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While the use of targeted therapies, particularly radiosurgery, has broadened therapeutic options for CNS metastases, patients
respond minimally and prognosis remains poor. The inability of many systemic chemotherapeutic agents to penetrate the blood-
brain barrier (BBB) has limited their use and allowed brain metastases to become a burgeoning clinical challenge. Adequate pre-
clinical models that appropriately mimic the metastatic process, the BBB, and blood-tumor barriers (BTB) are needed to better
evaluate therapies that have the ability to enhance delivery through or penetrate into these barriers and to understand the mech-
anisms of resistance to therapy. The heterogeneity among and within different solid tumors and subtypes of solid tumors further
adds to the difficulties in determining the most appropriate treatment approaches and methods of laboratory and clinical studies.
This review article discusses therapies focused on prevention and treatment of CNS metastases, particularly regarding the BBB,
and the challenges and opportunities these therapies present.
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Brain metastases are the most common intracranial tumor in
adults and are 10 times more common than primary malig-
nant CNS tumors, with at least 170 000 new cases reported
in the United States each year.1 Up to 10% of all patients
with advanced cancer (particularly lung and breast) will
develop CNS involvement, with HER2-positive breast cancer pa-
tients having as high as a 30% incidence of brain metastases.2

Importantly, the incidence of CNS metastasis is increasing.2,4

While this is due in part to increased diagnoses from improved
imaging techniques and the widespread availability of MRI, it
also likely reflects improved overall survival (OS) in patients
with better control of peripheral disease.1 Unfortunately, limit-
ed treatment strategies exist for management of sanctuary

disease in the brain.2 – 5 Chemotherapy, radiation therapy, and
surgery can result in small improvements in survival for a sub-
set of patients, but many patients with CNS involvement die
from neurological progression despite controlled systemic dis-
ease.6 The increased rate of diagnosis and lack of effective ther-
apies are of significant concern.

The neurovascular unit (NVU), which consists of blood-brain
barrier (BBB) endothelial cells and surrounding pericytes, astro-
cytes, and neurons as well as basement membrane and extra-
cellular matrix, is heterogeneous in brain metastases. Tumor
neovasculature has disorganized structure, basement mem-
brane abnormalities, and dysfunctional tight junctions.7,8 Con-
versely, infiltrating metastatic cells can make use of the existing
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brain vasculature with a largely intact BBB.7 Inflammatory re-
actions to infiltrating tumor cells can also alter the permeability
and function of the NVU.9 Heterogeneous NVU function and in-
flammation within the tumor mass at the proliferating edge of
the tumor and peritumoral brain around tumor result in incon-
sistent delivery of imaging and therapeutic agents.10 This re-
view discusses novel approaches for imaging, treatment, and
prevention of CNS metastases.

Imaging of Brain Metastases

Magnetic Resonance Imaging

Contrast-enhanced MRI is the current gold standard for diag-
nosing CNS metastases (Fig. 1). However, 2 main challenges
exist with regard to imaging CNS metastases. First is the differ-
entiation between primary malignancies and solitary metasta-
ses. High-resolution gadolinium (Gd)-enhanced T1 and T2
fluid-attenuated inversion recovery imaging is highly sensitive,
but only modestly specific, and is therefore not ideal for differ-
entiation. The second challenge is determining tumor response
to therapy and then differentiating response from recurrence or
treatment-related changes. Radiological guidelines such as
RECIST and Macdonald criteria for response assessment in
solid tumors are inadequate for the CNS due to the unique
anatomy of brain vasculature, including the BBB and the micro-
environment of the NVU, as well as the inherent heterogeneity
of brain metastases.10 Currently the updated Response Assess-
ment in Neuro-Oncology (RANO) criteria are used for evaluation
of brain metastases11 but remain controversial, particularly for
assessing neuroinflammatory processes and the impact of vas-
cular targeting agents. Various advanced MRI techniques have
been tested to overcome these challenges. A case example de-
scribing these issues is shown in Fig. 1. This case is not atypical
and illustrates a number of inherent challenges in the treat-
ment of patients with brain metastases including drug delivery,
effective imaging, and distinguishing response from progres-
sion or radiation-induced necrosis.

Neuroimaging techniques to assess peritumoral edema may
be useful for differentiating metastases from gliomas and for
assessing the impact of the infiltrative phenotype. While brain
metastases show microscopic infiltration in the brain around
tumor,12 the peritumoral areas comprise predominantly vaso-
genic edema.13 In contrast, gliomas show malignant cell infil-
tration throughout the peritumoral edematous region. This
difference can be detected with proton magnetic resonance
spectroscopy to assess tissue metabolites using single voxel
or multivoxel chemical shift-imaging techniques.13 Minimal
peritumoral edema in brain metastases may actually be asso-
ciated with elevated levels of brain infiltration and decreased
survival.14 Diffusion-weighted MRI to assess water molecule
mobility can demonstrate changes in the apparent diffusion
coefficient at the infiltrating edge of brain metastases and peri-
tumoral region that can provide a biomarker to assess response
to radiation therapy15 and predict patient outcomes.16

Dynamic susceptibility contrast-enhanced (DSC) perfusion-
weighted imaging, when used to estimate relative cerebral
blood volume (rCBV) in tumor and surrounding brain, has
shown value for distinguishing primary from metastatic cere-
bral malignancies and assessing response to therapy. DSC

adds little to no extra cost to a Gd-enhanced MRI scan while
adding significant prognostic value.17 A number of studies
have reported higher rCBV values in the enhancing component
of high-grade gliomas than in metastasis, although there is
high variability with some investigators showing no difference
in rCBV in the tumor mass.18 In contrast, examination of the
peritumoral edema region shows an even higher rCBV differ-
ence between gliomas and metastasis (1.31 vs 0.39, respec-
tively [P = .001]) that may be diagnostic.18 These differences
likely reflect the infiltrating angiogenic tumor cells in the peritu-
moral region of gliomas versus pure vasogenic edema in
metastatic disease.

Relative cerebral blood volume analysis is also being used to
differentiate progression from radiation injury or inflammatory
responses to therapy (pseudoprogression). This is an important
diagnostic dilemma that impacts prognosis and the decision to
change therapies. Using a lesion rCBV threshold of 1.5–2.5 cor-
related with survival in the differentiation of tumor progression
from chemoradiation injury.17,19,20 Further improvements in
rCBV analysis may be obtained using preload or leakage correc-
tion algorithms with Gd-based contrast agents or ferumoxytol
iron oxide nanoparticles that have no early leakage.17 – 19,21

Varallyay et al recently described the use of ferumoxytol
MRI17,19 to obtain a high-resolution, steady-state-CBV image
that differentiates regions of high vascularity and active
tumor growth (Fig. 1B). Routine imaging following ferumoxytol
administration can be limited by residual T1 and possibly T2 en-
hancement in the first week following administration and may
persist for 4 weeks or longer in rare instances. The signal alter-
ations are similar to common residual blood products in the
subacute and chronic postsurgical patient. With pre-Gd T1
studies and foreknowledge of prior ferumoxytol administration,
there is minimal issue with misdiagnosis in the follow-up
imaging.22,23

Positron Emission Tomography

Positron emission tomography (PET) to detect localized con-
centrations of tracers containing radionuclides such as 18F,
11C, or 13N can be used to diagnose and monitor CNS metas-
tases. Standard PET imaging with the prototypical fluorodeox-
yglucose (FDG) tracer is limited by high background glucose
uptake in the brain, loss of PET avidity in previously irradiated
areas in the brain over time, and high metabolic activity that
is indistinguishable from active metastases in recently treated
areas.24 A number of strategies are being investigated to over-
come these limitations. The use of dual time point FDG-PET
imaging is particularly useful for distinguishing malignancy
from more benign causes of enhancement. Using dual-phase
FDG-PET, the standardized uptake values of metastases,
when compared with gray matter ratios as a function of
time, was found to be .95% accurate for distinguishing be-
tween the lesion versus radiation necrosis (n¼ 25 patients).24

Integrated PET-MRI has been used in glioma but has not yet
been reported in brain metastases.25

Amino acid PET tracers may better differentiate normal
brain from tumors because these regions show low and high
amino acid uptake, respectively. Sensitivity and specificity up-
wards of 90% have been described with this method.26,27 PET
may also be able to distinguish between treatment-related
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changes and disease recurrence. Using O-(2-18F-fluoroethyl)-
L-tyrosine (18F-FET) tumor-to-brain ratios, in combination
with time uptake curves, correctly identified tumor versus

necrosis (n¼ 21) versus metastatic tumor growth (n¼ 19) in
93% of cases.28 Similarly, 18-F-DOPA, with low physiological
uptake but high tumor-to-normal-brain uptake, may have

Fig. 1. Relative cerebral blood volume (rCBV) to evaluate response in a brain metastasis. A 38-year-old woman with HER2-overexpressing,
node-positive breast cancer was found to have an asymptomatic left frontal brain metastasis during screening MRI. The patient received
multiple treatments including stereotactic radiosurgery, systemic therapy with lapatinib and docetaxel, whole brain radiation therapy, and i.v.
trastuzumab and lapatinib, followed by recurrence each time. (A) Conventional T1-weighted MRI with gadolinium-based contrast (T1+Gd)
showed a large mass. (B) Subsequent steady-state MRI with ferumoxytol showed increased rCBV along the superior and posterior margins of
the thalamic lesion, indicative of active tumor (arrow). The patient was then started on trastuzumab-emtansine (T-DM1) an antibody drug
conjugate. Three weeks later, there was a partial response with 50% decrease of the enhancing area on MRI and a marked decrease in CBV on
steady-state MRI.

Puhalla et al.: Review of CNS Metastases

Neuro-Oncology 641



greater accuracy than 18F-FDG for identifying recurrence versus
radiation necrosis.29 Specific PET tracers may be used to detect
membrane changes consistent with apoptosis as an indication
of therapeutic response.30

PET-radiolabeled pharmaceuticals may potentially be used
for both imaging and treat brain metastases. For example, im-
aging (89Zr)-trastuzumab in the brain metastases of patients
with HER2-positive breast cancers showed specific tumor local-
ization. Uptake by brain metastases are 18-fold higher than in
normal brain.31

There are many challenges inherent to imaging brain metas-
tases, but there are also many opportunities for improvement
as well. New techniques can be helpful for distinguishing the
etiology of CNS lesions and assessing the response to therapy,
but there have been difficulties implementing these techniques
in national clinical trials. Collaboration between institutions
involved in brain metastases imaging trials will be the key to
moving these imaging strategies forward.

Radiation Therapy for Brain Metastases

Whole brain radiotherapy (WBRT) is a successful strategy for
both primary prevention (eg, prophylactic cranial irradiation
for small cell lung cancer [SCLC])32 and secondary prevention
(eg, after surgical resection or stereotactic radiosurgery (SRS)
for limited metastases) of CNS metastases.3,33

Over the past decade, management of CNS metastases has
shifted from universal use of WBRT to techniques that allow
targeting individual lesions, such as MRI SRS techniques,
which allow application of high doses of radiation with appro-
priate safety to surrounding brain. Use of SRS without WBRT
was a controversial concept because it was believed that
there would be multiple, diffuse areas of spread once tumor
cells had breached the BBB, even if it had not been detected.
Randomized trials have confirmed that survival is similar for pa-
tients with 1–4 lesions (treated with SRS with or without addi-
tional WBRT3), and a recent meta-analysis has indicated that
addition of WBRT is more effective for controlling metastatic re-
currence than SRS alone (but there was no survival benefit).33

In contrast, patients receiving WBRT showed decreased quality
of life and cognitive function.33

SRS can provide significant tumor control, but patients can
still progress despite this treatment. Laser interstitial thermal
therapy (LITT), using image-guided, localized hyperthermia to
kill tumor cells, may provide a novel treatment strategy for pri-
mary and metastatic CNS disease. There appear to be advan-
tages for LITT over SRS in glioma patients, including potential
for better treatment planning and efficacy.34 Pilot studies sug-
gest the feasibility of LITT in the control of brain metastases.35

Future research may be directed at utilizing the effects of a
modest dose of radiation on the BBB to enhance the outcome
of therapy by improving drug delivery10,36,37 and potentially im-
proving an immune response in the CNS. This speculative use
could be investigated with technologies such as a computed
tomography-guided small animal irradiator, which can admin-
ister partial brain treatment such that drug penetration and
other markers can be assessed in both the irradiated and non-
irradiated areas of the same animal. Several preclinical and
clinical studies suggest that the nature of the postradiation im-
mune response may impact tumor control38,39 despite the

immune-privileged properties of the brain. More information
about the extent, dose-effect, and timing of BBB and immune
effects is needed to inform the design of a clinical study that
would test this approach.

Novel Chemotherapy and Targeted Therapy Approaches
for Brain Metastases

There is a compelling rationale for studying systemic therapies
that may sufficiently penetrate the BBB to elicit a clinical
response in the CNS that matches the response elsewhere in
the body. Although it is unlikely that current chemotherapeutic
or targeted agents will replace radiotherapy and surgery as the
primary means for obtaining durable control, use of such
agents may allow delay of radiation or may improve lesion re-
sponse magnitude or duration when used in conjunction with
SRS or WBRT. More importantly, an agent capable of inducing
response in gross lesions may have sufficient activity to sterilize
micrometastatic disease in some patients, thereby reducing
the incidence of brain metastasis when administered earlier
in the disease course or of additional lesions in patients receiv-
ing SRS.

Advances in diagnosis, chemotherapy, radiation, and surgery
have improved, and will continue to improve, the long-term sur-
vival for individuals with CNS metastases. Cognitive deficits are
common among individuals with CNS cancers, and perceived
cognitive dysfunction (“chemo brain”) can directly affect the
quality of life for cancer survivors. In addition to the neuropathol-
ogy itself, neurotoxicity can occur after WBRT.33 Whether used in
treatment and/or prophylaxis for CNS metastases, the long-term
cognitive and emotional consequences of radiotherapy have
likely been underestimated. Cognitive decrements can also
accompany some chemotherapeutic treatments,40 and both
cognitive and affective side effects have been noted with adju-
vant treatments (eg, steroids, antiepileptic drugs). These results
underscore the necessity of evaluating, monitoring, and
addressing cognitive impairment in this population.

Lung Cancer Central Nervous System Metastases

Lung cancer is the most common cancer to metastasize to the
brain.1 Pemetrexed is a folate antimetabolite that is commonly
used for the treatment of non-small cell lung cancer (NSCLC).
Despite some reports showing low cerebrospinal fluid (CSF)
concentration and limited efficacy,41 a number of studies
have suggested benefit from pemetrexed in combination with
other chemotherapies and radiation.42,43 In combination with
WBRT, which could increase permeability of the BBB, intracrani-
al response rates with pemetrexed and cisplatin combinations
were nearly 70%, with extended progression free survival (PFS)
and OS. Larger studies with pemetrexed, both in combination
with radiation and as a single agent, are warranted to further
explore this potential activity. Pemetrexed treatment is also
associated with nearly 50% lower odds of subsequent brain
metastases over non–pemetrexed-containing regimens in the
first line setting of NSCLC.44

There are promising data using tyrosine kinase inhibitors
(TKIs) of the epidermal growth factor receptor (EGFR), which
is constitutively active in 10%–15% of lung cancers due to a
mutation45,46 Erlotinib and gefitinib cross the BBB with
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sufficient CSF concentrations for potential efficacy.47 Retro-
spective studies in Asian nonsmokers, who have a higher inci-
dence of EGFR mutations, have demonstrated intracranial
response rates of 10%–70%.48 Patients with brain metastases
from NSCLC demonstrated an overall response rate of 86% with
erlotinib in combination with WBRT and a median survival of
11.8 months.49 Of interest, EGFR-mutations may be associated
with a higher incidence of brain metastases.50 A retrospective
analysis on the outcome of patients with known EGFR muta-
tions and brain metastases reported a lower risk of CNS pro-
gression in patients who had received either gefitinib or
erlotinib.51 In contrast, a phase 3 trial of unselected patients
did not show any benefit from adding erlotinib to radiation,
and there was a suggestion of a potential detriment on
outcome.52

Melanoma Central Nervous System Metastases

Malignant melanoma will frequently metastasize to the brain,
with overall incidence of 5%–8% and involvement in 40%–
50% of patients with advanced disease.1 Historically, the treat-
ment of melanoma brain metastases has been difficult
because these tumors are less radiosensitive, and systemic
therapy options for melanomas have been scarce until recent-
ly.53 Harnessing the patient’s own immune system to fight can-
cer is showing promise in the treatment of melanoma patients,
including those with CNS involvement.54 – 56

Immune modulation approaches include monoclonal
antibodies (mAbs) to the cytotoxic T-lymphocyte-associated
antigen 4 (CTLA-4) (eg, ipilimumab) and the programmed
death receptor (PD-1) (eg, nivolumab, pembrolizumab).57,58

These mAbs enhance the T cell immune response but have
differing response rates and toxicity. In a phase 2 trial of ipili-
mumab in metastatic melanoma, the CNS disease control
rate was 24% in neurologically asymptomatic patients with
7.0 month OS, similar to that seen in patients without brain
metastases.59 In contrast, disease control was 5%, and OS
was 3.7 months for patients whose CNS lesions induced neuro-
logical symptoms that required the use of steroids,. Another
phase 2 trial added fotemustine to ipilimumab for patients
with melanoma brain metastases and showed a 50% intracra-
nial control rate, a 40% objective CNS response rate, and
an OS of 13.4 months.55 The results of these studies are prom-
ising, and further trials with additional combinations are
anticipated.

Another recent breakthrough in the treatment of metastatic
melanoma is the use of TKIs targeting the BRAF pathway.
Approximately 50% of melanoma patients have activating mu-
tations in either Val600Glu or Val600Lys of the BRAF oncogene
that confer sensitivity to the BRAF inhibitors dabrafenib and
vemurafenib.60,61 In a large study of 172 patients, the intracra-
nial response rate was 39% in Val600Glu patients with no pre-
vious local treatment (OS . 8 months) and 31% in patients
with progression after local treatment.60 In contrast, those
patients with Val600Lys had much lower response rates
(6.7% in previously untreated and 22% in progressive tumors
[OS, 4 months]). Notably, 2 patients with a Val600Glu mutation
achieved an intracranial complete response.60 BRAF inhibitors
appear safe used in conjunction with radiotherapy in melano-
ma brain metastases.62

Breast Cancer Central Nervous System Metastases

There is disparity in outcome for CNS metastases depending on
the subtype of primary breast cancer.63 As such, recent clinical
trials researching breast cancer brain metastases have been
subtype specific, with particular focus on HER2-positive disease.
The TKI lapatinib has undergone extensive clinical evaluation in
breast cancer brain metastases. Typical phase 2 results are PFS
of approximately 5 months and CNS objective responses rang-
ing from 21%–31%.64 Lapatinib is often used in conjunction
with capecitabine chemotherapy.64 – 66 Both agents penetrate
the BBB, although delivery is variable, and response may be
partially dose limited.67 – 69 In patients who had progressive
brain metastases (despite prior radiation and trastuzumab-
based therapies, n¼ 242), lapatinib alone resulted in 21% of
patients having a CNS volumetric reduction response of
≥20%, while patients who received capecitabine plus lapatinib
had a CNS volumetric response of ≥ 40%.64 In previously un-
treated HER2-positive brain metastases receiving combination
capecitabine and lapatinib, 66% of patients achieved a CNS
partial response defined as . 50% volumetric reduction.65

Newer brain-penetrating TKIs (eg, neratinib and afatinib) are cur-
rently being evaluated in HER2-positive brain metastases.70,71

The anti-HER2 mAb trastuzumab has not shown effective-
ness against HER2-postive breast cancer brain metastases,
but trastuzumab emtansine (T-DM1), an antibody drug conju-
gate of trastuzumab linked to a microtubule-disrupting agent,
may be beneficial for a subset of patients. Case reports have
shown responses to T-DM1 in radiation-naı̈ve CNS lesions72

and in heavily pretreated patients (Fig. 1). In the recently re-
ported TH3RESA trial, relative to physicians’ choice of chemo-
therapy, T-DM1 improved outcomes in patients with history of
CNS metastases, (median PFS improved from 2.4 to 5.8
months).73 Similarly, subset analysis of the EMILIA trial that
compared T-DM1 to the lapatinib/capecitabine combination
(a typical standard for HER2+ CNS metastases) showed similar
rates of CNS progression in both trial arms. In patients with his-
tory of treated and stable brain metastases at study entry,
T-DM1 improved survival over lapatinib/capecitabine.74 Preclin-
ical studies suggest that combination of HER2-targeted TKIs
with mAbs or mAb conjugates may further improve efficacy
in CNS disease.

Triple negative breast cancer (TNBC) also has a propensity
for CNS metastasis. Unlike HER2-positive disease, there is no
specific chemotherapy or biological target for TNBC, resulting
in limited systemic regimens and few therapies targeting
TNBC brain metastases. The combination of irinotecan topo-
isomerase inhibitor with iniparib (a putative PARP inhibitor
that modulates reactive oxygen species metabolism) produced
an intracranial response rate of 12% and an intracranial clinical
benefit rate of 27% in a study of 34 TNBC patients with brain
metastases.75 Iniparib has been discontinued, but the concept
remains viable. Another potential approach is antiangiogenic
therapy, such as bevacizumab anti-VEGF mAb, in combination
with chemotherapy or radiotherapy.76 In a study of HER2-
positive and TNBC brain metastases, bevacizumab plus carbo-
platin produced a CNS composite response rate of 63%. PFS re-
mained short at 3.7 months; however, there was a subset of
patients with prolonged clinical benefit who remained on ther-
apy for up to 19 cycles.
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Recommendations and Future Directions

Strategies to advance the study of chemotherapeutics in the
treatment of brain metastases must include collaborative ef-
forts to conduct trials. First, patients with brain metastases
should be allowed to enroll in phase 1 trials, which have tradi-
tionally excluded patients with CNS disease. This inclusion does
not lead to higher toxicities or premature closure of such trials
but does provide a wider range of clinical research opportunities
for evaluating the CNS activity of novel agents. Second, working
groups are needed that focus on the management of brain
metastases; an example of such a team is the US National
Cancer Institute (NCI)-sponsored Brain Metastasis in Breast
Cancer Working Group, which combines translational and clin-
ical investigators from the NCI and academic institutions. Third,
cooperative groups must form novel collaborations. The recent
realignment of the NCI cooperative groups provides an oppor-
tunity for new collaborations, which may increase the number
of studies of chemotherapy in brain metastases.

Preclinical Models of Brain Metastases

While the process of brain metastasis is poorly understood, we
do know that it is an extremely selective, inefficient, multistep

process that involves (i) breaking away of individual cells from
the primary carcinoma, (ii) arrest or seeding of cells in the cer-
ebrovasculature, (iii) extravasation of the cancer cell into the
brain parenchyma, and (iv) colonization and growth in brain
parenchyma.77 In vitro assays of migration or invasion fail to
replicate the complexity of the NVU, hemodynamic variables,
or the role of the immune system. In order to develop alterna-
tive therapies targeted to the different steps in brain metasta-
sis, preclinical and translational research must develop more
and better models.46,78,79

The majority of brain metastasis studies are based upon di-
rect intracerebral injection of tumor lines that were isolated and
established years ago. Orthotopic models are useful for assess-
ing therapies and vascular targeting in established metastases.
Figure 2 shows a rat model of intracerebral SCLC xenograft used
to assess the impact of bevacizumab on rCBV (as determined
by DSC-MRI) and the cerebrovasculature (as determined by his-
tology).80 However, xenograft models bear little relationship to
natural in vivo processes involved in brain metastasis, and their
predictive accuracy is open to question.81

There are models of spontaneous and induced brain metas-
tases in rodents for melanoma, lung cancer, and mammary can-
cers (Table 1). Spontaneous models, such as seeding from

Fig. 2. Effect of bevacizumab on relative cerebral blood volume (rCBV) in lung cancer brain metastases. Rats with intracerebral xenografts of
human LX-1 small cell lung cancer SCLC were treated with or without bevacizumab (45 mg/kg IV, single dose). (A) MRI before and 7 days after
treatment show brain tumor growth with increased rCBV in control tumor and decreased rCBV in the bevacizumab-treated rat. (B) Quantification of
changes in rCBV over time. (C) CD68 immunohistochemistry for macrophages shows areas of necrosis (arrows) in untreated control tumor (left)
and bevacizumab treated tumor (right), bar indicates 1 mm. (Adapted from Muldoon et al 2011, and used with permission of Oxford University
Press).80
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orthotopic or subcutaneous xenografts, can provide information
about the process of intravasation and organotropism.82 –85 The
advantage of syngeneic models is that they allow for studying
immune system interaction within the animal, as well as the
role of the intact BBB and BTB; however, the applicability of
these models for studying human disease is unclear. Model sys-
tems that utilize ectopic (bloodstream) injection of human can-
cer cells produce hematogenous brain metastases.7,10,86 – 90

Ectopic models have the advantage of allowing visualization of
the fate of individual cancer cells as they bind to brain vascula-
ture and infiltrate into brain parenchyma.7,91,92 A recent review

describes new animal models to investigate mechanisms of
brain metastasis.81

After intracardiac or intracarotid infusion, brain-seeking
metastatic breast cancer sublines (MDA-MB231BR) circulate in
the peripheral vasculature, arrest in brain capillaries, extrava-
sate across the BBB, and develop multiple metastatic lesions
predominantly in brain (Figs. 3 and 4).10,89 Pretreatment with
cyclophosphamide to further decrease host immune response
may enhance hematogenous brain metastasis formation in
athymic rats.89,93 When MDA-MB231BR contrast-enhancing
brain metastases in mice were compared with resected

Table 1. Selected brain metastasis preclinical models

Cell line Origin Route of Administration Reference

A549 Human lung adenocarcinoma Orthotopic lung xenograft, spontaneous brain metastases 84

A549 Human lung adenocarcinoma i.v., tail vein 87

EBC-1 Human squamous cell NSCLC i.v., tail vein 87

PC14-PE6 Human lung adenocarcinoma Carotid artery 7

H460 (HTB177) Human large cell NSCLC Carotid artery 7

MCF-7 variants Human breast cancer Subcutaneous, spontaneous brain metastases 83

MCF-7 Human breast cancer Intracardiac or carotid artery 86,90

4T1 Mouse breast carcinoma Mammary fat pad, spontaneous brain metastases. 85

4T1 variants Mouse breast carcinoma Intracardiac or carotid artery 10,86

MDA-MB231 variants Human breast cancer Intracardiac or carotid artery 10,86,88 – 91

WM239A variants Human melanoma Orthotopic xenograft, spontaneous brain metastases 82

A2058 Human melanoma Carotid artery 7

Abbreviation: NSCLC, non-small cell lung cancer

Fig. 3. (A) 3-dimensional multiphoton image of preclinical brain metastases of breast cancer in a brain slice is shown. Brain metastases are green
(eGFP), and blood vessels are red (red; animal underwent a 2 min vascular perfusion with Texas red 70 kDa dextran,15 mg/mL) prior to being
euthanized. Image is 100 microns deep. Lesion vessel co-option is the predominant formation of the metastases in this model. (Paul Lockman,
personal communication). (B) Experimental brain metastases of breast cancer exhibit heterogeneous passive permeability with weak correlation to
lesion size. Left image shows representative images of metastases of eGFP-transfected 231-BR-Her2. Right image of the same brain section shows
metastases and brain accumulation of 3-kDa 14C-AIB with vascular washout. (Modified from Lockman et al 2010, and used with permission of
Clinical Cancer Research).10
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human brain metastases of breast cancer (n¼ 16 human
cases), they were found to have nearly equal rates of apoptosis,
cellular growth, and neuroinflammatory response.88

Model systems such as these94 may provide significant
insight into potential targets for the prevention of brain metas-
tases of breast cancer. The drawback of rodent models of
human tumor metastasis is that immunodeficient rodents
must be used. Therefore, the influence of the immune system,
which is likely a major influence in human systems, is lost. Of
interest, even though these cell lines reliably produce brain
metastases in mice, only a small percentage of injected cells
actually form measurable tumors. Most cells fail to bind to or
transmigrate the cerebrovasculature or remain as dormant sin-
gle cells once they enter the brain parenchyma, which suggests
that the development of CNS metastasis is an inefficient
process overall.91

Use of Preclinical Models in Drug Pharmacokinetics

Current drug development programs typically demonstrate
proof of concept in vitro and then dose to the maximum level

for drug efficacy studies in vivo, when such concentration can
rarely be obtained in humans. Standard pharmacokinetic prac-
tices focus on the total drug level in plasma, with minimal as-
sessment of distribution of the agent in brain metastases or
whole brain (an agent is often said to either cross or not
cross the BBB). Brain drug levels, when assessed, are rarely ex-
pressed in terms of free drug concentration or correlated in
pharmacokinetic-pharmacodynamic (PK-PD) models to better
predict drug efficacy. The majority of drug delivery and sensitiv-
ity studies have used intracerebrally implanted brain metasta-
sis models that poorly replicate the variety of human brain
metastases.

To improve predictive accuracy of chemotherapeutic drug
assays and models, greater attention must be placed on the
actual concentration of drug that reaches key sites within the
tumor and the extent to which this concentration is effective.
Surgical efforts to quantitate drug entry into metastases suffer
from artefact introduced by the surgical disruption of the BBB
and BTB.67 Thus, drug-delivery imaging methods are needed
that will accurately report the extent of brain metastasis drug
exposure (and not simply the shape of the tumor or the extent
of its barrier integrity). Care must be taken to account for the
heterogeneity of drug delivery within tumors due to BBB com-
promise. In hematogenous models of metastatic breast can-
cer, the dysfunctional BTB still limits drug delivery of taxanes,
anthracyclines, and lapatinib to 2%–15% of that in systemic
metastases.10,68 In only a small subset of brain metastases
(,20%) did chemotherapeutic drug concentrations approach
those of systemic tumors and show signs of drug-induced
efficacy. A clinical study documented inconsistently cytotoxic
concentrations of lapatinib and capecitabine in breast cancer
brain metastases of women treated with those agents
preoperatively.

It is important to consider interventions that raise the con-
centrations of drugs targeting brain metastases to an apprecia-
ble degree (ie, .10 fold).10,68 Close correlation of drug
concentration with in vivo biomarkers of efficacy will permit de-
velopment of rational PK-PD models that better demonstrate
the limiting factors in drug efficacy and the extent to which lim-
ited drug delivery must be overcome. For many agents, the
delivery deficit is not 2–3 fold, but rather 10–50 fold, under-
scoring the need for better focus and creative thinking toward
targeted, novel drug delivery solutions. Potential strategies in-
clude BBB disruption, inhibition, or modulation of active efflux
transport and design of agents that are membrane permeable
and not substrates to limiting efflux transporters.

Brain Metastases Prevention

Given the current failure rates of chemotherapy, surgery and ra-
diation, the prevention of brain metastases (particularly in dis-
eases such as HER2-positive breast cancer) is under active
investigation. While the risk of brain metastases is only 5%
for all women with a primary breast cancer, women who
have stage IV HER2-positive or TNBC disease have a 20%–
40% risk of developing brain metastases.95

An ideal prevention study would first need to randomize
asymptomatic patients with high-risk disease (TNBC, HER2-
positive breast cancer, high-grade melanoma, and lung cancer)
to serial screening MRI (or other imaging) as compared with

Fig. 4. Effect of Intetumumab on breast cancer brain metastases. (A)
T2-weighted MRI is shown for a control and weekly IV intetumumab
(INT) 7 and 11 weeks after intracarotid tumor cell infusion. Representative
micrographs of human mitochondrial antigen immunohistochemistry are
shown for a control rat (B) and intetumumab-treated rat (C) at 11
weeks.(Modified from Wu et al, 2012 and used with permission of
Springer).89
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those for whom CNS imaging was only done in the setting of
neurological symptoms to confirm that early diagnosis (pre-
sumably of limited metastatic disease) would lead to improved
outcomes. Once there was a historical control rate of develop-
ment of metastatic disease and the early adoption of limited
SRS or surgery, then alternatives to WBRT could be tested as
a mechanism for preventing further macroscopic metastatic
disease.96 The use of a surveillance strategy was evaluated in
80 patients with neurologically asymptomatic HER2-positive
metastatic breast cancer without known CNS involvement,
who were screened every 3 months with MRI for the develop-
ment of brain metastases.4 These patients were compared
with a separate cohort who had received WBRT for sympto-
matic brain metastases. In this study, the OS of the 2 groups
was similar (53 vs 51 months), but death from CNS involvement
was significantly reduced (16% in the treated asymptomatic
group vs 48% in the treated symptomatic group). None of the
patients in this study received surgery or SRS, so the applicabil-
ity of the findings to patients treated with those modalities is
limited and does not reflect current US practice patterns.4 Larg-
er studies and trials with a goal to intervene with novel system-
ic agents are needed. These trials require thoughtful design and
multidisciplinary endorsement to avoid early closure due to
poor accrual of these trials as noted in Table 2.

The CEREBEL trial highlights some of the important consid-
erations with a CNS metastases prevention trial.97 This trial was
designed with a primary endpoint of the CNS as a site of first
relapse. The comparison was between a regimen with proven
efficacy to cross the BBB (capecitabine/lapatinib)67 with a reg-
imen that would not cross into the CNS (capecitabine/trastuzu-
mab) but was otherwise a standard in HER2-positive systemic
disease. Upfront screening for CNS involvement with a pre-
enrollment MRI disqualified 20% of potential patients due to
occult brain metastases. The incidence of developing HER2-
positive CNS disease was low in both arms: 3% in the

lapatinib/capecitabine arm and 5% in the trastuzumab/capeci-
tabine arm. The low incidence, combined with better PFS in the
trastuzumab-treated arm (HR, 1.30), prompted early termina-
tion of the study. The CEREBEL study demonstrated the need
for relatively equal efficacy against systemic disease in the
treatment arms. The combination of lapatinib with a taxane
was inferior to trastuzumab and taxane in the EORTC 10054
study.98 Similarly, in the CEREBEL trial, the lapatinib-only arm
was inferior from an overall efficacy standpoint, which likely
limited the ability to show any improvement in the CNS end-
point. In the CEREBEL trial, 40% of patients had not received
prior trastuzumab. Another potential consideration is that
with a number of new, improved therapies, such as pertuzu-
mab anti-HER2 mAb, and T-DM1 mAb-drug conjugate control-
ling systemic disease longer in the metastatic setting, the best
setting in which to study CNS metastases prevention may be
later in the disease course. Perhaps initially studying CNS pre-
vention, in the more advanced third line and beyond setting,
would be more appropriate.

Alternative prevention strategies include blocking tumor cell
adhesion to brain vasculature or infiltration across the BBB.
Integrin cell adhesion dimers are basic components of cell cy-
toskeleton and signaling architecture and are essential for cell-
cell and cell-ECM adhesion in the NVU.99 The av integrins are
associated with lung cancer brain metastasis100 and in the
MDA-MB231BR hematogenous breast cancer brain metastasis
model.89 Intetumumab, a monoclonal antibody targeting aV

integrins, delayed the onset of breast cancer brain metastases
in rats with the MDA-MB231BR hematogenous metastasis
model as determined by MRI (Fig. 4).89 Rats receiving intetumu-
mab i.v. before or after cell infusion, or mixed with the cells prior
to cell infusion (n¼ 24), developed significantly fewer metasta-
ses than untreated controls, with 7 rats (32%) showing no
detectable brain tumors. The difference in brain metastasis
incidence correlated with improved survival. These animal

Table 2. Selected trials of chemoprevention for brain metastasis

Title Sponsor ClinicalTrials.gov
Identifier

Comment

Primary
prevention

Nab-paclitaxel and temozolomide plus
oblimersen (melanoma)

Genta Incorporated NCT00409383 Active, not recruiting

Trastuzumab-radiotherapy Centre Oscar Lambret NCT01613482 Stopped due to poor
accrual

Lapatinib/capecitabine vs trastuzumab/
capecitabine (Her2+ breast)

GlaxoSmithKline NCT00820222 Stopped early; very small
number of events in
both arms

Temozolomide (metastatic breast cancer) Schering-Plough Italy NCT00638963 Stopped due to poor
accrual

Maintenance temozolomide vs observation (stage
III/IV non-small cell lung cancer)

Schering-Plough Italy NCT00632203 Completed

Secondary
prevention

Stereotactic radiosurgery with sunitinib for brain
metastases

University Health
Network, Toronto

NCT00981890 Recruiting

Stereotactic radiosurgery � sunitinib (1-3 newly
diagnosed brain metastases)

Cleveland Clinic NCT00910039 Stopped due to poor
accrual

Stereotactic radiosurgery � temozolomide (1–3
brain metastases)

University of Florida NCT00717275 Stopped due to poor
accrual
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studies suggest that intetumumab can act directly on tumor
cells and/or vasculature to prevent one or more of the steps
in metastasis. Of note, there is not efficacy of this agent in
terms of treatment of existing brain metastases. We feel that
a clinical trial for the prevention of brain metastases with inte-
tumumab should be considered.

Summary, Conclusions and
Recommendations
As our understanding of cancer pathogenesis and treatment
progresses, the need to understand the alterations and that
confer a predisposition to CNS metastases becomes great. Eval-
uation of CNS metastases for metastatic homing signatures will
allow researchers and clinicians to better understand the
somatic mutations that may add in the pathogenesis or the
predilection of CNS metastasis. Three important challenges cur-
rently need to be addressed. The first is the development of pre-
clinical models that more accurately recapitulate CNS
metastases for both biological and therapeutic studies. The
second involves the sequencing of SRS and WBRT during radio-
therapy and determining how local therapies can be delayed in
order to allow assessment of new systemic treatments. Finally,
the clinical trial challenges include image standardization to
assess response, as well as inclusion of novel imaging para-
digms. We wholeheartedly endorse the continued research
evaluating systemic therapy options specifically for CNS metas-
tases. We also strongly support the inclusion of patients with
CNS metastases in clinical trials. We are optimistic that contin-
ued efforts toward understanding chemotherapeutic drug
delivery, short- and long-term therapy toxicities, and the un-
derlying biology of CNS metastasis will lead to new and im-
proved therapeutic options for patients with CNS metastases.
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