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� Abstract
An important aspect of immune monitoring for vaccine development, clinical trials,
and research is the detection, measurement, and comparison of antigen-specific T-cells
from subject samples under different conditions. Antigen-specific T-cells compose a
very small fraction of total T-cells. Developments in cytometry technology over the
past five years have enabled the measurement of single-cells in a multivariate and high-
throughput manner. This growth in both dimensionality and quantity of data contin-
ues to pose a challenge for effective identification and visualization of rare cell subsets,
such as antigen-specific T-cells. Dimension reduction and feature extraction play piv-
otal role in both identifying and visualizing cell populations of interest in large, multi-
dimensional cytometry datasets. However, the automated identification and visualiza-
tion of rare, high-dimensional cell subsets remains challenging. Here we demonstrate
how a systematic and integrated approach combining targeted feature extraction with
dimension reduction can be used to identify and visualize biological differences in rare,
antigen-specific cell populations. By using OpenCyto to perform semi-automated gat-
ing and features extraction of flow cytometry data, followed by dimensionality reduc-
tion with t-SNE we are able to identify polyfunctional subpopulations of antigen-
specific T-cells and visualize treatment-specific differences between them. VC 2015 The
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provided the original work is properly cited and is not used for commercial purposes.
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INTRODUCTION

Recent advancements in cytometry technologies have enabled the high-dimensional

phenotypic and functional characterization of large numbers of single cells. Current

multiparameter flow cytometry experiments routinely measure 15 parameters on thou-

sands of cells per second; it is a routine biological assay used in basic and clinical research

laboratories worldwide. Thanks to recent technological development, such as mass

cytometry (CyTOF; 1), we can now measure up to about 50 parameters in a single run.

The resulting multidimensional and high throughput cytometry data have posed new

challenges for data analysis and visualization, especially in the field of immunology.

The cellular adaptive immune response depends in part on the generation of

Antigen-specific (Ag-specific) T-cells. T-cells undergo selective pressure during mat-

uration so that those that recognize their specific antigen on antigen-presenting cells

become activated, undergo clonal expansion, transition into the blood, and eventu-

ally become a long-lived memory population. These Ag-specific cells are critical for

antigen-recall. T-cells specific for a particular antigen represent a very small fraction
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of an individual’s T-cell repertoire. Clinicians and immunolo-

gists often rely on cytometry to distinguish and identify rare

Ag-specific T cells within heterogeneous cell samples such as

blood. Polyfunctional T cells (2)—subsets of Ag-specific T

cells that simultaneously produce multiple effector cytokines

and other functional markers in response to activation—are

believed to be of clinical relevance, and there is evidence link-

ing their frequency to clinical outcome (3). They have been

shown to be important in protective immunity and non-

progression of diseases (3). Consequently, identifying, detect-

ing and visualizing differences amongst polyfunctional T-cell

subsets is an important goal, as they are attractive potential

biomarkers for correlation with clinical outcomes.

Many computational tools have been developed for the

identification of cell populations in flow cytometry. These can

be broadly categorized into two groups: unsupervised

approaches targeted toward cell population “discovery” and

supervised or semisupervised approaches aimed at identifying

known cell populations (4). Both types of approaches use a

variety of statistical techniques, from model-based clustering

(5–11), to nonparametric approaches for gating, clustering,

and visualization (12–15).

It is generally accepted in the computational flow

community that no one gating algorithm or approach will

solve all specific computational problems (4,16), and inte-

gration of these disparate tools into a coherent computa-

tional pipeline has generally been challenging, particularly

for large data sets. Frameworks like GenePattern (17) and

OpenCyto (18) have been developed to try and bridge the

gap amongst these different techniques. OpenCyto in par-

ticular provides great flexibility for pipeline construction

by simplifying data management and data representation

while allowing for multiple approaches and algorithms to

be used to identify different cell populations within a sin-

gle analysis pipeline.

Visualization and comparison of rare cell populations

across samples or treatment groups remains a challenge. The

relative high dimensionality of the data together with its size

poses a significant visualization problem. Traditional bivariate

plots scale poorly as the numbers of markers increases, and

are a poor representation of polyfunctional populations, while

representation of polyfunctional profiles via pie charts can be

misleading, and depending on the cell population used to nor-

malize the data, significant differences can be obscured (19).

Some effective statistical tools for quantitatively analyzing

these antigen-specific T-cell responses to antigen stimulation

following vaccinations have been developed. For example,

MIMOSA (Mixture Models for Single-cell Assays) (20) is a

Bayesian model that can identify Ag-specific changes in the

proportion individual cell subsets compared to background. A

multivariate extension of the model, COMPASS (COMbinato-

rial Polyfunctionality analysis of Antigen-Specific T-cell Sub-

sets; 21) was developed to identify Ag-specific changes across

all observed T-cell subsets simultaneously. Both of these meth-

ods present and summarize the T-cell response profiles

through heatmaps and summary scores, but only on the sub-

ject and cell subset level.

Few tools have been developed for visualization of com-

plex polyfunctional T-cell responses (19). The rarity of Ag-

specific subsets, (i.e., <0.1% of total T cells), renders typical

dimension reduction and visualization tools ineffective

(14,15). As the number of measured parameters increases, the

data will contain irrelevant features that mask the signals from

rare cell subsets (such as polyfunctional Ag-specific T-cells).

Here, we are especially interested in identifying differences in

the Ag-specific T-cells that are correlated with a clinical out-

come for a specific pathogen (e.g., HIV), as this would be a

very useful first step to explore the data before conducting

more sophisticated analysis in identifying relevant cell subsets

for the study objective. Dimension reduction techniques such

as principal component analysis (PCA) and multidimensional

scaling (MDS) have proven to be useful for projecting and vis-

ualizing high-dimensional cytometry data in lower dimen-

sional subspaces. For example, Newell et al. (22) used PCA to

visualize Ag-specific CD81 T-cells measured by CyTOF. How-

ever, in this case, PCA was done on the entire T-cell popula-

tion, and only a few main phenotypic clusters were

highlighted on the global PCA plot. In addition, the differen-

ces in Ag-specific T cells across three viruses CMV, Flu, and

EBV were only shown on a few selected donors, not the entire

data set. Nonlinear dimensionality reduction methods such as

t-SNE (15) have also been applied in the context of flow and

mass cytometry (23,24). In particular, Amir et al. (23) have

shown that t-SNE was more robust than PCA for summariz-

ing and visualizing high-dimensional cytometry data. How-

ever, while these dimension reduction tools have been applied

to many different studies (25–27), none of these have been

used or shown to work for visualization of very rare Ag-

specific T cells across samples. Even with the help of dimen-

sion reduction techniques, informative visualization of rare

cell subsets in large data sets is challenging. Visualizing many

data points generates a “cluttered” display, and density esti-

mation fails to accurately represent rare populations. The bulk

of events can easily mask the presence of any signals from rare

cell subsets. Hence, instead of directly applying dimension

reduction techniques like previous existing approaches, we

propose to first reduce the data size by gating the cell subsets

of interest to extract relevant information.

In this article, we present a general automated (or semi-

automated) analysis strategy for gating and visualization of

rare cell subsets in cytometry data, which can be done using a

consistent framework within the R environment. Using intra-

cellular cytokine staining (ICS) assays from vaccine and

immunological studies, we show how the OpenCyto frame-

work can be used for gating and data size reduction, and inte-

grated with dimension reduction techniques like t-SNE in

order to rapidly identify and visualize differences in rare sub-

sets of polyfunctional antigen-specific T-cells.

MATERIALS AND METHODS

TB Data Set

We obtained cryopreserved PBMC from an epidemio-

logic study of South African adolescents who were screened
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for the presence of latent tuberculosis infection (LTBI) using

tuberculin skin testing and QuantiFERON-TB GOLD testing

of whole blood (28). This dataset includes 40 subjects, 22

mycobacterium tuberculosis (MTB)-infected and 18 MTB-

uninfected. Subjects were classified as MTB-infected using

both TB skin testing and the Quantiferon test in-tube gold

(QFT-gold) that measures IFNc release in whole-blood after

stimulation with ESAT-6, CFP-10, and TB7.7 peptides (29).

PBMCs were plated at a density of 2E5 per well and stimu-

lated for six hours with either DMSO or peptide pools con-

sisting of 15 mers overlapping by 12 peptides for the following

mycobacterial proteins: ESAT-6, CFP-10, TB10.4, Ag85A, and

Ag85B at a final concentration of 1 mcg/ml. All five protein-

stimulations have corresponding negative controls (i.e., the

nonstimulated samples) that are used for setting cytokine

gates as described below. Cells were stained using a published

panel in which we replaced MIP-1b and CD107a with IL-17a

Alexa 700 and IL-22 PE Cy7 (30,31). Analysis of CD31CD41

events was performed in FlowJo (TreeStar, Ashland, OR) after

first gating on single cell events, CD14- events, live cells, and

lymphocytes. Six functions were measured at the single-cell

level in CD41 T cells: TNFa, IFNc, IL2, CD154, IL17A, and

IL22 leading to 64 theoretical cell subsets. OpenCyto was used

for automated gating of T-cell subsets based on cytokine pro-

duction, while gates for major phenotypic subsets were

imported from FlowJo. It should be noted, that while we

could have regated these major cell subsets using OpenCyto,

we feel that this approach clearly highlights the strength of

our procedure where manual and automated gating, along

with statistical modeling (PCA/t-SNE) can all be done using a

consistent framework within the R environment.

HVTN 078 Data Set

HVTN 078 (32) is a randomized, double blind phase 1b

clinical trial (ClinicalTrials.gov registration number

NCT00961883) to evaluate the safety and immunogenicity of

heterologous prime/boost vaccine regimens (NYVAC-B/rAd5

vs. rAd5/NYVAC-B) in healthy, HIV-1 uninfected, Ad5 sero-

negative adult participants. Eighty participants were enrolled

into one of four groups receiving different combinations of

NYVAC-B (New York Vaccinia [NYVAC] vector containing

HIV-1BX08 gp120 and HIV-1IIIB gag-pol-nef at a dose of

1x107 PFU) and rAd5 (HIV-1 recombinant adenoviral sero-

type 5 [rAd5] vector vaccine VRC-HIVADV014-00-VP ([HIV-

1HXB2/NL4-3 Gag-Pol fusion; HIV-192RW020, HIV-1HXB2/

Bal and HIV-197ZA012 Env]), at three increasing doses [1 3

108, 1 3 109, 1 3 1010 PFU]). We refer to the four different

groups as T1, T2, T3 and T4. In the T1 group, NYVAC was

the prime with rAd5 as the boost, while subjects in T2-T4

received rAd5 as the prime and NYVAC as the boost with the

three increasing doses of the prime. All four treatment groups

have corresponding nonstimulated samples that are used for

setting cytokine gates as described below. Here, we used a sub-

set of the ICS data generated through the trial measuring five

functions: IFNc, IL2, IL4, TNFa, and CD154 in CD41 T cells

in the presence and absence of stimulation with ENV, GAG,

and POL stimulations from T1 and T2 groups, as (21,32)

showed the difference is the most significant between these

two groups.

OpenCyto

OpenCyto is a software package for the R program-

ming language that allows for reproducible automated gat-

ing of flow cytometry data using a series of user-defined,

data-driven gating methods. A common set of cell popula-

tions is defined across all samples in a data set, eliminating

the need for cell population matching and making the

results directly comparable. The position of the gates defin-

ing each cell population in each sample is data-driven,

reducing operator bias. In this study, we used OpenCyto to

import manually gated FCM data and extract the

CD31CD41 lymphocyte populations. In order to have a

consistent and constant background, OpenCyto automated

gating was performed for the functional markers of the

CD31CD41 lymphocytes. The gates for the functional

markers were based on the 99th percentile of the fluores-

cence intensity of each functional marker from the

CD31CD41 populations in the negative control samples.

t-SNE

t-SNE (15) is a nonlinear dimension reduction method

that projects data into a lower dimensional space. t-SNE aims

to find a mapping in low dimensional space that preserves dis-

tances between pairs of points in high dimensional space. The

t-SNE algorithm represents the distance between any two

points by the probability of these two points being neighbors,

and then selects the low-dimensional space that is closet to

the pairwise probabilities in the original space in terms of the

Kullback-Leibler divergence. We applied t-SNE to compute

the two-dimensional embedding of antigen-specific T-cells in

the two data sets presented here using the R package Rtsne.

The authors of t-SNE (15) showed that the performance of t-

SNE is fairly robust to changes in the input parameters (per-

plexity which is a smooth measure of the number of effective

nearest neighbors and theta which controls the speed/accuracy

Figure 1. Pipeline for visualizing t-SNE projected T-cell subsets.

Using OpenCyto FCS files are first gated to extract major T-cell

populations (e.g., CD4 1) and their different cytokine producing

subsets. The samples within each group are concatenated and

subsampled such that each concatenated sample contains the

same number of T-cell events. t-SNE is then used to project and

visualize individual cell events from these concatenated samples

into a two dimensional space.
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tradeoff). In our analysis, we set perplexity to 30 and theta

equals to 0.9, but found that the results were robust to differ-

ent values of these parameters.

Visualizing Ag-Specific T Cells Across Samples

Because we are interested in changes in the density of cell

populations across different conditions or cohorts (e.g., TB1

and TB2), we needed to adjust for differences in the number

of events in each condition. To eliminate such sample size bias

before performing dimensionality reduction and visualization,

events were subsampled as next described. For each of the two

data sets (HVTN 078 and TB), the events from all the FCS

files within each treatment group (stimulation group) were

concatenated first, and subsampled such that the resulting

data file had an equal number of T-cell events in each treat-

ment group. As such, the treatment group with the smallest

number of T-cell events will retain its entire sample. The

robustness of this subsampling procedure for identifying Ag-

specific T-cells is demonstrated below in the section: Robust-

ness analysis.

To highlight the effect of our proposed strategy in exclud-

ing non-informative data before identifying rare Ag-specific T

cells, we also ran t-SNE simply on the total T cells. However,

due to run-time and memory limitations, we had to run t-

Figure 2. Application of t-SNE to the TB data set. A: t-SNE plots for the Ag-specific T cells on the two selected peptide stimulations

(Ag85B: MTB nonspecific, and ESAT-6: MTB specific) with subjects stratified according to their MTB infection status. Colors of the points

indicate the number of cytokines expressed by each single cell (degree of functionality). B: Similar to (A), but the colors indicate the fluo-

rescent intensities of cytokine IFNc at the single-cell level. C: Similar to (A), but t-SNE was applied to total CD41 T-cells. D: Similar to (B),

but t-SNE was applied to total CD41 T-cells.
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SNE on a randomly selected sample from each treatment

group for both data sets.

RESULT

Flow Data Analysis and Visualization Pipeline

We gated the FCS data using OpenCyto as described in

the Methods before applying t-SNE in order to remove events

and exclude dimensions (noncytokine markers) that are non

informative for the identification of polyfunctional T-cells.

OpenCyto identified 2,597,443 CD41 T cells in the HVTN

data set, of which 22,881 express at least one functional

marker, and 5,614 are polyfunctional (>2 markers). From the

tuberculosis study, 3,395,456 CD41 T cells were identified, of

which 18,324 express at least one functional marker, and 4,921

are polyfunctional. Dotplots showing gated FCS files from

each data set are shown in Supporting Information Figures S1

and S2. An overview of our data analysis pipeline is shown in

Figure 1.

Distinct Ag-Specific T-Cell Signatures for MTB

Infection

Applying t-SNE mapping to the gated TB CD41 T cells,

we obtained 2D scatter plots in which each data point repre-

sents an individual cell in the original data and the data points

are colored according to selected cell features (e.g., degree of

functionality or marker expression). Figure 2 shows two-

dimensional scatter plots of cells stratified by two selected

peptide stimulations (Ag85B and ESAT-6) and MTB infection

status. The ESAT-6 peptide stimulation can be classified as

“MTB-specific” because these proteins are known to be absent

in Bacillus Calmette-Gu�erin (BCG) and many environmental

mycobacteria. By extension, Ag85B can be defined as “MTB-

nonspecific” because these proteins are present in MTB as

well as BCG and many environmental mycobacteria.

Figures 2A and 2B show clusters of polyfunctional T-cells

with IFNc expression in both stimulations (colored in red

which are of higher intensity in IFNc). However, in the MTB-

specific stimulation, the cluster has higher density and con-

tains more polyfunctional T-cells, indicating that MTB-

specific stimulation induced a greater polyfunctional T-cell

response than MTB-non-specific stimulation. TB-infected

subjects also tend to a have much higher density of polyfunc-

tional cells (Fig. 2A). These cells are predominantly polyfunc-

tional cell subsets with degree of functionality [mt]2, and they

all expressed IFNc marginally (Fig. 2B), in line with the QFT-

gold test. Supporting Information Figures S3–S8 show these

clusters of cells for MTB-specific and non-specific groups col-

ored by the expression of each cytokine across all peptide

stimulations. Figures 2C and 2D show the disadvantage in

simply applying dimension reduction to all CD41 T-cells in

the manner that has been previously described (22). Nonspe-

cific T-cells easily mask the useful information presented in

Figures 2A and 2B. It should be noted that it is possible to

group cells in the t-SNE projected 2-dimensional space and

map the selected cells into their original space. Supporting

Information Figure S9 shows the cytokine expressions for the

group of cells colored in red (with IFNc expression [mt]1500

and horizontal axis <25, vertical axis [mt]5, which are of

higher intensity in IFNc in Figure 2B for MTB infected and

ESAT-6 stimulated group. The mapping to the original cyto-

kine space reveals heterogeneities among the selected group of

cells: IL2 expression varies the most among these cells.

We also show the t-SNE mapping color-coded by poly-

functional and marginal cytokine expression in Figure 3. For

more effective visualization, we only show a subset of poly-

functional cell populations (those with [mt]100 cells, Figure

3A, and differences between peptide stimulations are clearly

visible. For cells of degree 1 (cells expressing a single cytokine,

Figure 3B, there is no obvious difference across MTB infection

status and peptide stimulations. This highlights the impor-

tance of joint analysis of marker expression, that is, the study

of multifunctional cell subsets is necessary to detect biological

changes. Supporting Information Figures S10–S12 show t-

SNE plots for degree of functionality, polyfunctional and

Figure 3. Application of t-SNE to the Ag-specific T cells for TB data set. Left panel: colors indicate different polyfunctional cell subsets

(degree> 1). Condition-specific differences are visible. Right panel: colors indicate degree 1 (single-marker) expression of different cyto-

kines in single cells. No condition-specific differences are visible.
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marginal cytokine expression for all five stimulations, respec-

tively. Differences between MTB specific and nonspecific pep-

tides are evident when visualizing both degree of functionality

and polyfunctional cytokine expression, but not for cells of

degree-1.

t-SNE Reveals Differences in Ag-Specific T-Cells

Induced by Different Vaccine Regimens

t-SNE was also applied to the HVTN078 data set on

CD41 T cells. Figure 4 revealed differences among cells

between the two treatment groups (T1: NYVAC prime 1 rAd5

boost, T2: rAd5(1 3 108) prime 1 NYVAX boost). In order to

compare difference in vaccine regimens and stimulation, we

fixed the total T-cell counts to be the same for the six different

conditions (two treatment groups each with three stimulation

conditions). Figures 4 and 5 show the results for the ENV

stimulation group, where it can be seen that there is a clear

difference between treatment groups induced by cell-subsets

with higher degree (� 3) cytokine expression, especially the

four-degree subset simultaneously expressing CD154, IFNc,

TNFa, and IL4, and the five-degree subset simultaneously

expressing all the markers. Supporting Information Figures

S13–S20 also show that this observation is consistent across

stimulation conditions. However, Env stimulation activated

more Ag-specific T cells than the other two stimulations. No

differences were evident between treatments for lower degree

functional cell subsets (e.g., degree functionality less than or

equal to 3, Fig. 5). This suggested that priming with rAd5 fol-

lowed by NYVAC boost (T2) induced an increased percentage

of Ag-specific T cells producing CD154 or IFNc or TNFa or

IL4, while targeting on specific polyfunctional cell subsets.

This finding revealed by t-SNE is consistent with COMPASS

analysis in (21) where the authors identified vaccine-induced

differences in polyfunctional subsets supporting the validity of

t-SNE as a visualization tool for Ag-specific T cells.

Robustness Analysis

We also conducted robustness analysis to assess the effect

of sampling variation on visualization results. Supporting

Information Figures S21 and S22 show the three t-SNE plots

on three different randomly sampled subsets of TB and

HVTN 078 data, respectively. Each plot can clearly show the

difference between TB specific and TB non-specific stimula-

tion, as well as T1 and T2 treatment groups. While the geome-

try of the points is different (due to invariant rotation in

Figure 5. Application of t-SNE to the Ag-specific T cells for HVTN078 data set. Left panel: colors indicate cell subsets of differing cytokine

polyfunctionality (degree> 1). Condition-specific differences are visible. Right panel: colors indicate degree 1 (single-marker) expression

of different cytokines in single cells. No condition-specific differences are visible.

Figure 4. Application of t-SNE to the HVTN078 data set. A: t-SNE

plots for Ag-specific T cells (upper half of panel) and total CD41 T

cells (lower half of panel) for ENV stimulated samples from two

different vaccine treatment groups (T1 and T2). Colors of the

points indicate the number of cytokines expressed by each single

cell (degree of functionality). B: Similar to (a), but the colors indi-

cate the fluorescent intensities of cytokine IL2 at the single-cell

level.
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t-SNE), the qualitative aspects (i.e., differences between treat-

ment groups) agree with Figures 2 and 3. Stated more simply,

sampling variation will alter the global shape of the point

cloud, but it is not the absolute position of cell clusters that is

important, but rather their relative position compared to each

other within a run and between treatment groups that is the

salient feature of this approach. This indicates that the results

are robust to the subsampling scheme.

PCA Analysis

To compare t-SNE with PCA, we have also performed

PCA analysis instead of t-SNE on the two data sets described

above. Supporting Information Figures S23 and S24 show the

PCA projections for the TB and HVTN078 data sets, which

correspond to Figure 2 and 4, respectively. It can be seen that

first PCA is more sensitive to outliers. Second, while PCA can

show some differences between subjects group, t-SNE leads to

better visualization of differences in polyfunctional cell subsets

between subject groups. This supports our choice of using t-

SNE for visualization of Ag-specific cells instead of PCA.

DISCUSSION

We demonstrate a new, exploratory approach to identify

and visualize changes in very rare, multifunctional, Ag-

specific T cells across biological conditions in flow assay data.

This framework can be a useful component of an exploratory

data analysis pipeline meant to visualize differences before

applying more complex and formal statistical modeling or sta-

tistical testing frameworks such as MIMOSA or COMPASS

(20,21). While tools like COMPASS can quantify changes in

antigen-specific polyfunctional cell subsets, they can be time-

consuming to run and require large sample sizes (i.e., many

subjects). Furthermore, results are summarized at the cell-

subset level or per-subject. In contrast, visualization of specific

cell-level differences between treatment groups using the pipe-

line presented here can provide a rapid, qualitative, but

informative “at-a-glance” summary of an experiment. Gating

the FCM data to include only the relevant cell populations is

critical, as we show, since including irrelevant events leads to

crowding and over plotting of points, as well as technical limi-

tations on the number of events that can be processed by the

t-SNE algorithm within a reasonable amount of time and

memory. We have also showed that extracting Ag-specific T

cells helps t-SNE for visualizing rare cell subsets. OpenCyto

provides a convenient and unified platform for gating relevant

events, and performing subsequent dimension reduction and

visualization. Controlling for constant background in non-

stimulated samples is critical for the subsequent visualization

to be interpretable. OpenCyto makes this gating very simple.

Dimension reduction with t-SNE provides a complementary

visualization tool to current analytic methods (20,21). The

two examples shown here highlight t-SNE’s ability to effec-

tively reveal the heterogeneity in antigen-specific T-cell subsets

at the single-cell level. Our approach provides a global view of

rare cell populations, with colors highlighting the heterogene-

ity of these populations across treatments. This visualization

provides a more comprehensive understanding of the data.
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