mm thickness with
FOV = 1.60×0.96 cm and matrix size = 128×64, resulting in an acquired in-plane resolution of
125×150 μm2. Partial k-space data was acquired in the phase encoding dimension with a
combination of partial Fourier transform (FT) and zero-fill acceleration factors of 1.35 (FT

Table 1. Comparison of SE-DWI and Segmented-EPI DWI.

SE-DWI Segmented-EPI DWI

Reduced sensitivity to magnetic susceptibility
and geometric distortion artefacts

Prone to distortion artefacts and increased demands on
the gradient set

Long acquisition time Shorter acquisition time allows acquisition of more
diffusion-encoding directions or more averaging

Relatively low SNR in diffusion weighted images
within a limited experiment time

Suitable image quality to study anatomical structures.
Allows thinner slices with more averaging to reduce
partial volume effects

Unacceptable experiment due to long
experiment times and high SAR at short TR
values

Provides reproducible results in a tolerable experiment
time

doi:10.1371/journal.pone.0130133.t001
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overscans = 15). The encoding acceleration reduced the echo train length (ETL) to avoid acqui-
sition at the late stage of the T2 relaxation period (Fig 2) and the total acquisition time. Encod-
ing acceleration in the frequency-encoding dimension was not used, as it did not reduce TE or
the acquisition time. Only moderate partial Fourier and zero filling (truncation of k-space
acquisition by approximately 30%) was used to minimize the effect of image smoothing.

The EPI echo train was segmented into 10, 8 and 4 segments to assess the optimal level of
segmentation with respect to acquisition time, sensitivity to motion artefacts and reduction of
the echo time. Four shot segmentation was found to be optimal. A total of six naïve animals
were imaged using the optimized segmented-EPI DWI sequence and the same imaging experi-
ment was repeated twice in four animals.

Image processing and analysis: Prior to Fourier transform, the matrix was zero-filled to
256×128, resulting in a final image in-plane resolution of 62.5×75μm2. To reduce motion arte-
facts, diffusion images were registered to a single b0 image (image acquired without the applica-
tion of diffusion gradients) using 2D translation only rigid body registration using the program
FSL FLIRT (fsl.fmrib.ox.ac.uk). FA, MD, AD and RD maps were calculated using the MRtrix
0.2.10 program [19].

Fig 1. Schematic diagram of segmented-EPI DWI. Segmentation of the echo train is required to reduce off-
resonance artefacts. The time between two 90° excitation pulses is the repetition time (TR) and the time from
the first 90° excitation pulse to the central echo acquisition is the average echo time (TE). Δ is the separation
time between the two applications of diffusion-encoding gradient pulses and δ refers to the duration of the
diffusion-encoding gradient. RF (radiofrequency), Gz (slice gradient), Gy (phase gradient), and Gx (readout
gradient).

doi:10.1371/journal.pone.0130133.g001

Fig 2. Themethod of zero-filling and partial Fourier transform. This diagram shows the combination of
zero filling and partial Fourier transformation and how they are applied to fill k-space. Zero filling reduces the
echo train length and consequently avoids acquisition at late echo period with significant signal decay. Use of
this partial Fourier transformation reduces the experiment time by 30%. Dashed lines represent K-space
lines, which were not acquired by the combined zero-fill and partial Fourier accelerated acquisition.

doi:10.1371/journal.pone.0130133.g002
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Regions of interests (ROIs) were drawn manually around the white matter (WM) structures
on the FA map of each individual mouse using an ITK-snap [53] (Fig 3). The corpus callosum
was divided into small segments, including forceps minor and major, rostral, middle and cau-
dal. Other WM structures examined included the external capsule, right and left cerebral
peduncles, optic tracts, internal capsule and optic nerve, segmented according to the histologi-
cal atlas [54].

Spin-Echo DWI. For comparison with EPI-DWI, spin-echo (SE)-DWI HARDI data
(n = 2) were acquired using the following parameters: 24 contiguous slices, 0.6 mm slice thick-
ness, TR/TE = 6000/14.5 ms, b = 3000 s/mm2, 30 diffusion-encoding directions and in-plane
resolution of 125×150μm2, with the acquisition time 2 h 15 mins. Partial Fourier k-space
encoding acceleration was applied in both phase- and frequency-encoding dimensions using
an acceleration factor of 1.5 (FT overscans = 10) with no zero fill in the frequency direction.
These parameters resulted in an acquisition period of 4.5 h if respiratory triggering was
employed, which was deemed too long for animal scanning. Thus only sacrificed animals were
imaged using these protocols. SE-DW images were processed using the MRtrix program in the
same manner as the segmented-EPI DW images [19].

Comparison of in vivo segmented-EPI-DWI and in situ SE-DWI. To compare the per-
formance of segmented-EPI DWI and SE-DWI sequences, mice were initially imaged in vivo

Fig 3. Schematic ROI representations for the measurement of DTI parameters acquired from 2D segmented-EPI DWI in vivo. ROI were drawn
manually on FAmaps of each individual mouse. This image sequence represents rostral (top left) to caudal (bottom right) brain slices. The following
structures were analysed: Rt (green) and Lt (brown) optic nerve (ON), forceps minor corpus callosum (fmi) (navy), rostral corpus callosum (R-cc) (red),
middle corpus callosum (M-cc) (green), external capsule (ec) (yellow), fimbria (fi) (dark blue), internal capsule (ic) (green), caudal corpus callosum (C-cc)
(blue), Rt (navy) and Lt (pink) optic tract (opt), Rt (brown) and Lt (red) cerebral peduncle (cp) and forceps major corpus callosum (fmj) (dark red).

doi:10.1371/journal.pone.0130133.g003
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using 2D segmented-EPI DWI sequence. Subsequently, they were sacrificed using an isoflurane
overdose inside the scanner and imaged in situ using the segmented-EPI DWI sequence fol-
lowed by the SE-DWI sequence. SNR measurements were obtained from images acquired with
and without diffusion gradients. Two ROIs were defined in the central slice package: (1) inside
the brain tissue (to measure the signal intensity) and (2) outside the head (to measure the back-
ground noise). SNR was calculated as the mean signal intensity of the brain tissue minus the
mean signal intensity of the background, divided by the standard deviation of the background
[55]. DTI derived parameters (FA, MD, AD and RD) from each condition were also compared.

Results

Comparison between in situ SE-DWI and in vivo segmented EPI-DWI
SE-DWI was tested to obtain diffusion measurements at 16.4T to enable comparison with
the in vivo segmented EPI-DWI dataset (Fig 4). Comparisons between SE-DWI and seg-
mented-EPI DWI were made using in situ datasets acquired with the same parameters and
slice thickness (0.6 mm). In situ SE-DWI data showed higher SNR (>36%) compared to in situ
segmented-EPI DWI. In addition, in situ segmented-EPI DWI exhibited 16–20% higher SNR
compared to the in vivo segmented EPI-DWI data attributable to the absence of motion. Unlike
SE DWI, segmented-EPI DWI showed some distortion especially in the ventral brain regions
(Fig 4).

DTI derived parameters (FA, MD, AD and RD) of 14 WM brain structures from three DWI
acquisitions are available in S1 Table. FA values were smaller in the in vivo segmented-EPI
DWI compared to the values obtained from in situ SE and EPI DWI acquisitions. On the other
hand, in situ diffusivity parameters are generally smaller than those obtained in vivo, presum-
ably due to the absence of blood flow and physiological motion during in situ acquisitions [14].
The results of comparison between SE-DWI and segmented-EPI DWI are shown in Table 2.

Fig 4. FAmap comparison between in vivo and in situ segmented EPI-DWI, and in situ SE-DWI.Rostral to caudal brain slices of FA maps reconstructed
form in vivo segmented EPI-DWI (A), in situ segmented-EPI DWI (B) and in situ SE-DWI (C) acquired at 0.6 mm slice thickness. Distortion artefacts observed
in in vivo and in situ segmented EPI-DWI are shown with red arrows.

doi:10.1371/journal.pone.0130133.g004
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Despite efforts to minimize motion, artefacts may be observed in mouse brain HARDI data
(Fig 5). During the implementation of segmented EPI-DWI, a number of ETL segmentation
factors were tested (10, 8 and 4) (Fig 6). Increasing number of segments showed more motion
artefacts due to more misalignment of k-space lines. Four-segmented ETL produced a good
compromise between low image distortion, low sensitivity to motion and reasonable total
acquisition time (Fig 6C).

Diffusion tensor imaging of mouse brain white matter
Two-dimensional segmented-EPI DWI at 16.4T produced images with good resolution, low
distortion and sufficient SNR, suitable for studying white matter structures of the whole brain.
Most of the major WM structures can be easily identified, including the corpus callosum, exter-
nal capsule, cerebral peduncles, optic tracts, optic nerve and fimbria. Representative DTI
parametric maps, acquired using in vivo 2D segmented-EPI DWI sequence, are shown in Fig 7.
Fig 8 shows FA colour maps of the mouse brain from rostral to caudal slices wherein the WM
structures were clearly visualized according to their expected fibre directions. The quality of
the images was acceptable, even in regions that are problematic, such as the optic nerves
(Fig 9).

DTI parameters (FA, MD, AD and RD) were analysed in a cohort of 6 wild-type C57BL/6
adult mice (Fig 10). The rostral, middle, caudal and external capsule of the cc were found to
have low FA compared to other WM structures, with an average FA of ~0.32. The cerebral
peduncle had the highest FA of ~0.57. Other structures such as the optic tracts, the optic
nerves, fimbria and the forceps major and minor of the cc had intermediate FA values between
0.4–0.5 (Fig 10A).

The rostral, middle and caudal part of the corpus callosum showed an interesting (slowing)
pattern of diffusivity, with AD of 8.4, 7.5 and 7.0×10−4 mm2/s, respectively (Fig 10C). On the
other hand, RD was similar for all cc segments (4.7–4.9×10−4 mm2/s; Fig 10D). For RD, the

Table 2. Comparison of SE-DWI and Segmented-EPI DWI.

DWI Segmented-EPI DWI (64 directions) SE-DWI (30 directions)

in vivo (2h) in situ (1h) in situ (2h15m)

SNR b0 29.0 ± 2.3 34.6 ± 1.2 47.4 ± 3.7

SNR b = 3000 s/mm2 5.7 ± 1.3 6.8 ± 1.4 12.4 ± 0.9

FA# 0.44 ± 0.04 0.50 ± 0.05 0.53 ± 0.04

MD# 5.3 ± 0.5 4.0 ± 0.3 4.0 ± 0.3

AD# 8.2 ± 0.8 6.4 ± 0.9 6.7 ± 1.1

RD# 3.8 ± 0.7 2.8 ± 0.6 2.6 ± 0.5

# Average ± standard deviations of 14 WM structures, the units for MD, AD and RD = 10−4 mm2/s.

doi:10.1371/journal.pone.0130133.t002

Fig 5. Illustration of signal loss due to motion in in vivo segmented EPI DWI. (A) b0 image, (B) and (C)
DWI images, all are from the same slice position but were acquired in the presence of minimal (A, B) and
excessive motion (C).

doi:10.1371/journal.pone.0130133.g005
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cerebral peduncle has the lowest value at 3×10−4 mm2/s, whereas other structures such as the
optic tract, optic nerve, internal capsule, fimbria, and the forceps of the cc have intermediate
RD in the range of 3.7–4.4×10−4 mm2/s. MD values are variable, ranged between 4.9–6.2×10−4

mm2/s (Fig 10B).

Discussion
We have established a suitable protocol for in vivo imaging of mouse brain using DWI seg-
mented EPI at 16.4T with excellent image quality for analysing DTI properties of the brain
WM structures.

Considerations for mouse brain in-vivo DWI at ultra-high magnetic field
At ultra-high field 16.4T both TR and TE should be optimized to maintain SNR and anatomi-
cal contrast. A comparative study of in vivo T1 relaxation at 9.4T and 17.6T [56] showed only a
small increase in T1 values in the mouse brain. For example, T1 of the corpus callosum was
found to be 1750±50 ms at 9.4T and 1830±90 ms at 17.6T. In implementing in vivo DWI of the
mouse brain at 16.4T, we measured T1 and T2 relaxation times for the cortex (2350±90 and
28±4ms, respectively) and for the corpus callosum (2120±140ms and 23±3ms, respectively),
closer to the finding in rat brain in vivo at 16.4T [57]. The differences in the measured relaxa-
tion may result from differences in the sequence parameters, software acquisition versions and

Fig 6. Optimization of ETL segmentation to reduce image artefacts. The FA map from 4-segment
EPI-DWI (C) shows less susceptibility to motion artefacts and structure displacement compared the maps
reconstructed from 10 and 8-segment ETL (A and B, respectively). This can be observed in the anterior
cingulate cortex adjacent to the corpus callosum.

doi:10.1371/journal.pone.0130133.g006

Fig 7. Examples of the DTI derived parameters of the level of the mid-brain structures from in vivo 2D
EPI DWI at 16.4 T. (A) FA, (B) MD, (C) AD and (D) RDmaps.

doi:10.1371/journal.pone.0130133.g007
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gradient types used in these studies. Nonetheless, long TR (~6s) and short TE (~15ms) values
appeared to be important to obtain good EPI DWI datasets at 16.4T.

Potential application of in vivo segmented-EPI DWI
Our experiment demonstrated that the segmented-EPI DWI protocol is sensitive enough to
detect distinct normal variations of diffusivities in various regions of the corpus callosum. The
forceps major and forceps minor regions were found to have higher FA compared to the ros-
tral, middle and caudal cc segments. Additionally, a gradual decline in AD and MD values
were detected in these regions. This observation supports the finding that in corpus callosum
axon diameters are approximately 20% larger in the rostral-cc compared to the caudal-cc [58].
Such sensitivity is important for studying rodent models of neurological diseases especially
those involving the cc.

Our in vivo segmented-EPI DWI protocol also produced surprisingly good quality images
of the optic nerve. This structure is difficult to image because the diameter of the optic nerve in
rodents is only 0.3–0.4 mm. As a result it can be severely affected by imaging artefacts such as
motion and local magnetic inhomogeneity due to the proximity to the skull and nose air pock-
ets [59]. In vivo assessment of the optic nerve was shown to be valuable for exploring the patho-
logical changes of several neurological diseases [59] such as retinal ischemia [60] and multiple
sclerosis [15].

Fig 8. Example of FA colour map of mouse brain from in vivo 2D EPI DWI data. Left top to right bottom
represent rostral to caudal brain anatomical level, the following directional colour encoding is used:
red = medial-lateral, green = rostral-caudal, blue = dorsal-ventral.

doi:10.1371/journal.pone.0130133.g008

Fig 9. FAmaps of the optic nerves from in vivo 2D EPI DWI data. Images were reproducible across six
mice (M1-M6) and were less susceptible to motion artefacts with reduced partial volume effects in
comparison to the SE-DWI experiment. The ROI analysis used only 3–4 voxels in the centre of the nerve to
reduce partial volume effects. The optic nerves are the two hyperintense structures inside the yellow box.

doi:10.1371/journal.pone.0130133.g009
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Our DWI protocol aimed to obtain the highest possible spatial and angular resolution and
high b-value while maintaining reasonable SNR within an acceptable acquisition time. These
constraints unfortunately result in the use of a relatively large 2D slice thickness with accompa-
nying partial volume contributions in some anatomical structures. The effect of partial volume
errors on statistical analyses may be reduced using ROIs placed in the centre of WM structures.
Low anisotropy structures, such as cortical GM structures and thalamus, have low DTI con-
trast, and thus accurate segmentation of these structures is difficult. Therefore, reliable assess-
ments using this protocol may be limited to detect pathological changes in major WM
structures with high anisotropy to maintain a high level of confidence in the measurements.

Comparison with other in vivo DWI acquisitions
Segmented EPI with a partial Fourier transformation has been previously used at 9.4 T to
acquire a non-isotropic 2D DWI dataset (30 diffusion gradient directions, b value = 1000
s/mm2, spatial resolution of 156×156 μm2, by 500 μm slice thickness) [52]. Our protocol
improves the angular resolution to 64 directions, higher b value (3000 s/mm2) and in-plane
spatial resolution to 125×150 μm2, although used thicker slices at 600 μm. The higher SNR at
16.4T allowed a greater diffusion angular resolution and higher diffusion weighting; both are
generally desirable for improving the accuracy of the DTI-derived parameters and the ability to
resolve crossing-fibres [19, 30, 61]. However, using EPI DWI, the overall resolution achieved in
the two studies are similar, as higher matrix size results in long TE, which needs to be avoided
due to the short T2

� at 16.4T.
Despite using a large number of diffusion directions, fibertracking using this 2D EPI DWI

protocol produced unsatisfactory results (not shown). The streamlines appeared jagged and
discontinuous, especially when compared to ex-vivoHARDI using the same scanner (3D
SE-DWI, 100 μm isotropic resolution, 30 directions, b-value 5000 s/mm2, 16h acquisition) [7].
Low streamline quality of the in vivo data is most likely originating from: (1) lower resolution

Fig 10. ROI analysis of DTI parameters. (A) FA, (B) MD, (C) AD, and (D) RD calculated from 6 adult wild-
type C57BL/6 male mice imaged using in vivo segmented 2D DWI-EPI. Data are presented as
mean ± standard deviation.

doi:10.1371/journal.pone.0130133.g010
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and highly anisotropic voxel size resulting in tracing problems in curved WM tracts, and (2)
generally lower SNR compared to the ex-vivo data.

Our data showed that FA, AD and RD of the cerebral peduncles, optic tracts and fimbria are
similar to the previously published study using 3D DWI gradient and spin echo (GRASE)
acquisition [6]. It was reported that the FA values of these respective structures were 0.54±0.1,
0.57±0.1 and 0.62±0.09 respectively (data at 9.4T, 3D resolution 117×125×375μm3, b-value
1000 s/mm2, 6 diffusion-encoding direction). In comparison, our FA data for these respective
structures were 0.59±0.07, 0.51±0.04 and 0.55±0.04. Despite differences in acquisition parame-
ters and image resolution, the FA values obtained are similar. Sensitivity to imaging parameters
may be reduced in this case due to the predominant direction of the WM fibres in these struc-
tures. These fibres run in a rostro-caudal direction, similar to the direction of the stacking of
the 2D slices, and thus could minimize the partial volume effect from the thick slices.

For regions within the corpus callosum and external capsule, the FA values determined in
our studies were lower compared to a previous study [6]. Besides partial volumes and fibre ori-
entation effects, these differences may be related to different segmentation of corpus callosum
ROIs. In our experiment, the corpus callosum was segmented into four regions: rostral, middle,
caudal, forceps minor and forceps major producing FA values of 0.34±0.06, 0.31±0.03, 0.32
±0.03, 0.45±0.07 and 0.51±0.05, respectively. In the previous study, the corpus callosum was
divided into three segments; rostral, middle and caudal with FA values of 0.62±0.11, 0.51±0.09
and 0.59±0.10, respectively [6].

Improvements of in vivomouse brain DWI acquisition
Cryogenic Probe. The availability of cryocoils [62, 63] has significant potential for

improving DWI through SNR enhancement by a factor of three [55]. The study by Muller et al.
at 11.7T showed the feasibility of acquiring DW images (30 diffusion gradients, 156×156×
250μm, b-value 1000s/mm2) without respiratory triggering in 30 minutes. The cryoprobe
allows imaging using much thinner slices, which would be critical for accurate fibertracking
and increasing the accuracy of DTI derived parameters [55].

Combination of GRASE and cryogenic probe. A combination of 3D DWI GRASE at
11.7T and the cryocoil using moderate angular resolution (12 gradient directions) produced
images with high spatial 3D isotropic resolution (125 μm) in 2–2.5 hours [9]. When spatially
selective radiofrequency pulses were also used, a higher angular resolution (30 diffusion direc-
tions) can be achieved within 1 hour [64], allowing focused imaging of specific brain structures
such as hippocampus, motor and sensory cortex [64]. However, whole brain DWI using the
same imaging parameters would require approximately 10h [9]. Nevertheless, this develop-
ment could be extremely beneficial for detailed studies involving diseases affecting specific
areas such as focal traumatic brain injury [65] and stroke [66].

Conclusion
In summary, we have addressed technical challenges to establish a protocol suitable for seg-
mented EPI DWI of whole mouse brain at 16.4 T. The acquired data produced high quality
spatial and angular resolution images in a reasonable experiment time (2h with respiratory
triggering). ROI analysis shows low variability in the measured DTI-derived parameters in a
wildtype animal cohort, indicating that this protocol will be suitable for longitudinal study of
animal models of neurological disease, in particular those suffering fromWM changes.
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Supporting Information
S1 Fig. Field improvement obtained using Mapshim. (A) Magnitude image, (B) field map
obtained after FID shimming (step 1), (C) field map obtained after the final localized Mapshim
protocol using a large PRESS voxel placed in the centre of the brain (step 3). Brain field histo-
grams were measured using outlined brain areas (ROI_1) before (D) and after (E) the localized
Mapshim procedure. The brain local field homogeneity in (D) and (E) was improved from
-192±151Hz to 4.15±142 Hz (mean±stdev). Panel group F1-4 and G1-4 are two slices obtained
before (F1-2, G1-2) and after (F3-4, G3-4) the localized Mapshim procedure. F1, F3, G1 and
G3 are b0 images, F2, F4, G2 and G4 are DWI with the same diffusion direction obtained using
the optimized DWI segmented EPI sequence. Examples for the improvement of the quality of
brain structure definition in the DW images are shown using white arrowheads.
(TIF)

S1 Table. DTI derived parameters of in vivo and in situ segmented-EPI DWI and in situ
SE-DWI.
(DOCX)
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