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Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen displaying high antibiotic

resistance. Its resistance is in part due to its outstanding ability to form biofilms on a range

of biotic and abiotic surfaces leading to difficult-to-treat, often long-term infections. Cold

atmospheric plasma (CAP) is a new, promising antibacterial treatment to combat antibiotic-

resistant bacteria. Plasma is ionized gas that has antibacterial properties through the gener-

ation of a mix of reactive oxygen and nitrogen species (RONS), excited molecules, charged

particles and UV photons. Our results show the efficient removal of P. aeruginosa biofilms

using a plasma jet (kINPen med), with no viable cells detected after 5 min treatment and no

attached biofilm cells visible with confocal microscopy after 10 min plasma treatment.

Because of its multi-factorial action, it is widely presumed that the development of bacterial

resistance to plasma is unlikely. However, our results indicate that a short plasma treatment

(3 min) may lead to the emergence of a small number of surviving cells exhibiting enhanced

resistance to subsequent plasma exposure. Interestingly, these cells also exhibited a higher

degree of resistance to hydrogen peroxide. Whole genome comparison between surviving

cells and control cells revealed 10 distinct polymorphic regions, including four belonging to

the redox active, antibiotic pigment phenazine. Subsequently, the interaction between

phenazine production and CAP resistance was demonstrated in biofilms of transposon

mutants disrupted in different phenazine pathway genes which exhibited significantly

altered sensitivity to CAP.

Introduction
Antibiotics and other conventional antimicrobial methods often fail to eradicate disease caus-
ing bacteria due to an ever-increasing development of resistance from bacteria [1,2]. This
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resistance is even higher when cells live in a biofilm community compared to planktonic, single-
cell lifestyle [3]. Biofilms are responsible for the majority of human infections as well as a range
of problems in industry, including fouling of pipelines and ship hulls [4]. Biofilm cells live in a
multilayer community, enclosed by an extracellular matrix rather than individual free swimming
cells. The extracellular matrix is composed of polymeric substance, DNA, proteins and polysac-
charides [5]. Cells in a biofilm can communicate via signal molecules that diffuse through the
biofilm. Biofilm cells are known to be in a different physiological state than their planktonic
counterparts. This state, together with the protective extracellular matrix, gives them greater
resistance to antibiotics, chemical disinfection (e.g. hydrogen peroxide) and physical removal [3].

Pseudomonas aeruginosa is an opportunistic pathogen with a particularly high rate of anti-
biotic resistance, in part due to its potent ability to form biofilms [6,7]. It is responsible for
many hospital-acquired infections, in particular of chronic wounds [8], and represents a major
problem for patients with cystic fibrosis [9]. P. aeruginosa produces several virulence factors.
One of them is the redox active phenazine compound pyocyanin [10]. Phenazines produced by
fluorescent pseudomonads are broad range, biologically-active metabolites with functions in
virulence [11,12]. Their antibiotic activity is mostly due to the ability to undergo redox-cycling
in the presence of various reducing agents, leading to the accumulation of toxic levels of super-
oxide and hydrogen peroxide [13]. Hassan et al. showed that the toxic action of pyocyanin is
dependent on oxygen and diminished in the presence of superoxide dismutase and catalase
[13]. Moreover, phenazines were shown to be involved in P. aeruginosa induced killing of Cae-
norhabditis elegans via the generation of reactive oxygen species [12] They also play an impor-
tant role in co-infections of P. aeruginosa and Candida albicans in lungs of cystic fibrosis
patient, where ethanol released from the fungus alters the spectrum of antifungal phenazines
[14]. However, there is also some evidence that phenazines have a protective role in oxidative
stress regulation in P. aeruginosa. Vinckx et al. [15] showed that the transcriptional regulator
Oxyr is important for defence against oxidative stress in P. aeruginosa. Interestingly, it was
demonstrated that a ΔoxyRmutant has increased pyocyanin levels. Moreover, while the ΔoxyR
mutant is almost unable to grow in media where no pyocyanin is produced, the addition of
external pyocyanin can restore growth ability to normal wild-type levels, suggesting a protec-
tive action for this compound [15]. Another study suggests that phenazines can confer an
advantage for P. aeruginosa biofilm growth. Because of their redox potential, phenazines can
act as an electron shuttle between bacteria and external substrates, extending the possible
depth of respiration for oxygen-deprived cells inside microcolonies [16]. Moreover, it was
shown that phenazines are important for colony morphology on agar plates and biofilm micro-
colonies. A wrinkly colony morphology in the absence of phenazines was suggested to be an
adaptation to maximize oxygen accessibility in case of a redox imbalance [17].

Cold atmospheric plasma (CAP) has attracted attention as a useful tool to eradicate bacteria
[18]. Plasma, or ionized gas, is the fourth state of matter. CAP, as the name suggests, is formed
at atmospheric pressure, and the molecular, atomic, radical and ionic species are at close to
room temperature. CAP can be generated by a range of devices using different gases (most
commonly argon, helium, nitrogen, air or oxygen) or gas mixtures. Through the generation of
a reactive mix of atoms, excited molecules, charged particles, reactive oxygen species (ROS)
and reactive nitrogen species (RNS), and UV photons, CAP has been shown to inactivate
microorganisms, including bacteria and their spores [19,20].

Several studies have proposed different plasma-proposed mechanisms as being responsible
for the killing of bacteria. The antibacterial modes of actions vary depending on the type of
plasma generated [21]. Three main plasma-induced mechanisms of bacterial cell damage are
hypothesized: a) permeabilisation of the cell wall and/or membrane, b) protein damage
through reactive oxygen and nitrogen species (RONS) and c) UV damage of DNA (reviewed in
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[18]). For example, a study by Joshi et al. [22] demonstrated that ROS are directly responsible
for membrane lipid peroxidation and DNA damage in E. coli during the application of CAP.
Using bacteriophage MS2, Alshraiedeh et al. showed that phage inactivation increased with
increasing oxygen content of the plasma, also indicating a role for ROS in plasma activated kill-
ing [23]. Interestingly, Gram negative cells have been reported to be more susceptible to plasma
damage, suggesting that cell wall architecture is important for inactivation [24].

CAP has often been shown to kill planktonic cells, but only a few studies have used biofilms
to demonstrate its effectiveness [25–28]. Biofilms have been reported to be more protected
from plasma killing than planktonic cells [29,30], with the level of protection dependant on the
biofilm’s thickness [24]. A study on Chromobacterium violaceum showed a different survival
curve for biofilm cells compared to planktonic cells, and suggests a more complex inactivation
mechanism [27]. Similarly, a rapid initial killing followed by a slower decline in cell numbers
was observed for P. aeruginosa biofilms [26]. The slower, later decline in viable cells was pro-
posed to be due to the presence of an exopolysaccharide biofilm matrix or due to a shielding
effect from initial cell debris [25]. In addition to biofilm-mediated protection from plasma kill-
ing, the polysaccharide polymer dextran was found to have a protective role in the lactic acid
bacteriumWeissella confusa, indicating strain-specific protection mechanisms [30].

In order to remain effective antibacterial agents need to evade bacterial defense systems and
avoid inducing resistance mechanisms. Bacteria can be intrinsically resistant to antibacterial
agents or acquire a resistance, for example through mutations [31,32]. A repeated selection
pressure from frequent exposure can aggravate the occurrence of acquired resistance, as it has
been seen with the overuse of antibiotics [2]. Moreover, the generation of persister cells, dor-
mant variants of regular cells with high antibiotic resistance, may exacerbate the problem. It is
hypothesized that persister cell formation may be activated by stress responses and is particu-
larly common during the biofilm mode of growth [33]. It was recently shown that Acinetobac-
ter baumannii increased the formation of persister cells when grown in the presence of
pyocyanin-producing P. aeruginosa. The increased persister cell formation has been proposed
to be a protective mechanism against pyocyanin-induced oxidative stress [34].

Several studies demonstrate that CAP has the potential for use as an effective antimicrobial
tool. However, as with other antimicrobial measures, the question of possible resistance to
CAP needs to be addressed. This is particularly important for microbial biofilms, as these are
known to commonly have a higher resistance to antimicrobials. The pathogen P. aeruginosa
has a number of resistance mechanisms, including beta-lactamase, upregulated efflux pumps
and mutations leading to alterations in antibiotic target molecules, as well as the ability to gen-
erate dormant persister cells. Our objective was to investigate whether resistance to CAP treat-
ment occurs in P. aeruginosa biofilms as well as a possible resistance mechanism. We chose P.
aeruginosa colonies that had survived low doses of CAP treatment for further investigations.
Biofilms of these strains were subjected to additional rounds of CAP treatment to show a possi-
ble higher resistance. To investigate a resistance mechanism the chosen colonies were subjected
to whole genome sequencing and several mutations, including in phenazine biosynthesis genes
were identified. To further demonstrate the involvement of phenazine in P. aeruginosa resis-
tance to CAP, biofilms of phenazine transposon mutants were tested for altered sensitivity to
plasma. These results have important implications for the use of CAP in biofilm settings.

Materials and Methods

Bacterial Strains
Bacteria were cultivated on nutrient agar (1g l-1 `Lab-Lemco’ powder, 2g l-1 yeast extract, 5g l-1

peptone, 5g l-1 sodium chloride, 15g l-1 agar, pH 7.4; Oxoid) using standard methods (Table 1).
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Overnight cultures were inoculated into 10 ml nutrient broth and incubated at 37°C, 150 rpm
shaking.

Biofilms
Biofilms were established in a CDC (Centre for Disease Control and Prevention) biofilm reac-
tor on 24 individual glass or stainless steel coupons of 1.27 cm diameter and 0.3 cm thick [36].
Briefly, 1 ml of an overnight culture (OD = 1) was inoculated into the reactor, containing 500
ml of tryptic soy broth TSB (600 mg l-1) and incubated for 24 h stirring (120 rpm) at 22°C with-
out flow. After 24 h the flow was turned on and sterile 100 mg TSB l-1 was continuously
pumped through the reactor (flow rate 11.7 ml min-1) for another 24 h. Before treatment, cou-
pons were aseptically removed and the underside of the coupons swabbed with ethanol to
remove any bacteria not designated for treatment. Coupons were then placed bacteria side up
into empty Petri dishes for treatment.

Plasma treatment
Plasma treatment was performed using the kINPen med (Neoplas tools GmbH, Greifswald,
Germany) [37]. The kINPen hand-held nozzle was connected to a base unit with a gas feeding
bottle. Argon was used as a feeding gas and plasma pulses generated at a frequency of 1.82
MHz. The visible plasma effluent was approximately 1 cm long and 1 mm in diameter (Fig 1).
The gas flow rate was set to 4.2 slm (7.1 Pa m3 s-1). The distance to the sample surface was 1
cm. Plasma treatment was conducted in triplicate at 1, 3, 5 and 10 min, respectively. As a con-
trol, a 10 min gas treatment without igniting plasma was performed at 3.9 slm (6.6 Pa m3 s-1).
A slightly lower gas rate for the control was necessary to prevent the kINPen from automati-
cally igniting the plasma at>4.0 slm.

To exclude a possible heating effect from the plasma, the temperature was measured using a
negative temperature coefficient (NTC) thermistor (10K/3435). The sensor was placed at the
coupon location and the temperature recorded over 10 minutes.

After treatment coupons were placed into 3 ml sterile phosphate buffered saline (PBS). Cou-
pon surfaces were scraped with a sterile spatula to remove cells. In addition coupons were soni-
cated for 1 min to dissolve possible cell clumps. The removal of cells from coupons was
confirmed by microscopy (data not shown). Following serial dilution, cells were plated onto

Table 1. Bacterial strains used in this study.

Strain Description Reference

P. aeruginosa
ATCC9027

Wild-type Food Research Ryde
Bacteriology Culture Collection

P. aeruginosa GC1 Variant treated 5 min argon gas This study

P. aeruginosa GC2 Variant treated 5 min argon gas This study

P. aeruginosa 2P1 Variant treated 2 min argon plasma This study

P. aeruginosa 2P2 Variant treated 2 min argon plasma This study

P. aeruginosa 5P1 Variant treated 5 min argon plasma This study

P. aeruginosa 5P2 Variant treated 5 min argon plasma This study

P. aeruginosa
MPAO1 WT

Wild-type B. Iglewski, [35]

P. aeruginosa
PW4333

Strain, phzD2-E04::ISlacZ/hah disrupted in
phenazine biosynthesis protein D2

[35]

P. aeruginosa
PW4335

Strain phzE2-C11::ISlacZ/hah disrupted in
phenazine biosynthesis protein E2

[35]

doi:10.1371/journal.pone.0130373.t001
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nutrient agar and incubated for 24 h at 37°C, followed by another 2 days at room temperature
before counting colony forming units (CFU).

Microscopy
Following plasma treatment biofilms were stained with the BacLight Live/dead stain containing
the 2 stock solutions green Syto 9 and red propidium iodide (Molecular Probes, Eugene, Ore-
gon, USA) according to the manufacturer’s instruction and fixed with 10% para-formaldehyde.
Biofilms were visualized using the Olympus FV1000 confocal laser scanning microscope. Five
positions were randomly chosen from the centre of the coupon and a complete scan through
the biofilm was performed. The biofilm thickness was estimated from the vertical images using
the scale bar function from the manufacturer’s image analysis software (Olympus Fluoview
version 3.1a).

Plasma resistance test
To investigate a possible resistance of P. aeruginosa to plasma treatment, initially an agar-plate-
based method was employed, where isolates from within the zone of inhibition after an initial
plasma exposure were exposed to a second plasma treatment. Briefly, 100 μl of overnight culture
was spread onto nutrient agar plates and dried for 1 h before argon plasma treatment (2 or 5
min) or 5 min argon gas treatment in the centre of the agar plate. Plates were then incubated for
24 h and the size of clearing zone noted. Surviving colonies were picked from the clearing zone,
sub-cultured and used to prepare fresh lawns in triplicates. Each of the triplicate plates was then
again subjected to gas, 2 min plasma or 5 min plasma treatment. The size of inhibition zone was
used as an indicator of plasma-induced inactivation. The experimental set-up is shown in Fig 2.

Hydrogen peroxide resistance
The 5 isolated variants were inoculated overnight in 5 ml NB before diluting 20x in micro titre
plates. The range of hydrogen peroxide concentrations tested was between 5 and 100 mM.

Fig 1. Plasma use in biomedical settings. Schematic diagram of the plasma source kINPen med (A) and
photograph of plasma jet operation (B). The white bar is 1 cm.

doi:10.1371/journal.pone.0130373.g001
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Plates were incubated at 30°C and read every 15 min at 600 nm for 48 h in Bioscreen C (Thermo
Fisher Scientific).

Illumina Sequencing and variant discovery
Bacterial colonies growing in the plasma inhibition zone were chosen for whole genome DNA
sequencing. Two colonies were picked from 2 min plasma treatment plate (2P1, 2P2), two colo-
nies from the 5 min plasma treatment plate (5P1, 5P2) and 1 colony from the control, gas treat-
ment plate (GC1). Colonies were isolated with a sterile toothpick, inoculated into fresh
nutrient broth and incubated for 14 h at 37°C to reach stationary phase. DNA was extracted
using DNeasy Blood and Tissue kit (Qiagen) and purified using Wizard SV Gel and PCR
clean-up system (Promega). DNA sequencing was performed at Ramaciotti Centre for Geno-
mics (UNSW, Australia) using Illumina MiSeq technology.

Reads generated were aligned against a reference de novo assembly of the GC1 genome. The
reference draft GC1 genome was assembled using Velvet v1.0.0 [38] implemented on a local
Galaxy server [39]. Default settings were used with a hash length of 75 bp. Error correction of
reads was performed prior to assembly using Trimmomatic v0.30 (http://www.usadellab.org/
cms/index.php?page = trimmomatic).

Sequencing reads generated from the 2P1, 2P2, 5P1 and 5P2 were aligned against the refer-
ence assembly using Geneious (v7.0.6); http://www.geneious.com/) using the map to reference
function. Variant discovery between the gas-control isolates and plasma-treated isolates was
performed using the find variations/SNPs function. Default SNP search parameters were used
with a minimum variant frequency of 0.6. Individual variants identified were then manually
checked and the potential gene product identified by using blastN against the non-redundant
nucleotide collection. Raw sequencing reads have been submitted to NCBI short read archive
(SRA) under the BioProject number PRJNA269551 (http://www.ncbi.nlm.nih.gov/bioproject/
PRJNA269551). Sequencing reads are located at ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-

Fig 2. Schematic of experimental set-up to isolate plasma resistant colonies.Colonies were picked from agar plates after initial 5 min argon gas control
treatment, initial 2 min argon plasma treatment and initial 5 min plasma treatment, respectively.

doi:10.1371/journal.pone.0130373.g002
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instant/reads/ByRun/sra/SRR/SRR204/SRR2043986/ (2 min plasma treatment); ftp://ftp-trace.
ncbi.nlm.nih.gov/sra/sra-instant/reads/ByRun/sra/SRR/SRR204/SRR2043987/ (5 min plasma
treatment) and ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByRun/sra/SRR/SRR204/
SRR2043045/ (gas control).

Biofilm formation and plasma treatment of phzmutants
To investigate a possible role of phenazine in resistance to CAP, transposon mutants disrupted
in phzD (strain PW4333) and phzE (strain PW4335) were used. Mutant strains along with the
corresponding wild-type (MPAO1) were acquired from a two-allele library from the nonprofit
cost centre at the University of Washington (Table 1).

Biofilms were allowed to form by placing a coupon into 1 ml nutrient broth with 5 μl over-
night culture at 37°C for 24 h. Before plasma treatment 50 μl of 2.4 μM pyocyanin (Sapphire
Bioscience, Waterloo, Australia) in PBS and 10% ethanol was added directly to the coupons.
As a control PBS and 10% ethanol was used. A 3 min argon plasma treatment followed by CFU
counts was performed as described above.

Results

Biofilm removal by atmospheric pressure plasma
Plasma generated with the kINPen med (Fig 1) was used to treat the antibiotic-resistant, bio-
film-forming strain Pseudomonas aeruginosa (ATCC9027) grown on stainless steel coupons.

After a range of treatment times, biofilms were subjected to viable cell counts (Table 2) and
confocal microscopy (Fig 3) to investigate the effect of CAP on biofilms. The untreated control
biofilms reached cell numbers of 1.3 x 106 CFU per coupon (Table 2). The gas control showed
a slight decrease in CFU numbers (1.2 x 105 per coupon), possibly due to a drying effect from
the gas flow. Plasma treatments after 1 and 3 minutes produced similar results as the gas con-
trol with a reduction of viable cell numbers by only 1 log compared to the control. However, no
viable cells were detected after 5 min of plasma treatment (Table 2).

In addition to CFU numbers, a second set of biofilms grown on glass coupons was observed
with confocal laser scanning microscopy. The untreated control showed attached, viable cells
forming microcolonies approximately 15 μm thick (Fig 3A). The gas control showed similar
size microcolonies. A few single dead cells were observed in the gas control, presumably due to
a drying effect from the gas flow. After only 1 min of plasma treatment, microcolonies were sig-
nificantly smaller and some dead cells appeared. Large microcolonies are removed after only 3
minutes of plasma treatment with most of the biofilm removed after 5 min and no cells left
after 10 min (Fig 3).

Table 2. CFU counts of P. aeruginosa biofilms cells after argon plasma treatment.

Treatment CFU counts (per coupon)

Untreated control 1.3 (± 0.2) x 106

Gas control 1.2 (± 0.2) x 105

1 min CAP 5.4 (± 0.9) x 104

3 min CAP 6.4 (± 0.1) x 104

5 min CAP *

10 min CAP *

* indicates counts were below detection limit (1 x 102)

doi:10.1371/journal.pone.0130373.t002
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Monitoring of the temperature of the plasma revealed only a marginal increase over the
time-course of treatment. The temperature was 31.4°C after 3 min, 31.8°C after 5 min and
32.6°C after 10 min treatment time, respectively, showing that cell killing was not due to high
temperature.

Resistance to plasma
We found that longer plasma treatment (5 min) leads to larger inhibition zones on agar plates,
similarly to an antibiotic concentration disk test. However, within the plasma inhibition zone,
several surviving colonies formed after incubation of the agar plate, prompting us to investigate
a possible resistance of these colonies to plasma. Interestingly, after isolating these colonies
(that survived the first round plasma treatment), a higher resistance to subsequent plasma
exposure was noted. This was evident from a smaller zone of inhibition compared to the con-
trol sample, which had only been exposed to argon gas before being treated with plasma (data
not shown).

Resistance to hydrogen peroxide
Isolated colonies that survived initial plasma treatment of 2 or 5 min, respectively were tested
for their ability to grow in hydrogen peroxide solutions of different concentrations. Five vari-
ants were chosen, including 2 variants from a plate exposed to 2 min argon plasma (2P1, 2P2),
2 variants from a plate exposed to 5 min argon plasma (5P1, 5P2) and 1 variant from a gas con-
trol plate (GC1). At a concentration of 5 mMH2O2, all variants had a similar growth rate and
reached a similar final optical density (Fig 4A). However, at a 50 mMH2O2 concentration,

Fig 3. Confocal images of P. aeruginosa biofilms cells after argon plasma treatment stained with BacLight Live/Dead. Viable cells are stained green
and dead cells are stained red A) Untreated control, B) 10 min argon gas control, C) 1 min plasma, D) 3 min plasma, E) 5 min plasma and F) 10 min plasma
treatment. Each image shows a representative horizontal section (main picture), and two vertical sections (to the right of and below the green lines on the
right-hand side and bottom of the main picture, respectively). The vertical sections correspond to the two yellow lines in the main picture.

doi:10.1371/journal.pone.0130373.g003
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colonies that were isolated as survivors from a CAP treatment plate were found to grow signifi-
cantly better than the variant isolated from a gas treated plate (Fig 4B). Strain 2P2 reached the
highest final optical density (OD), which was about 2.5 times higher than the final OD from
the control strain. Of the four plasma surviving strains (2P1, 2P2, 5P1 and 5P2), strain 5P1
reached the lowest final OD and also had the most delayed lag time when exposed to 50 mM
H2O2. Interestingly the growth curves of strains 2P1 and 5P1 are more similar than the 2P1
and 2P2 growth curves. All strains are completely inhibited to grow at 100 mMH2O2 concen-
tration (Fig 4C).

Fig 4. Growth curve of plasma resistant colonies.Cells were exposed to A) 5 mMH2O2, B) 50 mMH2O2

and C) 100 mMH2O2.

doi:10.1371/journal.pone.0130373.g004
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Identifying mutations in plasma resistant colonies
In order to further characterize the plasma-resistant colonies, whole genome DNA sequencing
was carried out on the 5 variants. A single nucleotide polymorphism (SNP) comparison
between variants was performed against the genome assembly of the control isolate. Putative
gene products encoded by these polymorphic regions were identified by using blastN. The SNP
analysis indicated 10 distinct polymorphisms (6 SNP transitions, 3 SNP transversions and 1
substitution) in 7 different genes or intergenic regions in plasma-treated variants, including
AAA transcriptional regulator, diaminopimelate decarboxylase, conjugal transfer protein, pyri-
doxamine 5-phosphate oxidase, and the phenazine biosynthesis proteins PhzE and PhzD
(Table 3).

Interestingly several of the same SNPs occur in more than one of the variants and the same
SNP in phenazine D protein occurs in all 4 variants sequenced. This SNP changes the AA
Asparagine to Serine.

Phenazine plays a role in plasma resistance in P. aeruginosa
Because 4 of the 10 detected DNA changes upon plasma exposure relate to phenazine biosyn-
thesis genes (phzD and phzE), we further investigated their role in plasma resistance of P. aeru-
ginosa. Biofilms of transposon mutants phzD (strain PW4333) and ΔphzE (strain PW4335)
were allowed to form on stainless steel coupons and then treated with CAP for 3 min before
performing CFU counts. Fig 5 shows that the mutants are significantly more sensitive to CAP
treatment. A 3 min CAP treatment of wild-type biofilms led to a 1.5 log reduction compared to
a 3.5 and 3.0 log reduction for the phzmutant biofilms, respectively. Add back of the phenazine
pyocyanin to the phzmutant biofilms restored CAP induced killing to wild-type levels, suggest-
ing that phenazine plays a role in protecting P. aeruginosa from argon plasma (Fig 5).

Discussion
Pathogenic bacteria exhibiting resistance to antibiotic agents have become an area of great con-
cern. Whilst antibiotic resistance in bacteria occurs naturally to some extent [1,40], inappropri-
ate use and overuse of these drugs has increased this process at an alarming rate [2]. In

Table 3. Polymorphisms in plasma treated P. aeruginosa variants.

Gene Product Variant Change Position Polymorphism
type

Probable pyridoxamine 5-phosphate oxidase followed by phenazine biosynthesis
protein

5P2 C -> T 6,349,784 SNP (transition)

Phenazine biosynthesis protein PhzE 2P1, 2P2 A -> G 6,351,727 SNP (transition)

Phenazine biosynthesis protein PhzD 2P2, 5P1, 5P2 T -> C 6,353,019 SNP (transition)

2P1, 2P2, 5P1,
5P2

T -> C 6,353,125 SNP (transition)

Putative transcriptional regulator (AAA domain protein) 2P1, 2P2 C -> T 1,197,847 SNP (transition)

Diaminopimelate decarboxylase 2P2 T -> A 2,157,427 SNP (transversion)

Conjugal transfer protein 2P1 G -> C 2,945,334 SNP (transversion)

2P1, 2P2 G -> A 2,945,346 SNP (transition)

2P1, 2P2 GT ->
AC

2,945,350 Substitution

Intergenic region between 16S RNA gene and putative membrane protein 5P1 T -> G 5,174,776 SNP (transversion)

(2P1, 2P2 = recovered after 2 min plasma treatment; 5P1, 5P2 = recovered after 5 min plasma treatment)

doi:10.1371/journal.pone.0130373.t003
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particular biofilms, which account for over 60% of infections, show a high degree of resistance
[3]. This has several causes, including altered metabolic state, presence of an extracellular
matrix, oxidative stress response, differential gene or protein expression, and the presence of
persister cells [33,41].

Results of our study clearly demonstrate that Pseudomonas aeruginosa biofilms can be erad-
icated using a 10 min plasma treatment with a kINPen med. Other studies have shown plasma-
mediated killing of biofilm cells using different plasma sources [25,27,42,43], but a complete
removal was only observed in one other study [44]. A study by Xiong et al. confirmed that
plasma is able to penetrate Porphyromonas gingivalis biofilms of 15 μm thickness [45]. In
another study, a hand-held plasma pen was shown to inactivate a 25.5 μm thick biofilm of
Enterococcus faecalis [28] and Chen et al. also suggests a penetration depth of plasma chemistry
of 10–50 μm into a biofilm [46]. Interestingly, in our study no culturable cells were detected
after 5 min plasma treatment, when there were still some Syto 9 stained cells visible at the same
time-point using confocal microscopy. The discordance between culturable cells and visible
cells under the microscope may be that not all cells were efficiently scraped off from the coupon
before cell counting. Moreover, it is feasible that green fluorescent cells visible with confocal
microscopy are not viable despite staining with Syto 9 and thus do not grow on agar plates,
leading to a lower CFU number compared to visible fluorescent cells. It has been previously
described that plasma treatment may lead to cells entering the viable but non-culturable state
(VBNC) [47,48]. This state is characterized by cells having an intact membrane, respiration
activity, gene transcription and protein synthesis, but not being able to form colonies on cul-
ture media in laboratory conditions [49].

The mode of action of plasma-mediated bacterial killing has been suggested to be a combi-
nation of direct permeabilisation of the cell wall, damage of intracellular proteins from reactive
oxygen and nitrogen species and direct chemical alteration of DNA [50,51]. For example, oxi-
dative species generated by CAP (OH and NO) have a direct effect on both the membrane and
cell wall of microorganisms via generation of an oxidative stress response. This can lead to
lipid peroxidation, inactivation of Fe-S-dependent dehydratases, inactivation of mononuclear
iron proteins and DNA damage, which ultimately cause detrimental oxidative cell damage
[18,22,50]. Because of its multi-factorial mode of action, the chance of bacteria developing
resistance to plasma treatment is often considered to be low. However, our data demonstrate
that a short plasma treatment may contribute to surviving cells exhibiting enhanced resistance
to subsequent plasma treatment.

Fig 5. Survival of PAO1 phenazinemutants upon plasma exposure.CFU counts per coupon of MPAO1
wild-type and phzmutant biofilms exposed to 3 min argon plasma. Error bars denote standard deviation of
triplicate cell counts.

doi:10.1371/journal.pone.0130373.g005
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Bacteria can have a natural resistance or an acquired resistance (through mutations or
acquiring resistance genes) to antibacterial agents [52]. Zimmermann [52] performed a study
to investigate a possible build-up of natural and acquired resistance of E. coli to CAP. The
study showed that no natural resistance to CAP occurs in the tested E. coli population, and no
build-up for secondary resistance was observed [52]. In our study, 2 scenarios can be hypothe-
sized. It is possible that colonies grew in the plasma treatment zone after incubation because
they either a) had a favorable natural mutation before the treatment or b) plasma exposure
induced such a mutation. It is feasible that the experimental approach (choosing surviving col-
onies after incubation) led to enrichment of plasma-resistant persister cells.

The second scenario, that plasma exposure can induce mutations, could occur via stimulat-
ing a stress response. By producing a reactive mix of species, CAP is a DNA-damaging agent
that could have the effect of inducing a stress response and subsequent mutations that lead to
plasma resistance and the formation of persister cells. P. aeruginosa can adapt to changing
environments (such as oxidative stress) with beneficial mutations. For example, MutS and
DinB (DNA Polymerase IV) have been shown to be involved in DNA-damaged mutagenesis
[53]. DNA-damaging RONS were shown to accumulate in the centre of P. aeruginosamicroco-
lonies, leading to cell death [54]. Furthermore microcolonies are hot spots for accumulation of
mutations [55]. Conibear et al showed that up to 100-fold higher mutation rate occurs in bio-
films compared to planktonic growth in P. aeruginosa. This mutator phenotype can enhance
microcolony-based growth and is proposed to be important for a better adaptation to growth
in overcrowded conditions [55]. There is also evidence that an accumulation of RONS in P.
aeruginosa biofilms leads to DNA lesions in phage which in turn triggers the occurrence of
phenotypic variants [56]. It is hypothesized that creating many phenotypic variants generates
genetic diversity, which in turn secures survival under different environmental conditions,
including oxidative stress [57].

Our results show that 4 of the 10 detected DNA changes upon plasma exposure relate to
phenazine biosynthesis genes. Phenazines are brightly colored small molecules naturally pro-
duced by Pseudomonas. P. aeruginosa contains a complex phenazine biosynthetic pathway
consisting of two homologous core loci (phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2)
[58]. Phenazines themselves are a potent broad-spectrum antibiotic, giving Pseudomonads an
advantage that allows them to outcompete other bacteria [59]. Furthermore, phenazine were
shown to increase resistance to antibiotics [34] and promote anaerobic survival via extracellu-
lar electron transfer [60]. There is evidence that phenazines have a protective role in oxidative
stress regulation [15]. In P. aeruginosaOxyR regulates the defense to oxidative stress and oxyR
mutation affects production of the phenazine redox-active molecule pyocyanin. OxyR mutants
can only grow in Pseudomonas P agar, which induces pyocyanin, but cannot grow well in
Luria Bertani media unless external pyocyanin is added [15] demonstrating that the phenazine
molecule pyocyanin has a protective role in P. aeruginosa.

Our results suggest a role for phenazines in the bacterial response to plasma exposure as bio-
films of different phz transposon mutants are more sensitive to CAP treatment. In addition our
results show that variants that survived CAP treatment could also grow under higher concen-
trations of hydrogen peroxide compared to gas treated cells. This clearly demonstrates a role
for oxidative stress in plasma-mediated killing. Moreover, a link between oxidative stress regu-
lons (OxyR, SoxR and OspR) and different phenazine productions has been reported
[15,61,62] supporting our results for the involvement of phenazines in plasma survival and
resistance.

In conclusion, our study demonstrates that CAP can be a valuable tool in combating bacte-
rial biofilms. However, care must be taken as low doses may lead to the emergence of resistant
bacteria and the formation of persister cells.
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