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Abstract

Memory-based decisions are often accompanied by an assessment of choice certainty, but the 

mechanisms of such confidence judgments remain unknown. We studied the response of 1065 

individual neurons in the human hippocampus and amygdala while neurosurgical patients made 

memory retrieval decisions together with a confidence judgment. Combining behavioral, neuronal 

and computational analysis, we identified a population of memory-selective (MS) neurons whose 

activity signaled stimulus familiarity and confidence as assessed by subjective report. In contrast, 

the activity of visually selective (VS) neurons was not sensitive to memory strength. The groups 

further differed in response latency, tuning, and extracellular waveforms. The information 

provided by MS neurons was sufficient for a race model to decide stimulus familiarity and 

retrieval confidence. Together, this demonstrates a trial-by-trial relationship between a specific 

group of neurons and declared memory strength in humans. We suggest that VS and MS neurons 

are a substrate for declarative memories.

Introduction

Decisions are often accompanied by an assessment of how likely it is that a choice will be 

correct. Such confidence judgments are critical in complex environments where decisions 
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need to incorporate future, not yet observed, outcomes based on previous actions, 

information, and outcomes. Determining whether a stimulus is novel or familiar is a 

complex decision involving the comparison of sensory information with internal variables. 

While the outcome is binary (familiar or not), in humans such memory retrieval decisions 

are typically accompanied by graded judgments of confidence. Such confidence judgments 

feel automatic and are often accurate1–3. Despite its ubiquity, the mechanism of confidence 

judgments in memory is not understood. One model proposes that confidence judgments 

require separate specialized processes that evaluate decisions after they have been made, 

thus drawing on metacognitive abilities that may be unique to humans4. In contrast, other 

models propose that an assessment of uncertainty is an integral and necessary part of any 

decision-making process itself5. Confidence can thus be assessed simultaneously and by the 

same process that makes the decision in the first place, a core concept of Bayesian models of 

decision-making6. While recent studies in non-human primates and rodents have provided 

evidence for the latter model during perceptual decisions3, 7, nothing is known so far about 

how confidence judgments for memories are made. It has proven challenging to develop 

paradigms for animals to communicate an assessment of confidence in an experimental 

setting, a problem particularly acute for memories. Here, we take advantage of the 

availability of human neurosurgical patients for single-unit recordings to study this question.

The medial temporal lobe (MTL) is required to make declarative memory-based decisions8 

and populations of neurons in the MTL whose interaction is thought to underlie this ability 

have been identified. For example, the response of some neurons in the primate MTL is 

selective for visual categories or concepts9–12. Others signal whether a stimulus is novel or 

familiar13–16, a response which can emerge after a single exposure.13, 14. Such memory-

sensitive neurons represent a potential substrate for episodic memories by marking stimuli 

as either novel or familiar. If so, we hypothesize that their activity should correlate with 

memory strength and thus with confidence. In contrast, neurons not directly involved in 

memory retrieval, such as those representing visual features, should not correlate with 

memory strength.

Here, we used subjective confidence ratings made by subjects during a memory recognition 

task to identify groups of neurons that signaled memory strength. We make two key 

contributions. Firstly, we show that memory-selective and visually-selective neurons code 

orthogonal pieces of information about visual stimuli. Secondly, we show that only the 

activity of memory-selective neurons correlates trial-by-trial with memory strength. In 

contrast, the ability of visually selective neurons to differentiate different stimuli was not 

sensitive to memory strength.

Results

Task and behavior

Subjects (44 sessions from 28 patients, see table S1 for demographics) performed a 

recognition memory test during which they rated 100 images as seen before or not17. Fifty 

of the images were familiar (shown ~30min before the task during a separate learning 

session), while the other 50 images were novel (stimulus type, “familiar” or “novel”). 

Images were presented for 1s each, and after a short delay subjects were asked to indicate 

Rutishauser et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whether they had seen the image before (binary decision, “new” or “old”) together with a 

judgment of confidence in their decision (Fig. 1a). Each image belonged to one of five 

visual categories (cars, foods, people, landscapes, animals; see methods).

Subjects correctly identified 69±13% of familiar stimuli and reported 28±17% of novel 

stimuli as false positives (Fig. 1b). Confidence ratings were systematically related to 

accuracy (Goodman-Kruskal gamma correlation g=0.36±0.37, t-test vs chance p<1e-6). The 

higher the confidence, the better the accuracy (Fig. 1c–g). We computed a receiver operating 

characteristic (ROC) curve18 for each session to quantify the relationship between accuracy 

and confidence (Fig. 1c). The average area under the curve (AUC) of the ROC was 

0.75±0.08 (Fig. 1c,d). Different confidence ratings resulted in performance located in 

different locations within ROC space (Fig. 1c). The ROC was asymmetric (Fig. 1e, z-ROC 

slope 0.78±0.33, significantly less than 1, p<1e-18), as expected for declarative memories19. 

Subjects performed above chance at all levels of confidence and the majority of decisions 

were made with high confidence (Fig. 1f,g). Subjects assigned medium and low-confidences 

more rarely and with approximately equal likelihood (Fig. 1f). For a balanced statistical 

comparison between confidence levels with approximately equal trial numbers, we use two 

levels of confidence for the neuronal analysis: high and low. Trials with intermediate ratings 

were re-assigned a high-or low confidence rating depending on the proportion of trials 

(irrespective of performance) made with medium confidence (see methods). The resulting 

two confidence ratings were associated with different retrieval accuracy (Fig. 1h).

The decision time (DT, time from question onset till response) varied systematically as a 

function of confidence and accuracy (Fig. 1i–l; repeated measure ANOVA model, see 

methods). Correct high-confidence decisions were faster compared to low-confidence 

decisions (Fig. 1i, 1.54±0.11s vs. 2.49s ±0.20s, main effect of confidence F1,30 = 25.74, P < 

10−4; Fig. 1i shows pairwise comparisons). Correct familiar decisions were faster than 

correct novel decisions regardless of confidence (Fig. 1i). This was also true for incorrect 

trials: high-confidence incorrect decisions were faster than low-confidence incorrect 

decisions (Fig. 1j). Correct decisions were made with higher confidence than incorrect 

decisions (Fig. 1k, 1.95± 0.06s vs. 1.65±0.05s; main effect of correctness F1,41 = 58.3 

p<10−8, Wilcoxon signed-rank test correct vs. incorrect : p<2.74e-009). Also, correct 

decisions were made quicker than incorrect decisions for familiar stimuli (1.41±0.13s vs. 

1.78±0.14s, significant interaction F1,30 = 8.51, P < 0.05, n = 31 subjects). Because incorrect 

decisions were made more slowly and with lower confidence, we matched the average 

confidence in correct and incorrect trials. We found that correct decisions are made faster 

even after matching confidence (incorrect vs. correct: 1.89s±0.15s vs. 2.21s±0.19s, 

Wilcoxon signed-rank test after matching for confidence p<0.01 see Fig. 1l). Together, this 

shows that subjects accurately assessed the quality of their memories (Fig. 1h) and the 

relationships between DT and confidence were as expected for declarative memory retrieval 

decisions1.

We selected subsets of sessions for analysis based on behavioral metrics only. Two groups 

were selected: Group 1 (patients with above chance retrieval performance, n=38 sessions, 

AUC=0.81±0.10, g=0.39±0.29) and Group 2 (patients who were able to distinguish between 

high-and low confidence memories, 26 sessions, AUC=0.84±0.08, g=0.38±0.27).
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Electrophysiology

We isolated 1065 putative single units from the amygdala and hippocampus in 44 sessions 

(on average 24 per session). Units were carefully isolated17, 20 and recording and spike 

sorting quality were assessed quantitatively (Fig. S1). The average firing rate was 1.84 ±2.66 

Hz (Table S2). Throughout the manuscript, we use the term “neuron” to refer to a putative 

single unit. Neurons were sensitive to the onset of visual stimuli as expected9, 17: 30% 

(321/1065) of the neurons responded when comparing baseline with post-stimulus periods 

(p<0.05, two-tailed t-test, 1s each). Note that the analysis that follows was not restricted to 

visually responsive neurons.

Single-neuron signatures of memory

We first tested whether the neuronal response following stimulus onset depended on 

whether the stimulus was novel (not seen before) or familiar (seen before) stimuli. We found 

that the response of 8.5% (81 out of 954, p<1e-5, Bernoulli; correct trials only in Group 1, 

n=38 sessions, see Table S1 and Fig. S6 for bootstrapped significance values) of all neurons 

differed between novel and familiar stimuli (see Table S2 for mean firing rates). This was 

true for both amygdala (43/577, 7.5%) and hippocampal (38/377, 10.1%) neurons. We will 

call such neurons memory-selective (MS)13. Similar to previous experiments13, 14, 21, there 

were two types of MS neurons (Fig. 2 shows examples). The first had a higher firing rate to 

novel compared to familiar stimuli (45/81, Fig. 2a,b) whereas the second had an increased 

firing rate for familiar compared to novel stimuli (36/81, Fig. 2c,d). We will refer to these 

neurons as novelty- and familiarity-selective (NS and FS), respectively13.

We next performed a single-neuron ROC analysis for every MS neuron and calculated its 

area under the curve (AUC). The AUC specifies the probability by which an ideal observer 

could predict the choice (novel or familiar) of a subject by counting spikes in an individual 

trial. Note that some studies refer to this metric as choice probability (CP)22. Only MS 

neurons from patients that were able to differentiate high from low confidences were 

considered (Group 2, 65 out of 664 units (9.8%) were MS units; Fig. 2e–h and Fig. S4p 

show example ROC curves). The average AUC for all MS neurons, considering all correct 

trials, was 0.64±0.04 (different from chance by design, as the neurons were selected to be 

different in the first place; what is important here is only the magnitude). We next computed 

AUC values using only high-or low confidence trials. Note that the selection of MS neurons 

does not consider confidence, making this comparison independent. AUC values were 

significantly larger for high compared to low confidence trials for all MS neurons together 

(Fig. 3a–c; 0.66±0.007 vs. 0.60±0.010; see legend for statistics) and for NS and FS neurons 

separately (Fig. 3d–e). This was true for both hippocampal and amygdala neurons, for 

neurons recorded from the left and right hemisphere only as well as when evaluating the 

differences using a bootstrap rather than parametric statistics (Fig S4; see legend for 

statistics). These differences could not be attributed to different units that might have been 

merged into one single cluster: the mean waveforms associated with each of the four trial 

types were indistinguishable (Fig. 2i–l). Comparing forgotten (false negatives, FN) trials 

with truly novel trials reveals an AUC larger than chance (Fig. 3c, 0.55±0.020, p=0.0048 vs. 

chance of 0.50) but significantly smaller than that for low-confidence correct decisions 

(0.60±0.010, p=0.0056). This indicates that MS neurons carried a memory signal that was 
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strongest for high confidence correct trials, intermediate for low-confidence trials and 

weakest for forgotten trials (Fig. 3c).

We performed a number of controls to exclude possible confounds. Using MS neurons from 

non-epileptic areas showed a similar difference (n=40, AUC 0.66±0.01 vs. 0.61±0.01, 

p=0.00066), as did using only neurons in epileptic tissue (later resected, AUC 0.67±0.01 vs. 

0.61±0.02, p=0.0041). Equalizing the number of trials in the high-and low confidence 

groups did not change the result (AUC 0.67±0.01 vs. 0.60±0.02, p<4e-5). Finaly, randomly 

re-assigning confidences but keeping the novel/familiar labels intact abolished the high/low 

difference as expected (AUC 0.65±0.01 vs. 0.65±0.01, p=0.81; Fig. S4M–O shows 

bootstrap statistics).

We next compared the response patterns of FS and NS neurons. The previous ROC analysis 

is not sensitive to whether one or both terms constituting the difference are modulated. We 

thus next directly compared the normalized number of spikes fired by FS/NS neurons as a 

function of behavior. By design, FS and NS neurons responded maximally to familiar and 

novel stimuli, respectively (Fig. 3f–g). The response of FS/NS neurons differed significantly 

different between high-and low confidence trials, but only for the trial types to which the 

neurons increased their firing rate. Thus, the response of FS neurons differed between high-

and low confidence trials only for familiar stimuli and vice-versa for NS neurons (Fig. 3f–g, 

see legend for statistics). Also, both FS/NS neurons decreased their firing rate to novel and 

familiar stimuli, respectively (Fig. 3h–i). The magnitude of this decrease, however, was 

insensitive to confidence. Thus, NS and FS neurons signal confidence asymmetrically 

because only the trial type to which they increase their firing rate relative to baseline is 

modulated by confidence. This conclusion relies on an absence of firing rate reduction 

below baseline, which is difficult to detect due to low baseline firing rates. However, note 

that this very problem would be faced by an imaginary downstream neuron receiving input 

from FS/NS neurons.

Single-neuron signatures of visual information

Each image shown belonged to one of five investigator–selected visual categories (cars, 

foods, people, landscapes, animals). The response of 17.5% (186/1065) of units was 

significantly modulated by category (1-way ANOVA, p<0.05, Fig. 4 shows examples), a 

proportion similar to what has been reported before9 (see Table S1 and Fig. S6 for 

bootstrapped significance values). We refer to this group as visually selective (VS) neurons.

The two populations were independent: 15/186 VS neurons were also MS neurons (8%) 

whereas 15/87 (17%) of MS neurons also distinguished categories (χ2 test of independence, 

p=0.91; this also applies considering only neurons from Group 1 and 2 and when excluding 

neurons with firing rates <1 Hz). A small group of neurons (15/1065, 1.5%) were both MS 

and VS cells (see Fig. S5 for an example), a proportion larger than expected by chance 

(chance level 0.25%, p=0.001, Fig. S6) and compatible with independence of memory-and 

visual selectivity. In what follows, we analyze VS and MS neurons without excluding those 

that code for both.
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Did the response of VS neurons depend on memory strength? To answer this question, we 

first identified the most and least preferred stimulus category for each VS neuron (i.e. the 

neuron in Fig. 4e best differentiates between animals and houses). We then used single-

neuron ROC analysis to quantify how well the response of each VS neuron discriminated 

between these two categories for four different trial types: novel, familiar, high-and low 

confidence. Using only correct trials from neurons in Group 2 (128/664 were VS neurons, 

see Table S2) we found that AUC values did not differ as a function of confidence (Fig. 

5a,c) or familiarity (Fig. 5b,d, see legend for statistics). The same conclusions hold when 

excluding low-firing rate neurons (Fig. S7). This shows that the ability of a VS cell to 

identify its preferred category did not depend significantly on stimulus familiarity or 

confidence. This conclusion relies on the absence of a significant difference, which does not 

exclude the possibility that our data does not have enough statistical power to detect an 

existing difference. However, note that using the same number of trials and time window, 

MS neurons showed a strong difference. Also, the pairwise comparison between the two 

conditions (high/low and new/old) is based on trials for which the neuron carried 

information to begin with (the preferred category), assuring that the individual AUC values 

were well above chance.

VS neurons discriminate before MS neurons

We next estimated the first point of time at which the response of VS and MS neurons 

differed between different visual categories and novel/familiar stimuli, respectively. We 

compared the cumulative sum of the spike trains, a method which provides an estimate of 

the differential latency of a neuron with millisecond precision15 (see methods). The average 

differential latency of VS and MS neurons was 272ms and 461ms, respectively (relative to 

stimulus onset; Fig. 6a–b, see legend for statistics). Thus the response of MS neurons was 

delayed by 189ms relative to VS neurons.

Differential coding of visual category and memory

We next considered all recorded neurons together (n=664, Group 2). We fit a moving-

window regression model for every single unit (using correct trials only) to estimate how 

much of the neuronal variability could be attributed to the factors visual category and 

familiarity. We estimated the effect sizes23 by ω2 as a function of time (see methods). The 

population conveyed information about both the visual categories and the familiarity of the 

stimuli (Fig. 6c). VS neurons signaled information earlier and did not provide novelty 

information (Fig. 6g). In contrast, MS neurons signaled information about the novelty of the 

stimulus but not its categorical identity (Fig. 6f). To analyze neuronal activity regardless of 

time, we averaged the effect size in a 1.5s time window starting 0.2s after stimulus onset. 

Units classified as MS and VS neurons tended to have high effect sizes only for novelty/

familiarity or category, respectively (Fig. 6s). The effect sizes were not correlated, 

indicating that a neuron coded either familiarity/novelty or category, but not both (Fig. 6e). 

This was true for MS, VS and all other neurons (r=0.04, −0.003 and −0.008, respectively; all 

p>0.86, Fig. 6e). Thus, a neuron was informative about only one but not both of the 

variables. We also utilized a a regression model with an interaction term, which did not 

explain any additional variance (Fig. S3). Comparing the effect size between trials which 

were recognized with high-and low confidence revealed that the information conveyed by 
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MS neurons (Fig. 6h–i) was sensitive to subjective confidence whereas that by VS neurons 

was not (Fig. 6j–k). Note that the estimated effect size of a neuron did not depend on spike 

sorting quality (Fig. S1h–i).

Estimate of information content

What distinguishes a high from a low confidence memory? We used a population decoder to 

estimate the amount of information provided in single trials as a function of confidence and 

accuracy. The decoder had access to a pseudo-population of neurons and was trained and 

tested on subsets of independent trials. The resulting estimates are generalization errors, 

permitting comparisons such as whether training the decoder with a condition (i.e. high 

confidence) generalizes to other conditions (i.e. low confidence). Applying this method to 

all recorded VS/MS neurons revealed that visual information carried by VS neurons could 

be decoded earlier than memory information carried by MS neurons (Fig. 7a). This extends 

the earlier finding to single-trial decoding. To quantify the information available we used the 

mutual information (MI) between the spiking response and stimulus identity/familiarity (see 

methods). This again revealed an early-and late component that is carried by VS/MS 

neurons (Fig. 7b–c). We next trained a decoder that had access to all recorded neurons using 

only high confidence trials and tested its performance on both high-and low confidence trials 

(Fig. 7c,d). While this decoder based its decisions on neurons signaling high confidence 

memories, low confidence trials could still be decoded but the amount of information 

available was reduced by ~70% (Fig. 7e, middle; 0.14±0.04 vs. 0.04±0.02 bits). Thus, the 

population response identified for high confidence trials is still informative for low 

confidence memories. Training a decoder on all trials regardless of confidence and testing it 

on high and low confidence trials separately showed similar results (Fig. 7e; 0.15±0.03 vs. 

0.05±0.02 bits). This result holds also when only considering MS neurons (Fig. 7e). We 

conclude that the amount of information available in the entire population, in bits, is ~3× 

higher for high compared to low confidence memories. We next estimated the MI during 

error trials. This revealed that when a stimulus was forgotten (false negative, FN), the 

spiking activity of MS neurons still contained information about the familiarity of the 

stimulus (Fig. 7f). While more than expected by chance (0.044 vs. 0.023 bits, 1.97× more 

information), this was less than that available for low confidence correct trials (Fig 7e). 

Forgotten trials thus form a continuum with the low-and high confidence correct trials, a 

property that is expected of a memory strength signal. Note that in contrast to MI, decoding 

accuracy cannot be used to compare amounts of information. Nevertheless, a similar 

qualitative pattern of readout ability was revealed by decoding accuracy (Fig. 7g,h).

Differences in electrophysiological signatures

We next compared the shape of the extracellular waveforms (EWs) associated with each 

neuron to investigate whether VS/MS cells might be physiologically different. The trough-

to-peak time d (Fig. S2a) was bimodally distribution across all recorded neurons (Fig. 

S2a,b), indicating at least two types of EWs: short and long (mode 0.3ms and 0.8ms, Fig. 

S2b,c). Considering d separately for particularly well isolated MS and VS neurons 

(projection test distance >10 s.d.; all conclusions remain valid without this criteria) revealed 

that only the EWs of VS neurons were significant bimodally distributed (Fig. S2d, see 

legend for statistics). In contrast, 72% of all EWs of MS neurons were short (Fig. S2f). The 
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proportion of long and short EWs was significantly different for MS but not VS neurons 

(Fig. S2f, see legend for statistics). At the same time, both VS/MS neurons had low firing 

rates and did not differ according to other spike train metrics (CV2 and burst index, Tables 

S2 and S3). In conclusion, both MS and VS neurons had low firing rate but at the same time 

MS neurons had mostly short EWs. Based on this, we hypothesize that MS neurons are 

anatomically distinct from VS neurons (see discussion).

Decision making model

Is the information provided by MS neurons sufficient to decide both whether a stimulus is 

familiar as well as the confidence in that decision? To answer this question, we constructed 

a biologically plausible race model24. The model evaluates whether the difference D(t) 

between one FS and NS neuron is negative or positive (Fig. 8a). If positive, the accumulated 

evidence (EV) for the stimulus being familiar is increased and vice-versa for negative D(t). 

At the end of the trial the decision is familiar if EVfam > EVnov, and novel if otherwise. The 

confidence in the decision is proportional to the “balance of evidence” ΔE=|

EVfam−EVnov|25. We evaluated the performance of this model for all n=954 pairs of NS/FS 

neurons, separately for correctly recognized familiar (TP) and novel (TN) items (Fig. 8b–h). 

The model reliably distinguished between high and low confidence trials (Fig. 8c–f) and EV 

and ΔE were correlated with behavioral performance. The model’s ability to distinguish 

between novel and familiar stimuli was better for high compared to low confidence trials 

(Fig. 8h). Also, ΔE was correlated trial-by-trial with confidence, both for behaviorally 

correct and incorrect trials (Spearman correlation 0.042±0.13, p<1e-20 vs. 0, n= 957 pairs 

and 0.047±0.17, p=0.0033, n=130 pairs). Of the two EV values, only the larger (the winner) 

correlated with confidence (0.05±0.13, p<1e-30) whereas the EV value of the smaller 

(looser) did not (0.002±0.16 p=0.68). We also used the model to evaluate the decision 

latency by setting, for each cell pair, a fixed decision threshold ΔETh (see methods). The 

first time when ΔE exceeded this threshold, the race was aborted and the latency noted. This 

model made decisions more quickly for trials that were made with high confidence (Fig. 8i) 

and made familiar decisions more quickly than novel decisions (Fig. 8j). This pattern is 

similar to that observed behaviorally (Fig. 1i). Together, this shows that a simple readout 

mechanism can reliably, and on single trials, make two decisions simultaneously using only 

information provided by MS neurons.

Discussion

We systematically compared two populations of neurons within the human MTL: VS and 

MS neurons. The former signaled information about the identity of the visual stimuli, 

whereas the latter signaled the familiarity of the stimuli. VS neurons discriminated between 

stimuli ~190ms earlier than MS neurons and only the activity of MS neurons was correlated 

with memory strength as expressed by a confidence judgment. Together, our result suggests 

that only MS neurons are directly involved in memory retrieval. The proportion of MS 

neurons identified here was similar to those identified before13, 14, 26. However, using 

confidence ratings revealed several important new aspects of these neurons. In particular, 

this revealed that NS and FS neurons coded information asymmetrically: their firing rate is 

only informative about the confidence of the trial types to which they increase their firing 
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rate (Fig. 3). In contrast, we show here that the activity of the VS neurons is not sensitive to 

memory strength and that they are functionally distinct from MS neurons. In addition, our 

data is an independent reproduction of the initial description of VS neurons9. 1.5% of all 

neurons qualified as both VS and MS neurons. While rare, our large dataset shows that the 

probabilities of a neuron to become VS or MS neuron are independent of each other. Such 

neurons have been hypothesized to represent a distributed sparse code for memories27, 28, 

but due to their rarity it will be necessary to use closed-loop paradigms to investigate them 

systematically.

Our conclusions rest on single-neuron ROC analysis, a sensitive method to quantify the 

amount of information available in individual trials29. ROC analysis does not assume a 

particular distribution of the spike counts, which is important because spike counts are 

Poisson distributed. Using mutual information, we further estimated that the amount of 

information present in the population is about 3 times higher in a high relative to a low 

confidence trial. Note that low confidence decisions were nevertheless correct, thus what 

was missing was additional information required to reach a high confidence choice. Also, 

low confidence decisions were slower, a signature of recognition memory that has been 

observed even when not asking for a confidence1.

Confidence judgments are subjective. Consequently the strength associated with a certain 

confidence varies between subjects. Our analysis, however, is insensitive to this because it 

relies on a within-neuron comparison between high-and low confidence trials. As a result, 

all that is required for our analysis to be valid is that subjects apply a threshold regardless of 

its value. For statistical reasons, we focused our analysis on two levels of confidence only. A 

third level is forgotten (FN) trials, which can be considered a “very low” confidence. Our 

results show that these three levels are represented by MS neurons. Clearly, subjects are 

capable of using more than two confidence levels1 and it remains an open question whether 

each of these can be separated by MS neurons.

Could the neuronal differences between high-and low confidence be attributed to 

fluctuations in attention during retrieval? The specificity of the neuronal effects argues 

against this possibility, because a global attentional effect would affect all neurons equally. 

In particular, it would be expected to improve the reliability of visual category 

information30. Instead, here we found no difference in the coding reliability of VS neurons.

In psychology, global models of recognition memory1, 31, 32 have as their underlying 

decision variable a familiarity or strength signal that pools memory strength among many 

associations or items. In these models, the familiarity signal itself does not contain 

information about the memory apart from signaling its familiarity. MS neurons had the same 

property and are thus candidates for the familiarity signal predicted by these models. This 

will make it possible to directly test key hypothesis made by these influential quantitative 

models of memory32.

We used a simple integrator-type model to explore which decisions could be supported by 

the difference in firing rate between a pair of FS and NS neurons. Integration of the 

difference of two neurons with opposite tuning is statistically optimal in many situations24. 
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Our model differs from drift-diffusion (DDM) models24, 33 because it has two integrators, 

only one of which increases its value depending on the sign of the difference. FS/NS 

neurons are not anti-correlated (Fig. 3F–I), and thus the two integrators are not redundant as 

is assumed in DDM models. The difference of the two integrators is the “balance of 

evidence”5, 7, 25. In contrast, a standard DDM model has only one decision variable34 and 

thus no mechanism for estimating the quality of a decision beyond the time taken to reach 

the decision threshold3. Here, we show that integration-to-bound decision models are 

applicable to memory-based decisions because this model can make confidence decisions 

based only on the activity of MS neurons. No human neurons that represent the difference 

FS-NS or the integrator values EV have yet been identified, but our model makes specific 

predictions that will facilitate their discovery. A key technique to identify signatures of 

evidence accumulation has been to present sensory stimuli of different strength22, 35. Here 

we relied on internal variability in memory strength only, but we expect that combing these 

two approaches will be an important future avenue.

Extracellular waveforms (EW) have been used to classify cells as inhibitory or 

excitatory36–38, but no definitive data on the validity of this distinction exists for humans. 

The EW differs as a function of the location of the electrode relative to the cell, but since our 

electrodes were implanted blindly this is unlikely to account for the difference. Large 

pyramidal cells can have shorter waveforms compared to smaller pyramids39 and in rats 

particularly short waveforms are hypothesized to be axonal activity40. Also, 

backpropagation of action potentials widens the EW41 and the propensity for 

backpropagation varies between cell types. Consequently, an intriguing possibility is that 

MS cells are morphologically and/or physiologically different from VS cells but this 

hypothesis remains to be confirmed.

In addition to the hippocampus, we identified VS/MS cells in the amygdala, confirming 

previous reports of memory signals in the human amygdala13, 14, 26. While the amygdala is 

not necessary for declarative memory, it is crucial for many aspects of learning42 and is 

sensitive to stimulus novelty43. Given this, it is not surprising that VS/MS cells are also 

present in the amygdala. We used natural scenes as stimuli, some with emotional content. It 

remains an open question whether MS cells in the amygdala are specifically modulated by 

the emotional content of the stimuli. It also remains an open question whether MS cells are 

modulated by recency rather than novelty. Lists of words are frequently used in recognition 

memory1 tests, but most physiological studies so far have used natural scenes. Notably, a 

recent study utilizing words reported cells tuned to recently seen words but not broadly-

tuned cells of the kind we report here27.

Assessing the quality of one’s own memory (an internal state) is thought to require 

metacognition44, the existence of which in animals is debated5, 45, 46. While only humans 

can verbally declare their confidence, experiments with indirect measures reveal that several 

species can utilize a “don’t know“ option3, 7, 47, 48 alone or in combination with post-

decision wagering3, 49 to prevent the learning of an association instead of a confidence 

judgment. The amount of effort expended has also been used to infer confidence50. 

Theoretically, degrees of uncertainty are central components of neural computation56. 

Together, there is thus emerging evidence that an assessment of uncertainty is an integral 
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part of neuronal decision making in general. Here, we have demonstrated that memory-

selective neurons in humans carry a graded representation of memory strength that is 

reflected in the subjective confidence ratings made by the subjects.

Online Methods

Electrophysiology and electrodes

Broadband extracellular recordings were filtered 0.1Hz–9kHz and sampled at 32kHz 

(Neuralynx Inc). We recorded bilaterally from the amygdala and hippocampus (32 channels 

in total, see17 for details). 1 microwire in each macroelectrode served as a local reference 

(bi-polar recording). Electrodes were localized based on post-operative MRI images17. 

Electrode locations were chosen according to clinical criteria alone. Only electrodes 

localized to the hippocampus or amygdala were included. Protocols were approved by the 

institutional review boards of the Cedars-Sinai Medical Center, Huntington Memorial 

Hospital and the California Institute of Technology.

Patients

28 patients who were evaluated for possible surgical treatment of epilepsy using 

implantation of depth electrodes volunteered for the study and gave informed consent. We 

evaluated all patients using standard neuropsychological tests (Supplementary Table 1). All 

included patients had clearly distinguishable spiking activity on at least one electrode in the 

areas of interest.

Task

Details of the task have been published previously17. The task consisted of two blocks: 

learning and retrieval, with a 15–30 min delay in between with a distractor task. During 

learning, 100 novel and unique images were shown. During recognition, a subset of 50 of 

these images were shown again (now familiar, “old”) together with 50 novel images (novel, 

“new”). Patients identified each image as novel or familiar on a 1–6 confidence scale (Fig. 

1a). Only the data from the retrieval block of the task is reported here. Before the 

experiment, subjects performed a short training version of the same task but with different 

images. Some that performed multiple sessions of the task were recorded on different days 

with different sets of images. Images shown were 9°×9° deg in size. After offset of the 

image, the screen was blank and followed by the question screen 0.5s later (Fig. 1a) that was 

displayed till an answer was provided. Stimuli were photographs of natural scenes of five 

different visual categories (animals, people, cars/vehicles, outdoor scenes/houses and 

flowers/food items). There were the same numbers of images presented in each category. 

The task was implemented in MATLAB using the Psychophysics Toolbox51.

Behavioral analysis

The decision time (DT) is the time between onset of the question screen and the button 

press. We excluded DTs>30s as well as those which are more than 3 standard deviations 

away from the mean (for each subject) for all DT analysis (Fig. 1h–k; 1.74%±1.00% of 

trials, ±s.d. across subjects, were removed). All DT comparisons were pairwise within-

subject comparisons. We excluded sessions which did not contribute at least one data point 
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to each category of a comparison (number of sessions for Fig. 1i–l are 38, 42, 44, and 31, 

respectively). All findings reported in Fig. 1i–l remain when using all 44 sessions and non-

paired statistics (not shown). To analyze behavioral performance and proportion of 

responses (Fig. 1b–h), all trials regardless of DT were included. Note that the proportion of 

responses (Fig. 1f) remains virtually unchanged when applying the same exclusion criteria 

as used for the DT analysis.

The association between confidence and retrieval accuracy was assessed using the 

Goodman-Kruskal gamma coefficient g52, whose value is between −1…1. The relation 

V=0.5*g+0.5 converts g into the probability V that a confidence judgment is accurate52. On 

average, V=0.67±0.18 (±s.d.).

We used a 3-way repeated measure ANOVA with in-between factors memory (novel/

familiar), confidence (high/low), and accuracy (correct/incorrect) to quantify the relationship 

with DT. The repeated factor was subject number. Pairwise post-hoc comparisons were done 

using a Wilcoxon signed-rank test.

The behavioral ROC was calculated as a function of confidence as described previously17. 

The slope of a line fitted with least-squares regression to the z-transformed ROC was used to 

assess the degree of asymmetry of the ROC53. We reassigned the intermediate confidence 

level (2, 5) to either the low or high confidence level to collapse the 6 confidence levels to 4 

levels. For every session, the intermediate confidence was assigned to either the low or high 

confidence group, based on which assignment produced a more equal proportion of high and 

low trials. This re-balancing was based on number of trials alone.

We assigned sessions to two groups. Group 1 consists of all sessions where patients 

performed at least 10% above chance. Group 2 is a subset of Group 1 and contains only 

sessions where patients accurately discriminated between high and low confidence 

memories (minimal accuracy for high 70% and low 55%). Using random subsets of 50% of 

the trials or only the first or second half of the trials resulted in identical group assignments.

Spike detection, sorting, and quality metrics

The raw signal was filtered with a zero-phase lag filter in the 300–3000Hz band and spikes 

were detected and sorted using the semiautomated template-matching algorithm OSort20. 

Channels with interictal epileptic activity were excluded. We computed several spike sorting 

quality metrics for all units (see Fig. S1): i) percentage of ISIs below 3ms was 0.24%

±0.45%, ii) the ratio between the peak amplitude of the mean waveform of each cluster and 

the standard deviation of the noise was 5.6±3.6 (peak SNR), iii) the pairwise projection 

distance in clustering space between all neurons isolated on the same wire was 16±11 

(projection test54; in units of s.d. of the signal), iv) the modified coefficient of variation of 

variability in the ISI (CV2) was 0.93±0.21 (p=0.72, not significantly different from 1, as 

expected from a Poisson process), and v) the isolation distance5556 (Fig. S1g; (n=746, 

median was 35.0; compare to Fig. S2b in57 and Fig. 7 in56). The isolation distance 

quantifies, for every cluster, how far apart it is from the other clusters and the noise. We 

calculated the isolation distance in a 10 dimensional feature space56 (Energy, peak 

amplitude, total area under the waveform and first 5 principal components of the energy 
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normalizes waveforms). To quantify whether our results depend on sorting quality, we 

correlated the effect size metric ω2 with the isolation distance (Fig. S1h,i).

Selection of units

We counted spikes in a 200–1700ms window relative to stimulus onset. MS neurons were 

selected based on a significant difference between correctly identified novel and familiar 

stimuli in this period (p<0.05, two-tailed, boostrap comparison of means with 1000 runs). A 

MS neuron was FS if the mean if all familiar trials was larger than all novel trials and NS 

otherwise. VS neurons were selected using a 1×5 ANOVA with the factor visual category 

(1–5) based on the identical spike counts and with p<0.05.

Single-neuron analysis

We used non-overlapping bins of 250ms width. PSTH diagrams were smoothened, for 

display only, with a causal exponential kernel with λ=150ms. All analysis and statistics was 

based on un-smoothened data.

Single-neuron ROC analysis

Neuronal ROCs were constructed based on the spike counts in a 1.5s long window, starting 

200ms after stimulus onset. We varied the detection threshold between the minimal and 

maximal spike count observed, linearly spaced in 25 steps. The AUC of the ROC was 

calculated by integrating the area under the ROC curve18.

For MS neurons, ROC analysis was performed to quantify how well individual neurons 

distinguished between novel and familiar trials. Only neurons with at least 10 correct novel 

and familiar trials each were included in the ROC analysis. A separate ROC analysis was 

performed for high and low confidence trials. For confidence comparisons, only neurons 

that had at least 2 trials of each of the 4 confidence levels were included. To perform a fair 

comparison, only one of the two groups used for the ROC analysis was modified according 

to confidence while the other was kept constant. For FS neurons, the fixed group was all TN 

trials (regardless of confidence) which was compared with high-confident TP and low-

confident TP trials separately. For NS neurons, the fixed group was all TP trials which were 

compared with high-confident TN and low-confident TN trials separately.

For VS neurons, we first identified, based on all trials regardless of behavior, a binary 

contrast (such as category 2 vs. 5, preferred vs. non-preferred) that a neuron distinguished 

best by testing all 10 possible contrasts and picking the one with the maximal AUC. We 

subsequently estimated the AUC for this best contrast using only novel, familiar, high, and 

low confidence correct trials.

Statistical comparisons between AUC values were made using two-tailed parametric tests 

(paired t-test and paired sign-tests, as indicated). For bootstrap comparisons, we performed 

B=1000 bootstrap runs to estimate the null distribution and estimated the p-value 

empirically by counting how many values in the null distribution were larger than the 

observed value. When no null distribution value exceeded the observed value, we set the p-

value to 1/B.
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To calculate a normalized firing rate (Fig. 3f–i), we divided the firing rate by the mean firing 

rate of the neuron in the entire task. For the cumulative distribution comparisons (Fig. 3f–i), 

we only included neurons that had at least 2 trials in each of the 6 behavioral categories.

Differential latency

We binned spike trains into 1ms bins and computed the cumulative sum. We then averaged 

the cumulative sums of all individual trials of a neuron that belong to the same condition. To 

allow averaging of all MS neurons, NS neurons were inverted so that the preferred response 

of all MS neurons was a firing rate increase. For VS neurons, the best contrast was used as 

determined by ROC analysis. We then compared, at every point of time, whether the 

cumulative sums of a group of neurons were different (p<0.05, pairwise t-test). We repeated 

this procedure after randomly scrambling the labels to estimate the null distribution. 

Corrections for multiple comparisons were performed using a cluster-size correction. The 

maximal number of consecutively significant data points in the null distribution was used as 

the minimal cluster size. The first point of time of the first significant cluster was used as the 

estimate of the differential latency15. Note that this method is not sensitive to baseline firing 

rate differences between neurons because the latency estimate is pairwise for each neuron 

individually.

Regression analysis

We used the regression model S(t) = α0(t) + α1(t)N + α2(t)C to estimate whether the firing 

rate S was significantly related to the factors novelty/familiarity (N) or category (C). Both 

factors were binary (0/1) to make the effect size comparable. We quantified the effect size of 

each regressor using the effect size metric ω2, which is better suited for our purposes than 

more traditional variance explained or p-value metrics23. This is because ω2 is not biased for 

small numbers of trials and tends towards zero if a factor has no explanatory power58. To 

estimate ω2 for the factor category regardless of tuning of a neuron, we fit 5 models to each 

neuron, each contrasting one category with the remaining four. We then averaged the 

resulting ω2. Spike counts S(t) were computed for a 500ms window that was moved in steps 

of 50ms. Here,  where SSi is the sum of squares of factor I, SStot the 

total sum of squares of the model and MSE the mean square error of the model. Models 

were fit and effect sizes calculated using the effect size toolbox functions mes1way and 

mes2way23. We averaged ω2(t) across all neurons (Fig. 6). The null distribution was 

estimated by randomly scrambling the labels and fitting the same model. This was repeated 

1000 times to estimate the 99% confidence interval of the null distribution. Estimates of 

latency were based on the first time the actual value was located outside of the 99% 

confidence interval. To estimate potential interactions, we also fit the model S(t) = α0(t) + 

α1(t)N + α2(t)C + α3(t)N * C and estimated ω2(t) for each main factor and the interaction 

(Fig. S3).

Population decoding

We pooled all recorded neurons into a pseudo-population. Firing rates were z-scored 

individually for each. We used a maximal correlation coefficient classifier (MCC) as 
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implemented in the ndt toolbox59. The MCC estimates a mean template  for each class i 

and assigns the class  for test trial x*. We used 10-fold cross-

validation, i.e. for each iteration 10 trials from each class where chosen randomly from each 

neuron. 1 trial from each class was used for testing and the remaining 9 for training. All 

possible train/test splits were tested and this process was repeated 50 times with different 

subsets of trials, resulting in a total of 500 runs. Spikes were counted in bins of 500ms size 

and advanced by a stepsize of 50ms. For each point of time, a different classifier was 

trained. We converted the resulting confusion matrix into mutual information MI I(S; R)60 to 

estimate the information that the overall population response R provides, in a single trial, 

about the stimulus S. We estimated the null distribution by repeating above procedure 200 

times after randomly scrambling the labels. To estimate the variability of MI across different 

neurons we repeated above procedure after selecting a group of 200 (all units) or 20 (MS 

neurons) with replacement from the overall group. We repeated this procedure 50 times, 

each time estimating the peak MI (Fig. 7e). To estimate whether the same subset of neurons 

is informative about high-and low confidence trials we trained decoders using all or only 

high confidence trials, and subsequently tested the decoders with only high or low trials. For 

decoding of error trials, which are relatively rare, we used larger bin sizes and smaller 

number of trials (Fig. 7f–h). Thus, we used 6-fold cross-validation (5 training trials, 1 

testing), a binsize of 1.5s with stepsize of 50ms and estimated the variability across neurons 

by randomly sub-selecting with replacement a group of 30 MS neurons. We again used the 

peak MI of each run and repeated this procedure 500 times (Fig. 7f). For estimating overall 

readout ability (Fig. 7g–h), we used a single 1.5s long time window starting 200ms after 

stimulus onset.

Waveform analysis

The trough-to-peak time d37 is the time between the trough and the point of time of maximal 

amplitude after the trough of the mean waveform. The mean waveform is the average of all 

spikes assigned to the cluster. For visualization, all waveforms were normalized to their 

maximal amplitude and were inverted if their maximum was positive. A spike waveform 

was considered short if d<0.6ms.

Spike-train variability

Variability was quantified for each neuron using two metrics: the modified coefficient of 

variation (CV2) and the burst index (BI). The BI is equal to the proportion of ISIs less than 

10ms long and the CV2 was used as defined in61. The CV2 is insensitive to underlying rate 

changes and is thus the appropriate metric to use in place of the normal CV62.

Decision making model

The input to the model is the spiking activity  of a NS and FS neuron i and j in trial k. 

The difference  is then integrated over time. Spikes are counted in bins 

of 250ms, advanced with a step-size of 100ms. Firing rates of neurons were z-scored using 

the mean and standard deviation of the baseline (1s before stimulus onset). The model has 

two state variables EVfam(t) and EVnov(t), which accumulate as following: 
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 and  where f(x) = max(0, x) is a rectification 

non-linearity (Fig. 8a). The decision is “familiar” if EVfam(t) > EVnov(t) and “novel” 

otherwise. Except for Fig. 8i–j, the decision was made 2.5s after stimulus onset. The balance 

of evidence is ΔE(t) = EVfam(t) − EVnov(t). We evaluated the model for all possible pairs 

(n=951) of NS/FS neurons that had at least 3 behaviorally correct trials in each category (TP 

high/low, FN high/low). For each, we evaluated every possible pair of trials within the same 

behavioral category. As a control, we randomly scrambled the high and low-confidence 

labels for each neuron while keeping the trial identity (new/old) labels intact. This abolished 

the difference in balance of evidence as expected (Fig. 8g). To correlate ΔE and EV with 

performance, we computed for every cell pair separately the Spearman correlation 

coefficient between confidence (high or low) with |ΔE| t=2.5s. We evaluated this trial-by-

trial correlation for all trials remembered correctly by the subject and the model (excluding 

errors made by the model) as well as all trials where the subject was incorrect (“errors”). To 

make this comparison unbiased, we used the same number of high and low confidence trials 

by subsampling the larger group randomly. To evaluate the decision latency of the model, 

we terminated the decision when |ΔE(t)| > ΔETh. The decision time was equal to the first 

point of time at which this condition was satisified. ΔETh was set to 50% of the |ΔE| value 

reached at 2.5s for every cell pair.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. The recognition memory task and behavioral results
(a) Task. (b) Performance as a function of proportion of trials correctly and incorrectly 

identified. Each point is one session (n=44), black is the mean performance ±s.d.. (c) 

Behavioral ROC curve for individual sessions (gray) and average (red). Each data point is a 

different confidence. (d) AUC values of all sessions. (e) z-transform of the average ROC 

shown in (c). The slope of the red line (least-square fit) is the metric used in the text. (f) 

Probability of responses, conditional on the ground truth (red or blue). At all levels of 

confidence, subjects were more likely to be correct than incorrect (straight and dashed lines, 

respectively). (g) Choice accuracy as a function of confidence, shown separately for new 

and old reponses. (h) Accuracy was significantly different between high and low confidence 

trials (p<1e-10, paired ttest). Each color is a different session, with average ±s.d. on the left/

right. (i) Decision time was significantly larger (slower) for low compared to high 

confidence trials (correct trials only; paired Wilcoxon signed rank test, p<1e-5 for both 

novel and familiar stimuli) and significantly larger for novel compared to familiar stimuli for 

both low and high confidences (p=0.01 and p<1e-4, respectively). (j) Decision time was 

significantly slower for low compared to high confidence incorrect trials (paired Wilcoxon 

singed rank test, p<1e-6). (k) Errors were made with less confidence than correct trials 

(p<1e-8, paired Wilcoxon signed rank test). (l) Correct familiar decisions were made faster 

than incorrect decisions (paired comparison matched for confidence, see methods). (i-k) 

Boxplots represent quantiles (25%, 75%), line is median and wiskers show range. Outliers 

are marked. *<=0.05, **<=0.01, ***<=0.001. P-values are uncorrected for multiple 

comparisons.
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Fig 2. Memory selective (MS) neurons
(a–d) Raster (top) and PSTH (bottom) of four example neurons. (a–b) and (c–d) are NS and 

FS neurons, respectively. Stimulus onset is at 1000ms (gray). Trials are re-sorted by 

behavior for display purposes: familiar high confidence (TP++), familiar low confidence 

(TP+), novel low confidence (TN+), novel high confidence (TN++). Error trials are not 

shown. In the PSTH, trials are grouped according to TP/TN. (e–h) Single-neuron ROC 

curves (left) and mean rate (right) for same neurons shown in (a–d). Bar plots show the 

mean rate in a 1.5s window starting 200ms after stimulus onset. Errorbars are ±s.e. across 

trials. (i–l) Waveforms of spikes associated with the four different trial types for each 

neuron, in same order as in (a–d). Top shows mean waveforms superimposed, bottom all 

individual waveforms associated with the spikes shown in (a–d). Color code is identical to 

(a–d).
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Fig 3. The response of MS neurons is modulated by subjective confidence
(a–e) Single-neuron ROC analysis. (a) AUC of MS neurons, for high (red) and low (blue) 

confidence, respectively (n=65 units; the two distributions were significantly different, 

p=0.001). (b) Pairwise comparison of AUC values. For 49/65 units, the AUC was high>low 

(p<1e-4, sign-test). The average difference was above the diagonal (inset). (c) Average AUC 

for high, low confidence correct and error trials (FN). FN vs low p=0.0056, high vs low 

p<1e-5 (pairwise t-test). (d,e) AUC for high confidence trials was significantly larger for 

both NS (n=29) and FS (n=36) neurons (p=0.0001 and p=0.0003, respectively). (f–i) 

Comparison of firing rate using baseline normalized responses and grouped by behavior. (f) 

Activity of FS neurons differentiated high from low confidence familiar trials (n=29, TP 

high vs. TP low, p=0.0094, ks-test) but not novel trials (n=30, TN high vs. TN low, p=0.74, 

ks-test). (g) Activity of NS neurons differentiated high from low confidence novel trials (TN 

high vs. TN low, p=0.03, ks-test) but not high from low familiar trials (TP high vs. TP low, 

p=0.22, ks-test). (h,i) Mean normalized response across neurons. (h) FS neurons had 

significantly higher firing rate for TP high compared to TP low trials (paired ttest, 

p=0.0014). (i) NS neurons had significantly higher firing rate for TN high compared to TN 

low trials (paired ttest, p=0.0002). *** indicates significant difference from baseline 

(p<1e-4). Abbreviations: true positive (TP) and negatives (TN) are correctly remembered 

familiar and novel stimuli. False positives (FP) and false negatives (FN) are wrongly 

identified novel and familiar stimuli. Errors are ±s.e. across neurons. **<=0.01, 

***<=0.001.
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Fig 4. Visually selective (VS) neurons
(a–h). For each, the raster (top) and PSTH (bottom) is shown. Trials are re-sorted for 

illustration purposes. Visual identity (category) is indicated by color, the legends shows the 

corresponding label (variable). The inset (bottom left of raster) shows waveforms associated 

with the neuron shown (red are 100 randomly chosen individual waveforms, black mean 

waveform, horizontal scalebar is 1ms, vertical as indicated). (a–b,d,f) and (c,e,g–h) are from 

the hippocampus and amygdala, respectively. All units are from different sessions. Some 

units respond with a firing increase only to one category (b–c,e–g) whereas others show a 

mixed response (a,d,h). Stimulus onset was at 1000ms (gray bar). Significance of selection 

criteria (1×5 ANOVA) was, for A–H, 7e-5, 1e-6, 0.004, 0.003, 5e-9, 0.0004, 3e-12, and 

4e-9. PSTH binsize is 250ms.
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Fig 5. The ability of VS neurons to differentiate visual stimuli is not influenced by confidence 
judgment or novelty of the stimulus
(a) AUC of VS neurons for low-and high confidence trials (p=0.31, bootstrap test). (b) AUC 

of VS neurons for novel and familiar trials (p=0.54, bootstrap test). (c) Pairwise comparison 

of AUC values as a function of confidence (p=0.53, pairwise sign-test). (d) Pairwise 

comparison of AUC values as a function of familiarity (p=0.41, pairwise sign-test). In (c–d), 

every data point is one VS neuron (n=128 in total). All pairwise comparisons showed no 

significant difference. Only correct trials are considered throughout.
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Fig 6. MS and VS neurons signal at different times and only MS neurons are sensitive to 
confidence
(a–b) Cumulative firing rate for MS and VS neurons. Pairwise comparison (a, bottom; 

cluster-corrected p-values) between the preferred and non-preferred stimulus reveals 

differences in timecourse. (b) Pairwise difference for both populations. (c–k) Effect size 

estimation for populations of neurons based on a regression model. ω2 is used to estimate 

effect size. (c) Time course of effect size, averaged across all neurons (N=664) and 

computed separately for the variable category (blue) and novel/familiar (yellow). Dashed 

horizontal lines indicate the 99% confidence intervals of the null distribution. Dashed 

vertical lines indicate first time point significantly above the 99% confidence interval. 

Stimulus onset is at 1000ms (gray line). (d) Average effect size (1.5s window starting 200ms 

after stim onset) of category and novel/familiar regressor for each neuron. (e) Product of ω2 

for regressors novel/familiar and category for MS, VS and other neurons. There was no 

significant correlation. (f) Same metrics as in (c), but for MS neurons only. MS neurons did 

not distinguish categories. (g) same as in (c), but for VS neurons only. VS neurons did not 

distinguish novel from familiar stimuli. Black horizontal line in (f–g) indicates proportion of 

significant units (from white to black) at every point of time, based on the 99% confidence 

interval. (h) MS neurons have significantly larger effect size for regressor Novel/Familiar 

compared to category (p=0). (i) Effect size of MS neurons is significantly modulated by 

confidence (p=0.0049). (j) Average effect size for VS neurons was significantly larger for 

category information (p=0.0049), and (k) was not sensitive to confidence (p=0.81, right). All 

p-values are paired t-tests. Binsize is 500ms, stepsize 50ms, error bars and shaded regions 

represent ±s.e. across neurons.
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Fig 7. Quantification of population-level information difference due to confidence
Decoding performance was quantified using decoding accuracy and mutual information 

(MI) between spiking activity and stimulus category and familiarity. (a) Accuracy as a 

function of time estimated separately for VS and MS neurons while decoding visual 

category and familiarity, respectively. (b–c) VS neurons (n=128) and MS (n=59) neurons 

only signal category and novel/familiar information, respectively. (c) Spiking of MS neurons 

contains more information about familiarity for high-confidence trials. (d) Spiking activity 

of all recorded neurons (n=606) together contains more information for high-confidence 

trials. (e) Statistical comparison of MI for high and low confidence trials. A subset of n=200 

(all) and n=20 (MS) units was chosen at random from the entire population (bootstrap, 50 

runs) and the peak MI was estimated for each run. More information was available for all 

neurons (left) as well as for MS neurons only (right), and regardless of whether the decoder 

was trained with all (left) or only high confidence (middle) trials (high vs. low and low vs. 

chance is p<0.001 for all). (f) Decoding of error trials, using a subset of n=30 MS neurons 

chosen at random from the population. Decoder was trained on all correct trials and 

separately evaluated on high and low confidence as well as forgotten (FN) and false positive 

(FP) trials. Performance for FN was above chance (p=0.003) but FP was not (p=0.98). FN 

performance was significantly lower than low confidence (p<1e-5). (g–h) Quantification of 

overall readout ability (1.5s window), regardless of time, for all neurons (g) and MS neurons 

only (h). (e–h) Errorbars are ±s.d. across bootstrap runs. Dashed lines in (a–d) show the 

mean ±99% confidence interval of the null distribution.
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Fig 8. Computational model to decide the familiarity and confidence of a stimulus
(a) Circuit diagram of a race model that integrates the difference of the output of an NS and 

FS neuron. (b) Model output for three familiar (TP) trials for an example pair of neurons. 

Decision is made correct for trial 1 and 2, incorrectly for trial 3. (c–d) Model output for all 

(FS,NS) neuron pairs (n=951) for novel (TN) trials for high (c) and low confidence (d), 

respectively. Note how the balance of evidence ΔE is larger for high confidence trials. 

Errorbars are 99% confidence intervals across pairs of neurons. Marked time points are the 

centers of each bin (binsize 250ms). (e) ΔE as a function of time for all four trial types. 

Here, ΔE=EVfam−EVnov, making ΔE negative for TN trials. (f) Average ΔE for the last 

time-point in (e), for all neuron pairs (n=951, errors are ±s.e.). ΔE was significantly larger 

for high relative to low confidence trials (pairwise t-test, p<1e-6). (g) Control, random 

reassignment of confidences abolishes the difference while keeping new/old performance 

intact (p=0.56 and 0.45, respectively). (h) Single-trial model performance for determining 

the familiarity of a stimulus. Performance was higher for high compared to low confidence 

trials (pairwise t-test, p<1e-5). (i) Latency to reach a decision, as a function of confidence. 

High-confidence trials had significantly shorter latency (p<1e-14 and p=0.00022 for TN and 

TP, respectively; paired t-test across all cell pairs). (j) Familiar (TP) trials were faster than 

Novel (TN) trials (p<1e-11, paired t-test). All errorbars represent ±s.e.m. across all neuron 

pairs.
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