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Abstract

Background

microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases,
including cancers. Identifying miRNA functions is very important in understanding disease
mechanisms and determining the efficacy of drugs. An increasing number of computational
methods have been developed to explore miRNA functions by inferring the miRNA-mRNA
regulatory relationships from data. Each of the methods is developed based on some
assumptions and constraints, for instance, assuming linear relationships between variables.
For such reasons, computational methods are often subject to the problem of inconsistent
performance across different datasets. On the other hand, ensemble methods integrate the
results from individual methods and have been proved to outperform each of their individual
component methods in theory.

Results

In this paper, we investigate the performance of some ensemble methods over the com-
monly used miRNA target prediction methods. We apply eight different popular miRNA tar-
get prediction methods to three cancer datasets, and compare their performance with the
ensemble methods which integrate the results from each combination of the individual
methods. The validation results using experimentally confirmed databases show that the
results of the ensemble methods complement those obtained by the individual methods and
the ensemble methods perform better than the individual methods across different datasets.
The ensemble method, Pearson+IDA+Lasso, which combines methods in different
approaches, including a correlation method, a causal inference method, and a regression
method, is the best performed ensemble method in this study. Further analysis of the results
of this ensemble method shows that the ensemble method can obtain more targets which
could not be found by any of the single methods, and the discovered targets are more statis-
tically significant and functionally enriched. The source codes, datasets, miRNA target pre-
dictions by all methods, and the ground truth for validation are available in the
Supplementary materials.
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Introduction

miRNAs are important endogenous non-coding RNAs that regulate gene expression by pro-
moting mRNA degradation and repressing translation [1]. They regulate target mRNAs post-
transcriptionally by base pairing to complementary sequences in the 3’-untranslated region
(3’UTR) of the mRNAs [1-4]. miRNAs have also been observed to target genes through sites
in the 5’UTR and sometimes in the open reading frames (ORFs) [5]. They are involved in sev-
eral cancer-related processes such as proliferation [6, 7], metabolism [8], differentiation [9],
development [10], apoptosis [11], cellular signaling [12], and even cancer development and
progression [1, 13]. Identifying miRNA functions helps elucidate the complex mechanisms of
fatal diseases and assists with the design of drugs for treatments.

Several methods have been proposed to identify miRNA targets using sequence data [14-
16], which are based on sequence complementarity and/or structural stability of the putative
duplex. Although these methods can produce a list of potential target genes, the results may
contain a high-rate of false positives and false negatives [17]. Moreover, the results predicted
using different methods are often inconsistent [17]. A major reason for this is that the miRNA
binding sites are small, thus they do not support statistically significant predictions, and a
small difference in the algorithms can lead to a great diversity in the results [17, 18]. In addi-
tion, the predictions are static, and the predicted targets of a certain miRNA might not be
expressed at all in a specific condition [19].

In recent years, various computational methods have been devised to incorporate expres-
sion profiles into the study of miRNA-mRNA regulatory relationships. The principle of these
methods is that if a gene is regulated by a miRNA, a correlation should show between the
expression levels of the gene and the miRNA. The first stream of the research saw various
methods developed to identify co-expressed miRNAs and mRNAs. Some highlights of those
methods are correlation analysis [20, 21], regression models [22, 23], population-based proba-
bilistic learning model [24], and rule based methods [25]. In the second stream, attempts were
made to predict the regulatory networks of miRNAs and mRNAs for specific biological pro-
cesses, using methods such as Bayesian network learning [26-28] and causal inference tech-
niques [29-31].

It has been shown that computational methods may perform inconsistently in inferring
gene regulatory networks with different datasets [32]. Each method usually has a set of assump-
tions on data when building the model. These assumptions may be suitable for some datasets
but may be violated in the others. For example, correlation based methods assume linear rela-
tionships between variables. In reality, however, many relationships are not linear, or even can-
not be approximated using linear relationships. Therefore, these methods may not perform
well when the underlying relationships are not linear. As shown in the Results section, our
experiments on different matched miRNA and mRNA expression datasets confirm the incon-
sistent performance of the target prediction methods. Therefore, it is important to design more
reliable methods for miRNA target prediction.

On the other hand, ensemble methods which integrate different methods have been shown to
perform better than all the individual component methods [32]. Different miRNA target predic-
tion methods have their own pros and cons, and their results may complement each other.
Therefore, combining the predictions of multiple methods would improve the prediction power.

In this paper, we firstly compare the performance of eight popular miRNA target prediction
methods with three different cancer gene expression datasets. We then construct the ensemble
methods such that each of the ensembles integrates a different combination of the top five indi-
vidual methods, and investigate their performance against the top five individual performers.
The experimental results show that the top performed ensemble methods are better than all
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individual methods. Especially, the method that combines a correlation method (Pearson), a
causal inference method (IDA), and a regression method (Lasso) is the best method in the
study. Importantly, our experimental results show that different individual methods infer com-
plementary results, suggesting their own merits, and the top ensemble methods outperform the
individual methods by including those complementary results. Although there is no complete
ground truth of miRNA target prediction, the results show that ensemble methods can find
some confirmed interactions in the incomplete ground truth that existing individual methods
fail to discover. Therefore, using ensemble methods, we would receive more reliable results
than existing individual methods.

Related to our work, there have been several methods [33-35] of integrating the results of
multiple sequence-based prediction methods. For examples, Zhang and Verbeek [33] pre-
sented a comparison study of integrating three sequence-based prediction methods, miRanda
[14], TargetScanS [15], and RNAhybrid [36], using different integrating approaches, including
the “low level” approaches which deal with raw data features directly and the “high level”
approaches which combine predictions from different methods. The “high level” approaches in
this study, e.g. cross entropy aggregation [37], share the same purpose with our study and can
be adapted for integrating predicted results from expression-based methods. Our experiment
results, however, show that the ensemble methods that are based on Borda count election are
better than the cross entropy approach for the datasets in this study. Shirdel et al. [35] collated
commonly used sequence-based prediction databases and created a database called mirDIP
(http://ophid.utoronto.ca/mirDIP/). The database allows users to explore miRNA targets using
one or the combination of multiple prediction databases. They also used mirDIP to explore
miRNA-target interactions and the signaling pathway networks. This is a good resource for
miRNA research, but the aim is different from that of our study as we explore the prediction
power of the methods using gene expression data. Moreover, our approach not only seeks to
outperform the individual methods, but also aims to discover the interactions that individual
methods may fail to identify. In another direction, Pio et al. [34] proposed a semi-supervised
method that was based on support vector machine to predict the miRNA targets. They used an
experimentally confirmed database, miRTarBase [38], together with the results of ten
sequence-based prediction methods in mirDIP as the training data, and used another experi-
mentally confirmed database, Tarbase [39], as the ground truth to evaluate the model. This is
different from our approach since we integrate unsupervised methods to form a more accurate
model. In our work, we utilise both miRTarBase and Tarbase for validation due to the sparse-
ness in the number of confirmed interactions, and expression data are used for training the
individual methods.

The datasets we work on are the matched miRNA and mRNA expression profiles in the NCI-
60 cancer cell lines datasets (EMT), the multi-class cancer (MCC) datasets, and the 51 human
breast cancer cell lines datasets (BR51). We use the experimentally confirmed miRNA target
databases to validate the effectiveness of the methods. The results indicate that integrating differ-
ent miRNA target prediction methods would generate reliable prediction results. We report
miRNA target predictions and validated targets for all the individual and the ensemble methods
discussed in the paper. We provide the R scripts for constructing ensemble methods from indi-
vidual methods which can be used to integrate other miRNA target prediction methods.

Materials and Methods
Datasets

NCI-60 data for Epithelial to Mesenchymal Transition (EMT). EMT is part of the pro-
cess of tissue remodelling during embryonic development and wound healing [40], and during
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cancer progression [41]. The NCI-60 data were profiled from the 60 cancer cell lines of the
drug screening panel of human cancer cell lines at the National Cancer Institute. The miRNA
expression profiles are from Sekilde et al. [42]. They are available at http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE26375. The mRNA expression profiles for NCI-60 were
obtained from ArrayExpress http://www.ebi.ac.uk/arrayexpress, accession number E-GEOD-
5720. We use the work in [43] to categorise the samples into epithelial (11 samples) and mesen-
chymal (36 samples).

We perform differential gene expression analysis on the gene expression profiles to identify
differentially expressed miRNAs and mRNAs between the epithelial and mesenchymal sam-
ples. In this work, the limma package [44] of Bioconductor is used for the analysis. As a result
of the analysis, 35 probes of miRNAs and 1154 probes of mRNAs are identified to be differen-
tially expressed at significant level (adjusted p-value < 0.05, adjusted by Benjamini-Hochberg
(BH) method). The detailed result can be found in S1 File.

Multi-class cancer (MCC) data. The MCC dataset includes normal and cancerous sam-
ples from bladder, breast, colon, kidney, lung, pancreas, prostate and uterus. As for the EMT
data, we use the differential gene expression analysis to find the differentially expressed miR-
NAs and mRNAs between normal and cancerous samples. The miRNA expression profiles are
from [45], and 108 probes are found to display differential expression at significant level (p-
value < 0.05, adjusted by BH method). The mRNA data are from [46], with 1860 mRNA
probes being identified to display significant differential expression. The detailed result can be
found in S1 File.

Data of the 51 human breast cancer cell lines (BR51). Breast cancer is a complex disease
which involves several different sub-types. In this work, we use the BR51 data from [47]. The
miRNA data were downloaded from [47] and the mRNA gene expression data are available at:
http://www.ncbi.nlm.nih.govgeoqueryacc.cgiacc=GSE41313.

We use the samples categorised results from [47] to divide the samples into luminal and
basal groups. There are 27 samples in the luminal group and 23 samples in the basal group. In
these datasets, the changes in expression levels of the mRNAs in the two groups are very signif-
icant, while the changes in the case of miRNAs are small. In total, 92 miRNAs (adjusted p-
value < 0.2) and 1500 mRNAs (adjusted p-value < 0.0001) are identified to be differentially
expressed. To cover the important miRNAs mentioned in the analysis of [47] and to have a
manageable number of mRNAs for the computational methods, we choose different thresholds
of adjusted p-values in the differential gene expression analysis. Details of the datasets are avail-
able in S1 File.

Methods of miRNA target prediction

In this section, we introduce the commonly used methods for miRNA target prediction using
gene expression data.

Pearson’s correlation coefficient is the commonly used measure for the strength of the asso-
ciation between a pair of variables. For the miRNA target prediction problem, the correlations
in the expression levels between pairs of miRNA and mRNA are calculated. The miRNA-
mRNA pairs are ranked based on the correlation coefficient values. As miRNAs mainly down-
regulate mRNAs, the negative correlations are ranked at the top (according to their absolute
values).

However, Pearson correlation is designed to capture only linear associations, and its useful-
ness is greatly reduced when the associations are non-linear [48]. To deal with this problem,
the maximal information coefficient (MIC) [49] has been proposed to measure a wide range of
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associations, including linear and non-linear relationships, with comparable scores. Therefore,
both Pearson and MIC are selected in our comparison study.

Meanwhile, Lasso and Elastic-net are high-dimensional regression techniques which can be
used to infer the associations between variables. In our problem, the expression level of each
mRNA is presented as a linear expression of the expression levels of all miRNAs, and the coeffi-
cient of a miRNA in the regression model is used as the association strength between the
miRNA and the mRNA. For each mRNA, we can perform Lasso and Elastic-net regression on
all the miRNAs, using the R package glmnet [50]. Similar to the Pearson correlation coefficient
method, the miRNA-mRNA pairs that have negative effects are ranked at the top of the rank-
ing list to favour the down regulation.

In another direction, Maathuis et al. [51, 52] proposed a causal inference method, called
IDA, which estimates the causal effect that a variable has on the other. The estimated causal
effects simulate the effects of randomised controlled experiments. Recently, Le et al. [29]
applied this method to gene expression datasets to infer the causal (regulatory) relationships
between miRNAs and mRNAs. The discovered miRNA-mRNA causal regulatory relationships
were found to have a large portion of overlap with the results of the follow-up gene knockdown
experiments. Therefore, we include this method in our study.

Z-score [53] is a network inference method to estimate the effects of gene knockout experi-
ment. When we knockout a miRNA, Z-score describes the normalised deviation of the expres-
sion level of each gene from the average expression of all genes. However, in our study, we use
observational data, i.e. gene expression data, as the input dataset. Therefore, the Z-score
method is modified where we assume that the minimum expression value of the miRNA in a
profile indicates the knockout experiment. In other words, we firstly locate the sample that
contain the minimum value of the miRNA, then we use the expression value of the mRNA in
the sample to calculate Z-score.

ProMISe [54] assumes that there is a competition between miRNAs to be attracted by a
mRNA and between mRNAs to attract a miRNA for interactions. The method estimates the
probability of a mRNA to be a target of a miRNA by taking the competition between mRNAs
and between miRNAs into account. The tool was downloaded from Bioconductor at: www.
bioconductor.org/packages/release/bioc/html/Roleswitch.html.

GenMiR++ [26] is a well-cited and commonly used method for miRNA target prediction.
GenMiR++ is a Bayesian network parameter learning method to infer the probabilities of tar-
gets of being true by approximating the posterior with variational inference techniques. In the
model, the changes in mRNA expression level are encoded by the summation of negatively
weighted changes of the expression level of their regulators miRNAs. The Matlab code of Gen-
MiR++ was obtained from http://www.psi.toronto.edu/genmir/.

Ensemble methods for miRNA target prediction

Ensemble methods are designed to take the advantages of the individual methods, and to com-
pensate for their drawbacks. Specifically, individual methods rank the miRNA-mRNA interac-
tions based on some criteria, e.g the strength of the correlation coefficients, and ensemble
methods integrate the rankings from different methods to form a new ranking. There are dif-
ferent strategies for integrating different rankings, such as taking the intersection, the union, or
the average of the top k results predicted by individual methods. Marbach et al. [32] have
proved that the Borda count election method is a simple yet effective method for integrating
the results from different individual methods. Borda count election is presented by Jean-
Charles de Borda as a method to select candidates in a democratic election by choosing the can-
didate with the best average rank. In this paper, we apply the Borda count election method for
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forming ensemble methods. Please note that using Borda average rank of multiple methods
does not result in a method which averages the performance of the individual methods. In fact,
the aim is to design a method that outperforms the individual methods, and the method is
inspired by the following theorem which was proved in [32].

Theorem 1 [32]: Let M;, i = 1. . .n, be the prediction methods. If each M;, 1 < i < n, has better
than random predictive power, then the community (ensemble) method of applying Borda count
election method can outperform the best individual method.

We summarise the procedure of the ensemble methods in the following, and the R source
code for the ensemble methods which use Borda count election is available in S2 File.

Step 1: With a dataset, identify differentially expressed miRNAs and mRNAs between dif-
ferent biological conditions (this step is common for all methods in the comparison).

Step 2: For each differentially expressed miRNA, we use each of the individual methods
(Pearson, IDA, MIC, Lasso, Elastic, Z-score, ProMISe, and GenMiR++) respectively to produce
the rankings of the differentially expressed mRNAs (as the predicted targets of the miRNA).
Then, we select top five performers in identifying miRNA targets based on the validation
results using experimentally confirmed targets.

Step 3: Apply Borda rank election to the rankings from Step 2 for each miRNA to produce a
single ranking list of elected mRNAs with respect to the miRNA. We then extract the top-
ranked genes from the list as the final output, i.e. the potential target genes for the given
miRNA.

We have implemented the Borda count election method for integrating all combinations of
the selected top individual miRNA target prediction methods. In our implementation, we do
not use the whole ranking list produced by each method to produce the ranking for the ensem-
ble methods, but only use the top k (users defined) predicted targets of a miRNA produced by
individual methods. The ensemble methods are designed to appreciate the genes that are pre-
dicted within the top k predicted targets across each individual component method. Genes that
are not in the top k predicted targets of a method is assigned the maximal ranking for that
method, i.e. the maximum number of genes in the dataset.

Ground truth for validation

It is difficult to validate computation results, as the number of experimentally confirmed tar-
gets of miRNAs are still limited and there is no complete ground-truth for evaluating and com-
paring different computational methods [55]. In this paper, we use the union of four popular
databases, Tarbase v6.0 [39], miRecords v2013 [56], miRWalk v2.0 [57], and miRTarBase v4.5
[38] to validate the predictions of the methods for all miRNAs in the EMT, MCC and BR51
datasets. Tarbase, miRecords, and miRTarBase include verified interactions that are manually
curated from the literature, and miRWalk contains both the predicted and the experimentally
validated interactions. Respectively for Tarbase, miRecords, miRWalk, and miRTarBase, we
have 20095 interactions with 228 miRNAs, 21590 interactions with 195 miRNAs, 1710 interac-
tions with 226 miRNAs, and 37372 interactions with 576 miRNAs. Table 1 shows the number
of overlapping interactions between each pair of the databases. After removing the duplicates,
we have in total 62858 unique interactions to be used in the validation (details in S3 File). We
refer to those interactions as “confirmed interactions” in this paper.

Results
Individual methods perform inconsistently across datasets

In this section, we compare the performance of eight individual methods on the three datasets.
For each miRNA, we extract the top 100, 200, 300, and 400 target genes ranked by each method
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Table 1. Number of overlapping interactions between databases.

Tarbase miRecords miRWalk miRTarBase
Tarbase 20095 593 646 15100
miRecords 1710 537 1147
miRWalk 21590 1482
miRTarBase 37372

doi:10.1371/journal.pone.0131627.1001

for validation. We only keep in the validations the miRNAs that have at least one confirmed
target predicted by all the methods. We then compare the performance of the methods for each
miRNA based on the number of confirmed targets using defined ground truth. As we have
eight methods, with respect to each miRNA, we score each method using a number (called
ranking score) in the range of 1 to 8, with 8 indicating the best method and 1 the worst method.
Finally, we calculate the ranking score of each method for a dataset by summing up its scores
for all miRNAs. The higher the ranking score of a method, the better the method is. Fig 1
shows the comparison in terms of their ranking scores in each of the datasets (Fig 1(a), 1(b)
and 1(c)), and the overall ranking score in all three datasets (Fig 1(d)). The overall ranking
score is calculated by summing up the scores in all miRNAs in all three datasets.

From the figure, we can see that there is no superior method outperforming the other meth-
ods in all datasets. Pearson correlation and MIC perform very well in the MCC dataset, but
their performance is not very good in the other two datasets. Meanwhile, IDA, Lasso, and Elas-
tic-net perform consistently in the three datasets, and therefore they are the best performers
overall as shown in Fig 1(d). ProMISe and GenMiR++ perform similarly to the top performers
(IDA, Lasso, and Elastic-net) in the BR51 dataset, but they are the bottom two methods in
EMT and MCC. The possible reason for GenemiR++ and ProMISe having performed badly is
that they are originally designed to also use the target information predicted based on sequence
data. When they are applied to gene expression data alone, their performance is not as good as
the other methods.

Overall, IDA is the best method and ProMISe is the worst method in terms of finding con-
firmed miRNA targets from expression data. However, note that each method has its own mer-
its as they may discover different sets of miRNA targets [55]. In the following section, we
investigate the performance of the ensemble methods with the hypothesis that they may out-
perform all the individual methods.

Top ensemble methods are better than individual methods

In this section, we investigate the performance of the ensemble methods constructed based on
different combinations of the individual miRNA target prediction methods. As our aim is to
utilise the strength of each individual method across different datasets, we remove ProMISe
and GenMiR++ from the candidates of forming ensemble methods, due to their poor perfor-
mance in all the gene expression datasets. Therefore, we do not discuss the results of the
ensemble methods that include ProMiSe and GenMiR++ in this study. However, we report the
comparison results of the ensemble method that includes ProMise, GenMiR++ and other
methods in S4 File. We have also observed that Lasso and Elastic-net perform similarly to each
other, therefore we remove Elastic-net from the combinations for forming the ensemble meth-
ods. In the end, we have five methods (Pearson, MIC, IDA, Lasso, and Z-score) for forming
ensemble methods.
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We firstly combine k individual methods (k = 2, 3, 4, 5) using the Borda count election
method (described in Materials and Methods) to create a level k ensemble method. We then

select the three best performed level k methods (except one method for level five) and compare
their performance across the three datasets. Table 2 shows the performance of the ensemble
methods in terms of their ranking scores. We can see that all level 3 ensemble methods are bet-
ter than any individual methods and the ensemble methods at other levels. Particularly, Pear-
son+IDA+Lasso is the best method in this comparison study.

We conduct the Wilcoxon signed-rank test based on the ranking scores to compare the per-
formance of Pearson+IDA+Lasso and each of the individual methods (Pearson, IDA, Lasso).
The results show that the ensemble method is significantly better than the individual methods
(the p-values are 0.008, 0.026, and 0.002 for Pearson, IDA, and Lasso, respectively), showing
that an ensemble method of different approaches (correlation, causality and regression in this
case) results in the better-than-individual method.

PLOS ONE | DOI:10.1371/journal.pone.0131627 June 26, 2015

8/19



@’PLOS ‘ ONE

Ensemble Methods for MiRNA Target Prediction

Table 2. Rankings of top ensemble methods and individual methods.

Rank Ranking scores Level Method

1 3783.5 3 Pearson+IDA+Lasso

2 3667 3 Pearson+IDA+Z-score

3 3636 3 IDA+MIC+Lasso

4 3578 4 Pearson+IDA+MIC+Lasso

5 3530 1 IDA

6 3497.5 2 IDA+Lasso

7 3489.5 4 IDA+MIC+Lasso+Z-score

8 3484.5 2 IDA+MIC

9 3459 2 Pearson+IDA

10 3432 4 Pearson+IDA+Lasso+Z-score
11 3341 1 Lasso

12 3289 5 Pearson+IDA+MIC+Lasso+Z-score
13 3218.5 1 Pearson

14 3165.5 1 MIC

15 3029 1 Z-score

doi:10.1371/journal.pone.0131627.t002

The ensemble method that combines all individual methods (i.e. the level 5 ensemble
method) performs better than three individual methods (Pearson, MIC and Z-score), but not
better than IDA, Lasso. However, this result does not violate the conclusion in Theorem 1,
which stated that the ensemble methods outperform the individual methods. The reason is that
we are using an incomplete ground truth for validating the methods, and the rankings in
Table 2 indicate the performance of the methods only based on the current knowledge about
miRNA-mRNA interactions. However, as we will see in the next section, an ensemble method
is able to obtain complementary results, i.e. an ensemble method can identify the targets that
are discovered by one individual method only but not by the other individual methods. On
another note, our experimental results show that the method combining all individual methods
may not be better than other ensemble methods. This observation is consistent with the results
in [32]. In the following section, we will show that the ensemble method that combines meth-
ods from different approaches performs better than other ensemble methods.

The Borda count applied for top predicted targets (Borda-Topk) presented in this paper has
the same principle as the Original Borda count method [32]. However, Borda-Topk provides a
way for flexibility in the cut-off targets, i.e. users may only be interested in the top 200 targets
of a particular miRNA. If k is set to the number of mRNAs in the dataset, the two methods are
identical. Fig 2 shows the comparison results of the best ensemble method (Pearson+IDA
+Lasso) using three different ranking integration approaches, including Borda-Topk, Original
Borda, and the popular rank aggregation approach using cross-entropy Monte Carlo algorithm
[37] in the R package called RankAggreg [58]. In Fig 2, we compare the ranking scores of the
three approaches in each dataset and in all datasets. The ranking scores are calculated based on
the number of confirmed interactions in the top 100, 200, 300 and 400 predicted targets of all
miRNAs in each dataset. We can see from Fig 2 that, the Borda-Topk is the best approach in
the EMT and BR51 datasets, but overall Borda-Topk and Original Borda are similar. Mean-
while, Cross-Entropy Monte Carlo is the worst approach in all three datasets. In the following
sections, we discuss the results of the Borda-Topk approach.
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Fig 2. Pearson+IDA+Lasso with different integration approaches. Borda-Topk and Borda (Original Borda from [32]) are better than cross-entropy Monte

Carlo in all three datasets.

doi:10.1371/journal.pone.0131627.9002

The ensemble methods find complementary results

We hypothesise that the ensemble methods are better than individual methods, because the
ensemble methods can produce results which are complementary to the results of different
individual methods. To have a closer look at this hypothesis, we extract the results predicted by
the best ensemble method (Pearson+IDA+Lasso) and compare those results with the predic-
tions by each individual method (Pearson, IDA and Lasso). The complementary characteristic
is shown in most of the miRNA cases, especially there are many cases in which the results of
the ensemble method include confirmed interactions that are not all discovered by a single
individual method and therefore the ensemble method performs better than the individual
methods. Such cases are shown in 4 miRNAs in EMT (miR-1180, miR-141, miR-18a and miR-
96), 7 miRNAs in MCC (miR-197, miR-19a, miR-23a, miR-30a, miR-32, miR-98 and miR-9),
and 6 miRNAs in BR51 (miR-125b, miR-196a, miR-21*, miR-27a, miR-30a and miR-342-5p).
Fig 3 shows the comparison of the methods in terms of the number of confirmed miRNA-
mRNA interactions in the top 200 targets of the miRNAs in each dataset (Fig 3(a), 3(b) and 3
(c)), and the overall number in all three datasets (Fig 3(d)).
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Fig 3. Venn diagram of the number of confirmed miRNA-mRNA interactions for the best ensemble method (Pearson+IDA+Lasso) and each
individual method (Pearson, IDA and Lasso). For each miRNA, we extract top 200 target genes ranked by each method for validation.

doi:10.1371/journal.pone.0131627.g003
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From Fig 3, the ensemble method has the largest number of confirmed miRNA-mRNA
interactions in each dataset, and include most of the confirmed interactions that an individual
method can discover. The advantage of the ensemble method would enhance the results of
miRNA target predictions. The details of confirmed miRNA-mRNA interactions identified by
each method in the three datasets can be found in 54 File.

Targets identified by Pearson+IDA+Lasso are statistically and
functionally enriched

In this section, we firstly conduct the statistical analysis of the predictions by Pearson+IDA
+Lasso based on z-score (standard score). The z-score reflects the performance of a prediction
method in finding confirmed targets compared to the expected rate in the ground truth, it is
defined as follows:

X—u

o/Vn’

where x is the probability of finding confirmed interactions by a method, i.e. the ratio of num-
ber of confirmed interactions and number of all possible miRNA-mRNA interactions in a data-
set (n); y is the expected probability of confirmed interactions in the ground truth, i.e. the ratio
of confirmed interactions in the ground truth and all possible miRNA-mRNA interactions in
the ground truth; and o is the standard deviation of the population (the ground truth), and is
calculated assuming Bernoulli distribution:

Z—S8core —

o= vul-p

Based on the z-score formula, the higher the z-score is, the more significant the prediction
results are. As illustrated in Fig 4, the enrichment results of the ensemble method in the three
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Fig 4. Statistical enrichment analysis of the best ensemble method (Pearson+IDA+Lasso) in EMT, MCC and BR51 datsets. For each miRNA, we
extract top 100, 200, 300 and 400 target genes for the analysis.

doi:10.1371/journal.pone.0131627.9004
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Table 3. Top 10 enrichment KEGG pathways in the EMT, MCC and BR51 datasets. The p-values have
been adjusted by Benjamini-Hochberg (BH) method.

Datasets
EMT

MCC

BR51

Top 10 enrichment KEGG pathways
Tight junction

Arrhythmogenic right ventricular cardiomyopathy

Leukocyte transendothelial migration
Cell adhesion molecules (CAMs)
ECM-receptor interaction

Pathways in cancer

Focal adhesion

Adherens junction

Endocytosis

Pathogenic Escherichia coli infection
Vascular smooth muscle contraction
PPAR signaling pathway

Prostate cancer

Focal adhesion

Cytokine-cytokine receptor interaction
Oocyte meiosis

Alzheimer’s disease

Adherens junction

Mineral absorption

Pathways in cancer
Cytokine-cytokine receptor interaction
Pathways in cancer

Chemokine signaling pathway

Focal adhesion

NOD-like receptor signaling pathway
Complement and coagulation cascades

Chagas disease (American trypanosomiasis)

Amoebiasis
Endocytosis
Leukocyte transendothelial migration

doi:10.1371/journal.pone.0131627.t003

Adj-p-value
3.43E-05
6.56E-05
0.000602
0.000941
0.004284
0.006845
0.009677
0.010311
0.010872
0.020611
2.18E-05
2.62E-05
7.71E-05
0.00192
0.002144
0.002232
0.002648
0.002803
0.002821
0.003993
1.49E-05
2.52E-05
0.000217
0.000234
0.000267
0.00043
0.000741
0.000741
0.000741
0.001382

datasets are high (z-score>10), suggesting that the results of the ensemble method are not ran-
dom and they are significant, and the method is effective in recovering confirmed interactions.
We also use the GeneCodis [59] (the online tool at http://genecodis.cnb.csic.es/analysis) to
conduct pathway enrichment analysis of target genes with the focus on significant KEGG
(Kyoto Encyclopedia of Genes and Genomes) [60] pathways (adjusted p-value<0.05). We
select the genes in the top 1000 miRNA-mRNA interactions identified by the method in each
dataset for the analysis. As shown in Table 3, the top 10 enrichment KEGG pathways in the
three datasets are all significantly associated with the KEGG pathway: Pathways in cancer.
Since the three datasets are all cancer datasets, the results demonstrate that the predicted tar-
gets are closely related to the biological conditions of the three datasets. The detailed informa-

tion of significant KEGG pathways in the three datasets can be found in S5 File.
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Fig 5. Highly-confident novel interactions in the EMT, MCC, and BR51 datasets. Red nodes are miRNAs and white nodes are mRNAs. The interactions
are predicted by both the ensemble method, Pearson+IDA+Lasso, and TargetScan.

doi:10.1371/journal.pone.0131627.9005

Highly-confident novel interactions

As experimentally confirmed databases are still sparse, we report a set of highly-confident
novel interactions for further experiment validations. The novel interactions are those pre-
dicted by Pearson+IDA+Lasso and included in TargetScan v6.2 [61], but not yet confirmed by
the experimentally confirmed databases. While the ensemble method provides reliable results
based on expression data, TargetScan v6.2 provides predictions on direct binding information
using sequence data. Integrating the effects measured by expression levels and the sequence
binding information would provide highly-confident candidates for followed-up experiments.
Fig 5 shows the novel interactions in the three datasets, where red nodes are miRNAs and
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white nodes are novel target genes. Details of the highly-confident novel interactions are in
S6 File.

Discussion and conclusion

The huge amount of high-throughput expression data calls for novel computational methods
for predicting miRNA targets. Recently, a wide range of computational methods have been
proposed to identify miRNA targets from expression data. However, each method has its
advantages and limitations, and the performance of a method is not consistent across different
datasets. Thus, how to obtain reliable and comprehensive results is a long-standing challenge
for miRNA target prediction.

In this paper, we are inspired by the concept of The wisdom of crowds in [32] to propose
ensemble methods. We firstly collect 8 popular miRNA target prediction methods (Pearson,
IDA, MIC, Lasso, Elastic, Z-score, ProMISe and GenMiR++) to compare the performance of
them using the real world gene expression datasets. We then develop ensemble methods using
Borda rank election to combine the rankings from different methods. As shown in the Results
section, the ensemble methods are better or as good as the individual methods. While the
results reported in [32] showing the outperformance of the ensemble method over individual
ones for predicting TF-gene interactions, here we also show similar results that can be achieved
for the problem of miRNA target prediction.

Ensemble methods help with obtaining more comprehensive results than individual meth-
ods. However, combining more individual methods does not guarantee better performance of
the ensemble method. For example, the level 3 ensemble method (Pearson+IDA+Lasso) per-
forms the best in the EMT, MCC and BR51 datasets rather than the level 5 ensemble method
(Pearson+IDA+MIC+Lasso+Z-score). The experimental results also suggest that combining
the methods taking different approaches may result in a better ensemble method than combin-
ing methods in the same category, e.g. combining methods using correlation analysis. A possi-
ble reason is that the complementary behavior of the ensemble methods can be best utilised in
those cases. The software tool we provided in this paper includes source codes of eight predic-
tion methods, and the ensemble method whose procedure is described in the Methods section.
The tool will help researchers apply the ensemble method to new datasets, e.g. using Pearson
+IDA+Lasso, which is the best method suggested by the results of this paper. The tool also
allows researchers to create new ensemble methods when the novel single computational meth-
ods arise.

In summary, we propose a framework based on Borda count election to generate ensemble
methods from existing individual methods. The results show that the ensemble method Pear-
son+IDA+Lasso is a good method for miRNA target prediction. We report high-confident
novel miRNA targets for further experimental validations. The R codes are provided, so that
future methods can be integrated to form novel ensemble methods.

Supporting Information

S1 File. Differential expression profiles of miRNAs and mRNAs for the EMT, MCC and
BR51 datasets. The p-values are adjusted by Benjamini-Hochberg (BH) method.
(XLSX)

S2 File. R source codes for eight individual miRNA target prediction methods and three
ensemble approaches.
(Z1P)
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S3 File. The union of four databases including TarBase, miRecords, miRWalk and miRTar-
Base. The total number of miRNA-mRNA interactions is 62858.
(XLSX)

$4 File. Comparison between ensemble methods and part of confirmed miRNA-mRNA
interactions by the ensemble method (Pearson+IDA+Lasso) and three individual methods
(Pearson, IDA and Lasso) in EMT, MCC and BR51 datasets. Pearson+IDA+Lasso finds
complementary results.

(XLSX)

S5 File. The significant KEGG pathways of the prediction results using the ensemble
method (Pearson+IDA+Lasso) in the EMT, MCC and BR51 datasets. The p-values are
adjusted by Benjamini-Hochberg (BH) method.

(XLSX)

S6 File. Highly-confident novel miRNA-mRNA interactions in the EMT, MCC and BR51
datasets.
(XLSX)
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