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Abstract

Mitochondrial DNA (mtDNA) copy number in peripheral blood has been suggested as risk
modifier in various types of cancer. However, its influence on melanoma risk is unclear. We
evaluated the association between mtDNA copy number in peripheral blood and melanoma
risk in 500 melanoma cases and 500 healthy controls from an ongoing melanoma study.
The mtDNA copy number was measured using real-time polymerase chain reaction. Over-
all, mean mtDNA copy number was significantly higher in cases than in controls (1.15 vs
0.99, P<0.001). Increased mtDNA copy number was associated with a 1.45-fold increased
risk of melanoma (95% confidence interval: 1.12-1.97). Significant joint effects between
mtDNA copy number and variables related to pigmentation and history of sunlight exposure
were observed. This study supports an association between increased mtDNA copy num-
ber and melanoma risk that is independent on the known melanoma risk factors (pigmenta-
tion and history of sunlight exposure).

Introduction

Malignant melanoma is an aggressive, therapy-resistant malignancy of the melanocytes. The
incidence of melanoma has been steadily increasing worldwide, resulting in an increasing public
health problem [1-6]. In the United States, the lifetime risk of melanoma in 1960 was one in 600
persons; in 2000, it was one in 75 persons; and this year, it will be one in 50 persons [7]. More
alarmingly, a growing fraction of patients are diagnosed at a young age but with advanced disease
for which prognosis is dismal [8]. Solar ultraviolet (UV) radiation exposure, fair skin, dysplastic
nevus syndrome, and a family history of melanoma are major risk factors for melanoma develop-
ment [9-14]. In the past decade, various genome-wide association studies have been carried out
to identify genetic variants that may contribute to the development of melanoma or melanoma-
related phenotypes [15-29]. However, when those genetic and environmental factors are com-
bined together in a risk prediction model, the overall predictive value is still less than 70%, sug-
gesting the existence of unknown genetic or environmental risk factors for melanoma [30].
Mitochondria are semiautonomous organelles within cells that play an important role in
cellular energy metabolism, the generation of reactive oxygen species (ROS), and apoptosis
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[31]. Compared with nuclear DNA, mitochondria DNA (mtDNA) lacks protective histones
and has diminished DNA repair capacity and therefore is particularly susceptible to ROS and
other types of genotoxic damage. Although the copy number of mtDNA per cell is maintained
within a constant range according to the energy need of the cell to sustain normal physiologic
functions, it varies significantly from 1,000 to 10,000 per cell [32]. mtDNA also significantly
varies by cell type; however, in general, there is good correlation of the amount of mtDNA in
various cell types. Therefore, mtDNA copy number in surrogate tissues (e.g., whole blood, etc.)
might be a good indicator of mtDNA copy number in target tissues.

Some researchers have hypothesized that the variations in the mtDNA copy number reflect
the net results of gene-environment interactions between unknown hereditary factors and the
levels of oxidative stress (an imbalance between ROS production and the antioxidant capacity),
caused by a variety of endogenous and exogenous factors, such as hormones, age, dietary and
environmental oxidants/antioxidants, and reaction to oxidative damage, all of which are
thought to be risk factors for various types of cancer [33-39]. This hypothesis has been sup-
ported by epidemiologic studies that demonstrated a statistically significant association
between increasing mtDNA copy number in peripheral blood and increased risk of breast can-
cer [40, 41], non-Hodgkin lymphoma [42], chronic lymphocytic leukemia [43], lung cancer
[44], renal cell carcinoma [45], pancreatic cancer [46], and colorectal cancer [47]. However,
other studies showed an inverse relationship between increasing mtDNA copy number in
peripheral blood and the risk of colorectal and kidney cancers [48, 49]. And no association was
observed between mtDNA copy number and gastric cancer risk [50].

So far, only one study has investigated the role of mtDNA copy number in whole blood in
melanoma [51]. In fact, the mtDNA copy number might be extremely relevant to melanoma
because oxidative stress has been suggested to play a significant role in melanoma etiology [52-
55]. Several signaling cascades such as the RAS/RAF/ERK1/2 pathway, the PI3K/AKT path-
way, RAC1, and nuclear factor kappa B are involved in melanoma initiation and progression
[52-55]. ROS are induced by these signal transduction cascades, and they play a fundamental
role in melanomagenic processes. Cells derived from the melanocytic lineage are particularly
sensitive to an increase in ROS, and melanocyte cells rely on efficient antioxidant measures.
Thus, variations in mtDNA copy number may affect antioxidant capacity, influence the levels
of ROS in melanocytes, and eventually contribute to melanocyte carcinogenesis. In current
study, we performed the first study to investigate mtDNA copy number measured in whole
blood DNA as a possible biomarker for risk of melanoma.

Materials and Methods
Study Participants

Detailed information on study participants has been described previously [30, 56]. In brief,
patients were recruited from The University of Texas MD Anderson Cancer Center (Houston,
TX). All patients with either newly diagnosed or surgically treated, histopathologically con-
firmed melanoma who were Texas residents and registered at MD Anderson between April
1994 and July 2013 were eligible for our study. Cancer-free participants in the control group
were recruited from among unrelated clinic visitors (82.7%) and spouses (17.3%). Cases and
controls were individually matched by age (£5 years), sex, and ethnicity. The exclusion criteria
for patients were prior chemotherapy or radiation therapy and metastasis; the exclusion criteria
for all study participants were prior cancer diagnosis (except for non-melanoma skin cancer in
the patients) and any blood transfusion in the 6 months prior to recruitment. After we obtained
written informed consent, each participant was given a structured self-administered question-
naire to collect demographic data and data on risk factors, such as natural hair color, eye color,

PLOS ONE | DOI:10.1371/journal.pone.0131649 June 25, 2015 2/12



@’PLOS ‘ ONE

mtDNA Copy Number and Melanoma

skin color, the presence of moles and dysplastic nevi, their history of sunlight exposure (includ-
ing freckling in the sun as a child, tanning ability, and number of sunburns), and the number
of first-degree relatives with any cancer. The study protocol was approved by the Institutional
Review Board at MD Anderson.

Determination of mtDNA copy number via real-time quantitative
polymerase chain reaction

The method for determining mtDNA copy number was detailed in our previous publication
[41] and was shown to have high inter-assay reliability. Briefly, two pairs of primers were used
in the two steps of relative quantification for mtDNA content. One pair was used to amplify
the MT-ND1 gene in mtDNA. Another one was used to amplify the single-copy nuclear gene
human globulin (HGB). The ratio of mtDNA copy number to HGB copy number was deter-
mined for each sample from standard curves. This ratio was proportional to the mtDNA copy
number in each cell and, for each sample, was normalized to a calibrator DNA (a DNA sample
from a healthy control) to standardize between different runs. All samples were analyzed in
duplicate on a 96-well plate with an Applied Biosystems StepOne Plus System (Life Technolo-
gies, Carlsbad, CA). To avoid possible position effects, the polymerase chain reactions for ND-
1 and HGB were always performed on different 96-well plates with the same samples in the
same well positions. A standard curve of a diluted reference DNA, one negative control, and
one calibrator DNA were included in each run. For each standard curve, one reference DNA
sample was successively diluted 1:2 to produce a seven-point standard curve between 0.3125
and 20 ng of DNA. The R* for each standard curve was 0.9 or greater. Standard deviations for
the cycle of threshold value were accepted at 0.25. Otherwise, the test was repeated.

Statistical analysis

Statistical analyses were performed using the SPSS statistical package (version 21, SPSS Inc.,
Chicago, IL). Differences in the distributions of demographic variables and known risk factors
for melanoma obtained from the self-administered screening questionnaire between cases and
controls were evaluated with chi-square tests. Crude ORs and 95% Cls for each of the known
risk factors were obtained from unconditional univariate logistic regression analysis to evaluate
their associations with melanoma risk (Table 1). To examine differences between cases and
controls for the mean mtDNA copy number associated with selected categorical characteristics
and differences between selected categorical characteristics for the mean mtDNA copy number
within the case or control group, chi-square tests were used (Table 2). ORs and 95% Cls were
estimated with unconditional multivariate logistic regression for the main effect of mitochon-
drial mtDNA copy number on melanoma risk. Potential confounders were tested at the

P =0.10 level, and age was the only significant confounder. The mtDNA copy number variable
was examined in several ways, including as a continuous variable, as a categorical variable
divided by the median value in controls, and as a categorical variable based on quartile distribu-
tions in controls (Tables 3 and 4). Cutoff points for all constructed categorical variables were
based on the distribution within the control population. The dose response was tested for the
quartile distribution of mtDNA copy number by inserting the mean value of each quartile and
then treating the variable as a continuous variable in the logistic regression model.

Results

The case population included 500 patients diagnosed with histologically confirmed, non-meta-
static cutaneous melanomas registered at The University of Texas MD Anderson Cancer Cen-
ter. The control population included 500 cancer-free study participants who had no previous
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Table 1. Distribution of selected known risk factors between melanoma cases and healthy controls.

Variables Controls, (n = 500) Cases, (n = 500) OR (95% CI)
N (%) N (%)

Age (y)

<60 262 (52.4) 247 (49.3)

>60 238 (47.6) 253 (50.7)
Sex

Male 238 (47.5) 238 (47.5)

Female 262 (52.5) 262 (52.5)
Hair color

Black or brown 388 (77.6) 320 (64.0) 1.00

Blond or red 112 (22.4) 180 (36.0) 2.05 (1.54-2.73)
Eye color

Not blue 330 (66.0) 278 (53.7) 1.00

Blue 170 (34.0) 222 (44.3) 1.55 (1.19-2.02)
Skin color

Dark brown 278 (55.5) 202 (40.5) 1.00

Fair 222 (44.5) 298 (59.5) 1.85 (1.43-2.39)
Tanning ability after prolonged sun exposure

Average or deep 366 (73.1) 290 (58.0) 1.00

Light or none 134 (26.9) 210 (42.0) 1.98 (1.50-2.60)
Lifetime sunburns with blistering

0 213 (42.6) 158 (31.5) 1.00

>1 287 (57.4) 342 (68.5) 1.61 (1.23-2.10)
Freckling in the sun as a child

No 305 (60.9) 256 (51.1) 1.00

Yes 195 (39.1) 244 (48.9) 1.49 (1.15-1.93)
Family history of cancer

No 407 (81.4) 369 (73.7) 1.00

Yes 93 (18.6) 131 (26.3) 1.55 (1.14-2.13)

doi:10.1371/journal.pone.0131649.t001

history of malignancies from among visitors (including non-blood relatives such as spouses) to
the clinics by using the matching criteria of age (+5 years) and sex. Because more than 95% of
study subjects were white Americans, we restricted both cases and controls to white Americans.
Table 1 shows the distributions of age, sex, and selected melanoma related risk factors, includ-
ing hair color, eye color, skin color, tanning ability after prolonged sun exposure, number of
lifetime blistering sunburns, freckling in the sun as a child, and family history of skin cancer.
As expected, the cases and controls did not differ by age or sex. In the univariate analyses, the
known risk factors for melanoma were significantly associated with risk in this population. For
example, study subjects who had blond or red hair, blue eyes, and fair skin had a 2.05-, 1.55-,
and 1.85-fold increased risk of melanoma, respectively, compared with those who had black or
brown hair, another eye color, and dark brown skin (hair color: crude odds ratio [OR] = 2.05,
95% confidence interval [CI] = 1.54-2.73; eye color: crude OR = 1.55, 95% CI = 1.19-2.02; and
skin color: crude OR = 1.85, 95% CI = 1.43-2.39). Compared to average to deep tanning ability,
light or low tanning ability was associated with a 1.98-fold increased risk of melanoma (crude
OR =1.98,95% CI = 1.50-2.60). Study subjects who reported having at least one sunburn that
caused blistering during their lifetime or who reported freckling in the sun during childhood
had a 1.61- and 1.49-fold increased risk of melanoma, respectively (crude OR = 1.61, 95%
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Table 2. Mean mtDNA copy number by selected known risk factors between melanoma cases and

healthy controls.

Cases (n = 500)

Overall 1.15
Age (y)
<60 1.26
>60 1.05
P value® 0.005
Sex
Male 1.13
Female 1.17
P value® 0.534
Hair color
Black or brown 1.14
Blond or red 1.16
P value® 0.782
Eye color
Not blue 1.15
Blue 1.15
P value® 0.834
Skin color
Dark brown 1.13
Fair 1.16
P value® 0.547
Tanning ability after prolonged sun exposure
Average or deep 1.15
Light or none 1.15
P value® 0.924
Lifetime sunburns with blistering
0 1.14
>1 1.15
P value® 0.825
Freckling in the sun as a child
No 1.15
Yes 1.15
P value® 0.843
Family history of skin cancer
No 1.13
Yes 1.20
P value® 0.012

*The P value comparing mean mtDNA copy number between cases and controls.

Controls (n = 500)

0.99

1.06
0.91
0.007

0.99
0.98
0.672

0.99
0.99
0.923

0.99
0.99
0.912

0.98
1.00
0.641

0.99
0.99
0.956

0.98
1.01
0.762

0.98
1.00
0.826

0.95
1.07
0.024

P value*

<0.001

0.009

0.015

0.080
0.034

0.056
0.025

0.035
0.040

0.027
0.036

0.032
0.072

0.033
0.041

0.048
0.046

0.026
0.034

#The P value comparing mean mtDNA copy number between groups defined by selected characteristics.

doi:10.1371/journal.pone.0131649.t002

CI =1.23-2.10 and crude OR = 1.49, 95% CI = 1.15-1.93, respectively). In addition, having a

family history of cancer (any cancer among first-degree relatives) was associated with a

1.55-fold increased risk of melanoma compared with no family history (crude OR = 1.55, 95%

Cl=1.14-2.13).
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Table 3. Risk of melanoma as estimated by mtDNA copy nhumber.

mtDNA index (relative copy Number of cases Number of controls OR (95% CI)*

number) (%) (%)

Continuous variable 500 (100) 500(100) 1.45 (1.12—
1.97)

Categorical variable
By mean in controls

<0.99 142 (28.4) 249 (49.8) 1.00

>0.99 358 (71.6) 251 (50.2) 2.35 (1.78-
3.14)

By quatrtile in controls

1st 71 (14.2) 126 (25.2) 1.00

2nd 122 (24.4) 125 (25.0) 1.73 (1.16—
2.98)

3rd 137 (27.4) 123 (24.6) 1.98 (1.24—
3.21)

4th 170 (34.0) 126 (25.2) 2.39 (1.53—
3.42)

*ORs were adjusted by age.

doi:10.1371/journal.pone.0131649.t003

The comparison of mtDNA copy number between melanoma cases and healthy controls is
summarized in Table 2. Overall, melanoma cases had significantly higher levels of mtDNA
copy number than healthy controls (mean: 1.15 vs 0.99, P<0.001). The difference in mtDNA
copy number between cases and controls was not affected by age, sex, or selected melanoma
related risk factors. When we compared mtDNA copy number within the case or control
group by age, sex, and selected melanoma related risk factors, significant differences were
observed according to age and family history of cancer. Regardless of case control status, older
study subjects (>60 years old) had statistically significantly lower mtDNA copy number than
younger subjects (<60 years old) (P = 0.005 for the cases and 0.007 for the controls). Regardless
of case control status, study subjects having family history of cancer had statistically signifi-
cantly higher mtDNA copy number than subjects having no family history of cancer (P = 0.012
for the cases and P = 0.024 for the healthy controls).

The relationship between mtDNA copy number and risk of melanoma is summarized in
Table 3. We first treated mtDNA copy number as a continuous variable. In the multivariate lin-
ear regression analysis, increased mtDNA copy number was associated with a 1.45-fold

Table 4. Joint effects between mtDNA copy number and pigmentation.

mtDNA CNV Low (<0.99) High (>0.99)
Hair color
Black or brown 1.00 1.57 (1.06-3.23)
Blond or red 1.46 (1.03-2.98) 3.42 (1.42-5.11)
Eye color
Not blue 1.00 1.34 (1.01-1.96)
Blue 1.42 (1.03-2.76) 2.98 (1.36—4.03)
Skin color
Dark brown 1.00 1.43 (1.05-1.89)
Fair 1.53 (1.06—2.85) 3.26 (1.51-4.87)

doi:10.1371/journal.pone.0131649.t004
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increased risk of melanoma after adjusting for age (adjusted OR = 1.45, 95% CI = 1.12-1.97).
Second, we dichotomized mtDNA copy number into two groups (high or low) using median
levels of mtDNA CNVs in controls (0.99). In the multivariate logistic regression analysis, high
levels of mtDNA CNVs were associated with a 2.35-fold increased risk of melanoma after
adjusting for age (adjusted OR = 2.35, 95% CI = 1.78-3.14). In further quartile analysis using
25%, 50%, and 75% values of mtDNA CNVs among control subjects as cutoff points, we found
that study subjects in the 2°%, 3", and 4™ quartiles were at an increased risk of melanoma
(adjusted ORs for the 2™, 3%, and 4™ categories = 1.73, 95% CI = 1.16-2.98; 1.98, 95%

CI =1.24-3.21; and 2.39, 95% CI = 1.53-3.42, respectively) when compared with those with
the lowest quartile of mtDNA CNVs. A statistically significant dose-response trend was
observed (P < 0.001).

Finally, we examined the joint effects of mtDNA copy number and known melanoma risk
factors, including pigmentation (Table 4) and sun exposure factors (data not shown), on mela-
noma risk. mtDNA copy number was dichotomized into two groups (high or low) using
median levels of mtDNA copy number in controls. For hair color, using study subjects who
had black or brown hair and low mtDNA copy number as the reference group, those with
either blond/red hair or a high mtDNA copy number alone had a 1.46- and 1.57-fold increased
risk of melanoma, respectively (adjusted OR = 1.46, 95% CI = 1.03-2.98; adjusted OR = 1.57,
95% CI = 1.06-3.23, respectively), and those with both blond/red hair and a high mtDNA copy
number had a 3.42-fold increased risk of melanoma (adjusted OR = 3.42, 95% CI = 1.42-5.11).
For eye color, using study subjects who had an eye color other than blue and a low mtDNA
copy number as the reference group, those with blue eyes, a high mtDNA copy number, or
both had a 1.42-, 1.34-, and 2.98-fold increased risk of melanoma, respectively. For skin color,
using study subjects who had dark brown skin and a low mtDNA copy number as the reference
group, those who had fair skin, a high mtDNA copy number, or both had a 1.53-, 1.43-, and
3.26-fold increased risk of melanoma, respectively. Similar joint effects were also observed
between tanning ability after prolonged sun exposure, the number of lifetime blistering sun-
burns, freckling in the sun as a child, and mtDNA copy number (data not shown). No signifi-
cant interaction between the various risk factors and mtDNA copy number was observed in
the analysis.

Discussion

To our knowledge, this study is the first to demonstrate an association between increased
mtDNA copy number and increased melanoma risk. In a previous study by Hyland et al. [51],
they didn’t observe significant difference in mtDNA copy number between familial melanoma
cases and family based controls. However, they found that having increasing mtDNA copy
number was significantly associated with CDKN2A mutation status among cases. Our findings
agree with those from several previous studies of various other cancers, including breast cancer
[40, 41], non-Hodgkin lymphoma [42], chronic lymphocytic leukemia [43], lung cancer [44],
renal cell carcinoma [45], pancreatic cancer [46], and colorectal cancer [47]. Perhaps more
importantly, other studies have demonstrated an inverse relationship between increasing
mtDNA copy number in peripheral blood and the risk of colorectal and kidney cancers [48,
49], and no association was observed for gastric cancer [50].

Mitochondria are the major source and target of the intracellular ROS that plays an impor-
tant role in melanocytic carcinogenesis. UV exposure leads to enhanced melanocytic pigment
production, which generally protects the skin from the deleterious DNA-damaging effects of
UV-A and -B. However, ROS is a natural product of melanin production. The presence of mel-
anin in cultured primary human melanocytes is associated with a higher degree of ROS
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accumulation and a simultaneous reduction in the cellular antioxidant glutathione [57]. The
tumor suppressor protein p16™ < ** plays a major role in the cell cycle control of melanocytes,
such that people with a familial p16™ ** deficiency have a characteristic accumulation of nevi
and an increased melanoma risk [58]. p16™ ** is involved in the prevention of ROS accumula-
tion in a manner that can be uncoupled from its cell cycle regulatory function. Although
p16™ 4 deficiency was found to increase ROS levels in several cell types, the effect was partic-
ularly strong in melanocytes in a melanin-dependent manner [59]. Thus, increased ROS pro-
duction in melanocytes may not only allow the accumulation of potentially oncogenic
mutations in genomic DNAs but also cause significant damage on mtDNAs. Such DNA dam-
age on mitochondria may initiate the compensatory response of increasing mtDNA production
to protect the mitochondrial genome and maintain normal function. Therefore, our observa-
tion of an increase in mtDNA copy number in melanoma cases may serve as an index of the
increased cellular levels of oxidative stress. Interestingly, in a recent study of the relationship
between pigment production, ROS, and mitochondrial function, Boulton et al. reported a direct
relationship between pigment production and the production of ROS by mitochondria, sug-
gesting an intimate relationship among pigment production, ROS, and mitochondria [60]. In
addition, fibroblasts that were exposed to mild oxidative stress showed an increase in mito-
chondrial mass through a cell cycle-independent pathway [61].

Since the correlation between peripheral blood mtDNA copy number and melanocyte tissue
has not yet been evaluated, the biological relevance of increased peripheral blood mtDNA copy
number to melanocytic carcinogenesis remains unclear. Although melanoma tumor-specific
mtDNA mutations can be detected in circulation, they are more likely to be detected in
advanced stage or metastatic melanoma cases [62]. Because 95% of our melanoma cases were
diagnosed with early-stage melanoma (stage I and II), the contribution of tumor-specific muta-
tions in determining peripheral blood mtDNA copy number was likely minimal, but such a
potential association remains to be evaluated in future investigations. In our previous study of
breast cancer, we observed inverse associations between mtDNA copy number and several
antioxidants in peripheral blood [41], and a positive association between mtDNA copy number
and markers of oxidative stress including thiobarbituric acid reactive substances and 8-hydro-
xyguanosine has been observed in humans [63]. A decrease in antioxidants leads to increased
levels of oxidative stress; thus, our observation of an increase in peripheral blood mtDNA copy
number in melanoma cases could be the result of decreased levels of homeostatic antioxidants,
which could correlate with levels of antioxidants in melanocytes.

Considering the close relationship between pigment production, ROS, and mitochondria,
our observation that peripheral blood mtDNA copy number is independent of pigmentation
and history of sunlight exposure is somewhat surprising. However, as outlined earlier, periph-
eral blood mtDNA copy number may not reflect the mtDNA copy number in melanocytes,
and the molecular mechanisms regulating mtDNA copy number might be different in periph-
eral blood compared with melanocytes. Future investigations are needed to assess the correla-
tion between mtDNA copy number in peripheral blood and melanocyte tissue.

One important limitation of the current study is its retrospective design, which does not
provide the power to infer a causal relationship between peripheral blood mtDNA copy num-
ber and melanoma risk. Another limitation is the quantification of mtDNA copy number in
whole blood. Blood cell composition may be varied individually, and fluctuations in blood cell
composition could be a confounding factor behind the observed differences. Oxygen level will
affect ROS levels, and in turn, will be a stimulant to the increased biogenesis of mitochondria.
In current study, blood oxygenation levels were not measured. In addition, we don’t have
matched melanoma tumor tissues available to explore the correlation of mitochondrial DNA
copy number between blood cells and tumor tissues. However, the study included a relatively
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large sample size, which provided sufficient statistical power to evaluate the association
between mtDNA copy number and melanoma risk. In addition, we had detailed information
on major melanoma risk factors, including pigmentation and sun exposure history. To our
knowledge, this is the first investigation to demonstrate a positive association between periph-
eral blood mtDNA copy number and risk of melanoma. Future studies are warranted to evalu-
ate the relative contributions of UV exposure, pigmentation, and oxidative stress-related
factors and their respective influences on mtDNA copy number to provide novel insights into
the biological mechanisms of mtDNA copy number variation on the development of mela-
noma. Additionally, we will explore the correlation the correlation of mitochondrial DNA
copy number between blood cells and tumor tissues.
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