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Abstract

At least 170 million people are chronically infected with hepatitis C virus (HCV). Due to the 

narrow host range of HCV and restricted use of chimpanzees, there is currently no suitable animal 

model for HCV pathogenesis studies or the development of a HCV vaccine. To identify cellular 

determinants of interspecies transmission and establish a novel immunocompetent model system, 

we examined the ability of HCV to infect hepatocytes from a small non-human primate, the rhesus 

macaque (Macaca mulatta). We show that the rhesus orthologs of critical HCV entry factors 

support viral glycoprotein-dependent virion uptake. Primary hepatocytes from rhesus macaques 

are also permissive for HCV RNA replication and particle production, which is enhanced when 

antiviral signaling is suppressed. We demonstrate that this may be due to the diminished capacity 

of HCV to antagonize MAVS-dependent innate cellular defenses. To test the ability of HCV to 

establish persistent replication in vivo, we engrafted primary rhesus macaque hepatocytes into 
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immunocompromised xenorecipients. Inoculation of resulting simian liver chimeric mice with 

either HCV genotype 1a or 2a resulted in HCV serum viremia for up to 10 weeks. Conclusion: 

Together, these data indicate that rhesus macaques may be a viable model for HCV and implicate 

host immunity as a potential species-specific barrier to HCV infection. We conclude that 

suppression of host immunity or further viral adaptation may allow robust HCV infection in 

rhesus macaques and creation of a new animal model for studies of HCV pathogenesis, lentivirus 

coinfection and vaccine development.
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Introduction

Chronic hepatitis C virus (HCV) infection frequently causes liver disease including fibrosis, 

cirrhosis and hepatocellular carcinoma. In most patients, liver disease progresses slowly 

over several decades but co-morbidities, including obesity, alcohol consumption and co-

infection with HIV frequently accelerate progression and exacerbate disease. The underlying 

mechanisms that lead to chronic HCV infection and ultimately end-stage liver disease 

requiring liver transplantation are incompletely understood. This is due, in part, to the lack 

of a suitable animal model for pathogenesis studies and the development of a HCV vaccine.

HCV has a narrow host range, infecting only humans and chimpanzees. The determinants 

dictating this restriction are poorly defined (1). Some species express dominant restriction 

factors that limit pathogen replication. As an example, HIV-1 infects humans and 

chimpanzees but not old world monkeys such as rhesus or cynomolgus monkeys (2). HIV-1 

can enter cells of the old world monkeys but encounters a block in replication before reverse 

transcription (3). It has been shown that this barrier to replication is due in part to sequence 

variation in TRIM5 and TRIM5 genotyping can be used to predict levels of simian 

immunodeficiency viral replication (4, 5). Variations in the type or intensity of the antiviral 

response between hosts are also known to restrict the tropism of certain viruses, such as 

myxoma virus, which is only permissive in human and murine cells that have impaired 

interferon (IFN) responses (reviewed in (6)). Dominant, cell intrinsic restriction factors have 

not been described for limiting HCV infection in non-permissive species. However, 

nonhomologous dependency factors and/or differences in the magnitude and kinetics of 

antiviral innate responses between species may certainly affect HCV’s ability to establish 

productive infection. Indeed, blunting antiviral immunity via genetic disruption of IRF1, 

IRF7, IFN-αβR or STAT1 in transgenic mice expressing human CD81 and occludin 

(OCLN; required to render murine cells permissive for HCV entry) resulted in persistent 

HCV replication over several weeks (7). Viral adaptation has also been utilized to enhance 

infection of murine cells (8) and induced pluripotent stem cell (iPSC)-derived hepatic cells 

from pig-tailed macaques (9) suggesting that both host cell manipulation and selection of 

viral variants are viable strategies to overcome species barriers.
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Elucidation of the barriers for the viral life-cycle in non-permissive primate species will help 

delineate the determinants and key pathways responsible for viral permissiveness. Towards 

an improved understanding of the cellular determinants of interspecies transmission and the 

establishment of a novel immunocompetent model system, we sought to adapt HCV to 

infect small, non-human primates, specifically rhesus macaques (Macaca mulatta). Rhesus 

macaques are more closely related to humans than rodents, can be bred in captivity, have 

sufficient research reagents, can be used for terminal experiments and are excellent animal 

models for other human viral diseases. In the present study, we performed a systematic 

evaluation of the HCV life-cycle in rhesus macaque cells to identify potential species-

specific incompatibilities that would preclude HCV infection. We demonstrate that rhesus 

macaque hepatocytes are permissive for the entire HCV life-cycle, but that virus production 

is enhanced with pharmacological-mediated suppression of Janus kinase (Jak) signaling. 

These data correlate with our finding that the HCV NS3-4A protease is unable to antagonize 

endogenous MAVS in rhesus macaque cells – a well-documented mechanism of viral 

interferon antagonism in human hepatocytes infected with HCV. We extend these studies to 

immunocompromised mice engrafted with rhesus macaque hepatocytes and demonstrate that 

persistent infection is also achieved in vivo in the context of immunodeficiency.

Experimental procedures (see also supporting information)

Human Subjects and Animal Usage

All protocols involving human tissue were reviewed and exempted by the Rockefeller 

University Institutional Review Board. All procedures involving mice were in accordance 

with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and 

approved by the Rockefeller University and Princeton University Institutional Animal Care 

and Use Committees (protocols 12536 and 1930, respectively).

HCV generation

Construction of J6/JFH1 (10), Jc1 (11) with an intragenotypic break point at the C3 position, 

Jc1[p7nsGluc2a] (12) and J6/JFH1-clone2 (13) was described elsewhere. H77-JFH1 

harboring cell culture adaptive mutations was provided by Apath, LLC. HCVcc stocks were 

generated in Huh-7.5.1 (14) or Huh-7.5 (15) and quality controlled as described previously 

(10). Serum containing the H77 genotype 1a isolate was obtained from infected 

chimpanzees (16).

Quantification of HCV RNA

Total RNA was isolated from mouse serum using the QIAamp Viral RNA kit (Qiagen) and 

the HCV genome copy number was quantified by one-step rtPCR using a Multicode-RTx 

HCV RNA kit (Luminex Corp.) and a Roche LightCycler 480, according to manufacturer’s 

instructions.

Cloning of rhesus macaque CD81, SCARB1, CLDN1 and OCLN

Total RNA from Macaca mulatta liver was reverse transcribed with 50ng random hexamer 

primers per 5μg RNA and the Superscript III enzyme (Invitrogen) according to the 

manufacturer’s instructions. MmCD81, MmSCARB1, MmCLDN1 and MmOCLN were 
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amplified from the resulting cDNA with gene specific 5′- and 3′-oligonucleotides and TOPO 

cloned into pCR2.1 (Invitrogen). To obtain the complete 5′ sequence 5′ RACE was 

performed using Clontech Marathon kit.

Pseudoparticles

All pseudoparticles were generated as described previously (17). For construct design details 

please see the supporting information.

Antibodies and Inhibitors

The human anti-HCV E2 antibody (AR4A) and anti-HIV (b6) (18) were kindly provided by 

Mansun Law (The Scripps Research Institute). Mouse anti-human CD81 (clone JS-81) and 

mouse IgG1 isotype control antibodies were obtained from BD Pharmingen. The mouse 

anti-HAV antibody (clone K2-4F2) used for flow cytometry was kindly provided by Susan 

Emerson (NIH).

2’C methyl adenosine (2’CMA) was the gift of D. Olsen and S. Carroll (Merck Research 

Laboratories, West Point, PA) and was also obtained from Carbosynth Limited. Ruxolitinib, 

a pan-Janus kinase (JAK) inhibitor (19) was obtained from ChemieTek.

RT-PCR quantification of HCV entry factors

To quantify expression of human and rhesus macaque entry factors, total liver RNA was 

isolated from human adult or fetal hepatocytes or rhesus macaque adult hepatocytes using a 

RNeasy isolation kit (Qiagen, Valencia, CA). cDNA was synthesized from 0.5μg RNA 

using a SuperScript® VILO™ cDNA Synthesis Kit (Invitrogen, Carlsbad, CA) according to 

manufacturer’s instructions using gene specific primers. Quantitative PCR was performed 

with a Roche LightCycler 480 using an Applied Biosystems SYBR Green PCR Master Mix 

(Warrington, UK) and the following primer pairs:

Human Gene Forward Primer Reverse Primer

CD81 TGTTCTTGAGCACTGAGGTGGTC TGGTGGATGATGACGCCAAC

SCARB1 CGGATTTGGCAGATGACAGG GGGGGAGACTCTTCACACATTCTAC

CLDN1 CACCTCATCGTCTTCCAAGCAC TCCTGGGAGTGATAGCAATCTTTG

OCLN CGGCAATGAAACAAAAGGCAG GGCTATGGTTATGGCTATGGCTAC

Rhesus Gene Forward Primer Reverse Primer

CD81 GCCAAGGATGTGAAGCAGTT CCTTCTTGAGGAGGTTGCTG

SCARB1 CGGATTTGGCAGATGACAGG GGGGGAGACTCTTCACACATTCTAC

CLDN1 CCGTTGGCATGAAGTGTATG CCAAATTCGTACCTGGCATT

OCLN AAGTGGTTCAGGAGCTTCCA AGTCCTCCTCCAGCTCATCA

Western blotting

Cells were lysed at the indicated times using modified RIPA buffer containing 50mM Tris-

HCl pH 8.0, 1% v/v NP-40, 0.5% v/w Na-deoxycholate, 150mM NaCl, 0.1% SDS. Protein 

lysates (5 or 15μg) were separated on 4–12% Bis/Tris NuPage polyacrylamide gels 

(Invitrogen). Proteins were transferred to nitrocellulose membranes and entry factors were 

detected using mouse anti-human CD81 (clone JS-81; BD Pharmingen; 1:200), rabbit anti-
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human SCARB1 (clone EP1556Y; Abcam; 1:2000), mouse anti-human OCLN (clone 

OC-3F10; Invitrogen; 1:500) and mouse anti-CLDN1 (clone 2H10D10; Invitrogen; 1:400). 

For further western blot analyses, rabbit sera against human MAVS was kindly provided by 

Zhijian Chen (UT-Southwestern Medical Center; 1:500), mouse anti-HCV NS3 was 

obtained from Virostat (1:100), mouse anti-HAV VP1 from LifeSpan Biosciences, Inc. 

(1:500), and HRP-conjugated mouse anti-human β-actin from Sigma-Aldrich (1:15000). 

Following secondary antibody staining with Peroxidase-AffiniPure Donkey Anti-Mouse IgG 

(H+L) (Jackson Immuno Research; 1:10000) or goat anti-rabbit IgG (H+L), HRP conjugate 

(Pierce; 1:10000), western blots were visualized using SuperSignal West Dura, Pico or 

Femto (Thermo Scientific).

Generation of human and simian liver chimeric mice

FAH−/− NOD Rag1−/− IL2RNULL mice were generated and transplanted as previously 

described (20) Female FNRG mice greater than 6 weeks of age were transplanted with ca. 1 

× 106 cryopreserved adult rhesus macaque or human hepatocytes.

Enzyme-linked immunosorbent assays (ELISAs)

Human hepatocyte engraftment was monitored by serial human albumin determination. 

Serum was obtained through tail vein bleeding and diluted for measurement by home made 

ELISAs using goat polyclonal capture and horseradish peroxidase (HRP)-conjugated goat 

anti-human albumin detection antibodies (Bethyl, Montgomery, TX).

Immunohistological analysis

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded human and 

simian chimeric murine liver tissues using mouse anti-human (clone 2) fumarylacetoacetate 

hydrolase (FAH) (Abcam, Cambridge, MA, USA) as described previously (21).

Graphing and statistical analysis

Statistical analysis of virological data was performed with GraphPad Prism 5. Specific tests 

are noted in figure legends.

Results

Rhesus macaque entry factor orthologs support HCV uptake

The cellular tropism of a given virus is determined by virus interaction with cell type 

specific host factors and by the virus’ ability to avoid and/or antagonize cellular antiviral 

pathways. However, orthologs of essential host factors for pathogen propagation may be 

incompatible or entirely absent. To identify potential blocks against HCV infection in rhesus 

macaque cells, we expressed the minimal required set of HCV entry factors (hCD81, 

hOCLN, hSCARB1 and hCLDN1) in LLC-MK2 or FRhk4 rhesus macaque cell lines and 

determined that these cells were competent for HCVpp entry, indicating that dominant 

negative or otherwise inhibitory factors are not present that would preclude HCV particle 

uptake (Fig. 1a, b). We have previously shown that species-specific differences in the entry 

factors CD81 and OCLN can limit infection (17). We have validated our initial in vitro 
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observations and demonstrated that expression of human CD81 and OCLN can allow for 

viral uptake in mice (22). OCLN, SCARB1, CD81 and CLDN1 are expressed in rhesus 

macaque liver tissue (Fig. S1) and all elements of CLDN1 known to be critical for HCV 

uptake, in particular residues I32 and E48 within the first extracellular loop of CLDN1 (23) 

are conserved between species (Fig. S2). Consequently, rhesus CLDN1 can facilitate HCV 

entry as efficiently as human CLDN1 into 293T cells, a cell line lacking endogenous 

CLDN1 expression (Fig. 1c). While differences exist in amino acid sequence between 

human and rhesus OCLN, SCARB1 and CD81, rhesus macaque entry factor orthologs were 

able to rescue HCV uptake in human cells lacking endogenous expression of OCLN, 

SCARB1 or CD81 demonstrating that they are functionally competent for HCV entry (Fig. 

1d–f, Fig. S3). To assess entry directly, we generated cultures of primary rhesus macaque 

hepatocytes (PRMH; Fig. 2c) and observed efficient HCV infection that was viral 

glycoprotein-dependent and required CD81. Pre-incubation with anti-E2 or anti-CD81 

antibody resulted in up to 80% or 55% loss of infectivity, respectively (Fig. 1g, h).

Primary rhesus macaque hepatocytes are permissive for HCV replication

Given productive entry, we next tested PRMH for their ability to support HCV RNA 

replication. Previous reports suggested that several other non-human primate species, 

including cynomolgus, rhesus, Japanese and African green monkeys, as well as Chacma and 

doguera baboons, were resistant to HCV infection (24, 25). In contrast, more recent work 

suggests that hepatic cells derived from induced pluripotent stem cells (iPSCs) of pig-tailed 

macaques can support the entire HCV life-cycle (9). To assay HCV replication in PRMH, 

we utilized a highly sensitive HCVcc reporter virus expressing secreted Gaussia luciferase 

(Gluc)(Jc1[p7nsGluc2a]). Accumulation of luciferase in the medium was observed in HCV-

infected cultures, but not mock-infected cultures or HCV-infected cultures treated with the 

NS5B viral polymerase inhibitor 2’CMA demonstrating that PRMH can support HCV RNA 

replication (Fig. 2a). Replication was transient, however, likely due in part to poor 

maintenance of hepatocyte phenotype/function as indicated by a loss of albumin production 

(Fig. 2e). To further characterize HCV infection in PRMH, we took advantage of an 

engineered fluorescence-based live cell reporter in which HCV serine protease NS3-4A-

mediated cleavage of the C-terminal mitochondrial targeting domain of MAVS results in 

translocation of a red fluorescent protein (RFP) to the nucleus (13). Nuclear RFP signal was 

detected at low frequency following infection with a cell culture adapted variant of J6/JFH1 

termed Clone 2 (13), confirming that HCV can infect and replicate in PRMH, but indicating 

HCV infection is inefficient in these cells (Fig. 2d).

HCV does not efficiently antagonize the innate immune response in rhesus macaque cells

In previous work, blunting antiviral innate defenses in mice expressing human CD81 and 

OCLN allowed completion of the entire HCV life-cycle, exemplifying the considerable 

impact of innate immune control on viral infection (7). Similar to this finding, 

pharmacological-mediated suppression of antiviral signaling pathways via Janus kinase 

(Jak) inhibition in PRMH enhanced viral replication up to 8.8 fold and promoted persistent 

infection, suggesting HCV may be restricted by the host response to infection in rhesus 

macaque hepatocytes in vitro (Fig. 2a). However, use of this inhibitor has also been shown 

to boost replication in primary human fetal liver cultures, thus, it is unclear if this pathway 
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constitutes a species-specific restriction. In human hepatocytes, HCV dampens the innate 

immune response by cleaving mitochondrial antiviral signaling protein (MAVS) from the 

outer mitochondrial membrane thereby preventing downstream signaling and activation of 

an antiviral program triggered by PAMP activation of RLRs (26). It was recently proposed 

that rhesus MAVS was resistant to HCV antagonism due to sequence variation near (aa506) 

the virus-targeted cleavage site (aa508) (27). Thus, we aimed to determine whether NS3-4A 

expression in rhesus cells would result in cleavage of endogenous monkey MAVS. 

Consistent with this previous report (27), we observed cleavage of MAVS in human 

hepatoma cells (Huh-7.5), but not in CMMT cells expressing NS3-4A (Fig. 2b). By 

comparison, hepatitis A virus (HAV) infection of CMMT cells (Fig. S4) yielded a MAVS 

cleavage product of lower molecular weight (aprox. 50kDa vs. 52kDa for HCV-mediated 

cleavage), demonstrating that virus mediated cleavage of MAVS was possible in these cells 

and corroborating data indicating different cleavage sites within MAVS for these two 

viruses (28). Together, our data suggest that HCV is unable to tightly control the innate 

immune response in rhesus cells likely due, in part, to the virus’ inability to efficiently 

inactivate MAVS.

Primary rhesus macaque hepatocytes produce infectious HCV particles

Completion of the viral life-cycle in PRMH was demonstrated by quantification of 

infectious particles released into the medium by limiting dilution assay on naïve Huh-7.5 

cells, a human hepatoma cell line that is highly permissive to HCV infection, using 

supernatants collected on day 2 post-infection. As predicted by our luciferase data, titers, 

which achieved a mean 284 TCID50/ml in untreated cultures, were enhanced 3.6 fold in the 

presence of Jak inhibitor (Fig. 3). Even in the presence of Jak inhibitor, however, infectious 

virus titers produced by PRMH cultures were 13 to 147-fold less that those obtained in 

Huh-7.5 cells on day 2 and day 4 post-inoculation, respectively. These data were consistent 

with lower levels of replication in PRMH as compared to human hepatoma cells and were 

expected given the low viral yields described for other primary hepatocyte culture systems 

(Fig. S5)(29, 30).

Persistent HCV replication in immunodeficient simian liver chimeric mice

To test whether HCV can establish persistent replication in vivo, we transplanted primary 

rhesus macaque hepatocytes into immunocompromised xenorecipients (FNRG) lacking 

fumaryl acetoacetate hydrolase (Fah)−/−. Engraftment and expansion of rhesus hepatocytes 

in these animals is mediated by withdrawal of 2-(2-nitro-4-trifluoro-methylbenzoyl)-1,3-

cyclohexanedione (NTBC) that induces genetically determined toxicity in murine 

hepatocytes, allowing expansion of transplanted cells (13) (Fig. 4a). We monitored 

engraftment over time using an ELISA specific for human and rhesus macaque albumin 

(Fig. 4b). Successful integration of rhesus macaque hepatoyctes into the murine liver was 

also evident by immunohistological identification of FAH antigen positive cells in 

characteristic islands as described for mice repopulated with primary adult human 

hepatocytes (Fig. 4c) (21). Resulting simian liver chimeric mice (and human liver chimeric 

mice generated in parallel as controls) that achieved albumin levels of >1mg/ml were 

inoculated with serum derived from HCV genotype 1a (H77) or 2a (J6/JFH1) viremic 

human liver chimeric mice. Following viral challenge, HCV RNA was detected in the serum 
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of all H77-challenged (n=13) and J6/JFH1-challenged (n=8) simianized mice. Infection of 

mouse cohort 1 was inefficient, achieving robust viremia only after reinoculation with HCV 

on day 54, and reaching maximal titers of 2.4×105 and 2×105 HCV RNA copies per ml for 

H77 and J6/JFH1, respectively. However, viremia was detected in a second cohort of 

simianized mice by 4 weeks post-inoculation. While viral load in this group fluctuated over 

the 102 day-long time course, H77 titers averaged 1.1×106 HCV RNA copies per ml after 

week 4 and reached a mean peak titer of 3.7×106 HCV RNA copies per ml sixty-six days 

after viral challenge. Similarly, J6/JFH1 infected simianized mice exhibited peak viremia at 

day 70 post-inoculation with 9.5×106 mean HCV RNA copies per ml although the 

virological set-point for this genome appeared to be closer to 1.2×105 HCV RNA copies per 

ml. HCV RNA was detected in the serum of these mice up to 10 weeks post-inoculation 

indicating that simianized mice are permissive for HCV infection and support persistent 

viral replication (Fig 4d, e).

Discussion

Our results demonstrate that the entire HCV life cycle can be recapitulated in PRMH and 

simian liver chimeric mice. This creates a strong rationale for future studies aiming at 

virological and immunological characterization of HCV infection in rhesus macaques. HCV 

infection in rhesus monkeys is an attractive model to study host response and pathogenesis 

because they are genetically more closely related to humans than rodents. In contrast to 

chimpanzees, they are more readily accessible and can be subjected to terminal 

experimentation. Given the susceptibility of rhesus macaques to SIV (31, 32) and simian-

adapted HIV (33) mechanisms of HIV-exacerbated viral hepatitis could be modeled in co-

infected animals. About one quarter of HIV-infected persons in the United States are also 

infected with HCV making it one of the most important co-morbidities. Co-infection with 

HIV frequently results in more exacerbated liver disease and more accelerated disease 

progression, a process that remains poorly understood. Based on these in vitro and in vivo 

data and prior failed attempts to detect infection in this species (24, 25), we hypothesize that 

suppression of both innate and adaptive immune responses in rhesus macaques may be 

necessary to allow efficient HCV infection, replication, and spread enabling the virus to 

further adapt to this non-human primate species.

MAVS (34), also known as IPS-1 (35), Cardif (26) or VISA (36), is an adaptor protein that 

relays signals from RIG-I-like helicases, which are cytoplasmic sensors of RNA virus 

infection that ultimately activate type I interferon and downstream signaling cascades. 

Cleavage of MAVS mediated by the HCV NS3-4A protease is thought to be an important 

mechanism by which HCV blunts innate immune activation in human hepatocytes (26). It 

was previously demonstrated that MAVS cleavage in the liver of patients with chronic 

hepatitis C correlates with reduced activation of the endogenous interferon system (37). 

Consistent with a previous report using artificial MAVS substrates (27) we demonstrate that 

the HCV NS3-4A protease, expressed ectopically in the context of the viral polyprotein, 

cannot cleave endogenous rhesus MAVS. HCV’s inability to effectively evade innate 

antiviral defenses may explain in part why suppression of type I interferon signaling 

increases permissiveness of rhesus macaque hepatocytes in vitro. Suppression of the innate 

immune response in human fetal liver cultures via addition of a pan-Jak inhibitor (38) or 
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expression of paramyxovirus V proteins (30) also results in an enhancement of HCV 

replication in cells where HCV can efficiently cleave MAVS. This suggests that both 

primary human and rhesus hepatocytes cultured in vitro may exhibit an elevated baseline 

immune activation state that limits HCV replication. It should be noted that the NS3-4A 

protease has several other cellular targets (reviewed in (39)) including Toll-IL-1 receptor 

domain-containing adaptor inducing IFN-β (TRIF) whose cleavage was also shown to 

impair cellular innate defenses (40). Furthermore, it has been shown that the viral protease 

NS3-4A efficiently blocks activation of IRF3, a transcription factor that is essential for IFN 

induction and direct activation of a subset of antiviral genes independent of IFN (41). 

However, it is unclear whether HCV is able to antagonize these and other – putatively 

unknown – antiviral mechanisms in rhesus macaque cells.

Interestingly, when engrafted into the parenchyma of liver-injury xenorecipients, rhesus 

macaque hepatocytes are susceptible to HCV infection and pharmacological suppression of 

innate responses was not necessary to establish chronicity. Homo- and heterotypic cellular 

interactions as well as soluble factors within the 3D microenvironment in vivo likely impact 

rhesus macaque hepatocyte physiology and improved maintenance of hepatocyte 

morphology and differentiation status is known to contribute to HCV persistence (29) while 

the absence of an adaptive immune response likely allows the virus to avoid clearance. Still, 

slower viral kinetics and lower HCV RNA copies per ml were observed in simianized as 

compared to humanized mice inoculated in parallel suggesting that virus replication is less 

efficient in rhesus hepatocytes. Thus, the failure to cleave MAVS and control early innate 

immune responses could still be limiting viral replication in vivo, although this was not 

directly assessed in this study. Future studies are aimed at identifying and characterizing 

putative adaptive mutations that may allow HCV to replicate more efficiently in rhesus 

macaque hepatocytes.

Recently, induced pluripotent stem cell-derived hepatic like cells from pig-tailed macaques 

(Macaca nemestrina) were shown to be permissive for HCV infection although viral entry 

was limited by low levels of OCLN and subpar activity of CD81. In our study, rhesus 

macaque entry factor orthologs were comparable to human entry factors in allowing HCV 

uptake suggesting that this step of the viral life-cycle would not be limiting in a rhesus 

macaque model. Immune modulation was not attempted in pig-tailed macaque cells and the 

sequence of Macaca nemestrina MAVS protein is not yet available, thus it is difficult to 

speculate whether HCV replication could benefit from immune suppression in this related 

species. Notably, the fusion of TRIM5 to cyclophilin A in pig-tailed macaques renders this 

monkey more susceptible to HIV-1 infection (42); however, this may conversely negatively 

impact HCV as CypA is an essential host factor for HCV replication.

The value of a small, non-human primate model for the study of HCV has prompted others 

to challenge rhesus macaques in the past, albeit unsuccessfully (24, 25). While the potential 

reasons for these failures are many, it is possible that a more robust HCV genome (or one 

that has been adapted to rhesus macaques) as compared to less well defined inocula, i.e. 

patient samples, and more sensitive detection methods available today will yield more 

favorable results. In sum, our data provide a proof-of-concept that rhesus macaque 

hepatocytes can support the entire HCV life-cycle and indicate that suppression of host 
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immunity will be both necessary and sufficient to launch HCV replication in rhesus 

monkeys in vivo.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Rhesus macaque hepatocytes support HCV uptake
(A) Entry efficiency of HCVpp–H77 (gt1a) in LLC-MK2 or (B) FRhk4 rhesus macaque 

cells expressing human entry factors (hSRB1, hCD81, hCLDN and hOCLN; denoted as 

“4x” in the figure). HCVpp-mediated GFP expression was measured 72 hours post-

transduction. The relative HCVpp infectivity after Env- subtraction and VSV-G 

normalization is shown. Huh-7.5 entry was set to 100%. (C) Entry efficiency of HCVpp-

H77 into human cell lines expressing three human entry factors plus human or rhesus 

macaque CLDN1 or (D) OCLN. (E) H77-JFH1 infection of Huh-7.5 cells knocked down for 

endogenous SCARB1 or (F) CD81 and transduced with mouse, human or rhesus macaque 
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SCARB1 or CD81, respectively. Entry efficiency is defined by the percentage of NS5A 

antigen positive cells in total live cells, normalized to cells containing control shRNA. (G) 
HCV (Jc1[p7nsGluc2A]) infection of primary rhesus macaque hepatocytes following pre-

incubation of HCV with anti-E2 (AR4A; or IgG control (b6 anti-HIV)) or (H) cells with 

anti-CD81 (JS81) or IgG control. Viral infection was measured D2pi by luciferase 

quantification in the culture medium. Infection efficiency is defined as luciferase units 

normalized to IgG controls. Data shown in all panels is the mean and standard deviation 

(SD) of biological triplicates from a single experiment. Similar data were obtained in 

replicate experiments.
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Figure 2. HCV replication in primary rhesus macaque hepatocytes is enhanced by suppression 
of the innate immune response
(A) Luciferase secreted into the culture medium as a measure of HCV replication in primary 

adult rhesus macaque hepatocytes. PRMH were infected with Jc1[p7nsGluc2a] 3 days post-

plating and medium (+/− 2μM Jak inhibitor (INCB018424) and/or 5μM 2’CMA) was 

changed every other day. (B) Western blot analysis of naïve, NS3-4A-expressing, JFH1 

subgenomic replicon-expressing or hepatitis A virus-infected Huh-7.5 or CMMT cell lysates 

detecting MAVS, HCV NS3, HAV VP1 and beta actin. (C) Photomicrograph of PRMH 

cultures 1 day post-plating. (D) Visualization of HCV infection in PRMH. PRMH were 

transduced with lentivirus expressing RFP-NLS-IPS1 and infected with HCVcc (J6/JFH1-

clone 2) two days later. Cultures were imaged 3 days post-HCVcc infection by fluorescence 

microscopy. Representative pseudocolored florescence image is shown. White arrows 

indicate nuclear RFP, indicative of HCV replication. (E) Albumin production in PRMH 

quantified by ELISA. Data shown in all panels is the mean and standard deviation (SD) of 

biological triplicates from a single experiment. Similar data were obtained in replicate 

experiments.
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Figure 3. The HCV lifecycle is complete in primary adult rhesus macaque hepatocyte cultures
Infectious virus in supernatants from PRMH cultures two days post-infection with 

Jc1[p7nsGluc2a] quantified by limiting dilution assay on naïve Huh-7.5 cells. Data shown in 

all panels is the mean and standard deviation (SD) of biological triplicates from a single 

experiment. Similar data were obtained in replicate experiments. Lower limit of 

quantification is denoted as LOQ.
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Figure 4. HCV persistently replicates in simian liver chimeric mice
(A) Construction of simian liver chimeric mice. FNRG female mice were transplanted with 

1×106 rhesus macaque adult hepatocytes and cycled on NTBC and water to promote 

engraftment. (B) Rhesus macaque serum albumin quantified by ELISA as a marker of 

hepatocyte engraftment. (C) Histological sections stained with hematoxylin and eosin 

(H&E; panels i and ii) or anti-FAH antibody (iii and iv) identify islands of rhesus macaque 

hepatocytes in the murine liver. Scale bars: 1mm (i. and iii.) and 50μm (ii. and iv.). (D) 
Hepatitis C viremia in simianized and humanized mice inoculated with H77 (gt1a) or (E) J6/

JFH1 (gt2a) determined by qRT-PCR. Arrowhead on x-axis indicates the time point at 

which the simianized mice in cohort 1 were reinoculated with HCV.
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