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Abstract
Paracoccidioidomycosis (PCM) is a systemic granulomatous human mycosis caused by

fungi of the genus Paracoccidioides, which is geographically restricted to Latin America. Inha-

lation of spores, the infectious particles of the fungus, is a common route of infection. The

PCM treatment of choice is azoles such as itraconazole, but sulfonamides and amphotericin

B are used in some cases despite their toxicity to mammalian cells. The current availability of

treatments highlights the need to identify and characterize novel targets for antifungal treat-

ment of PCM as well as the need to search for new antifungal compounds obtained from natu-

ral sources or by chemical synthesis. To this end, we evaluated the antifungal activity of a

camphene thiosemicarbazide derivative (TSC-C) compound on Paracoccidioides yeast. To
determine the response of Paracoccidioides spp. to TSC-C, we analyzed the transcriptional

profile of the fungus after 8 h of contact with the compound. The results demonstrate that

Paracoccidioides lutzii induced the expression of genes related to metabolism; cell cycle and

DNA processing; biogenesis of cellular components; cell transduction/signal; cell rescue,

defense and virulence; cellular transport, transport facilities and transport routes; energy; pro-

tein synthesis; protein fate; transcription; and other proteins without classification. Addition-

ally, we observed intensely inhibited genes related to protein synthesis. Analysis by

fluorescence microscopy and flow cytometry revealed that the compound induced the pro-

duction of reactive oxygen species. Using an isolate with down-regulated SOD1 gene expres-

sion (SOD1-aRNA), we sought to determine the function of this gene in the defense of

Paracoccidioides yeast cells against the compound. Mutant cells were more susceptible to

TSC-C, demonstrating the importance of this gene in response to the compound. The results

presented herein suggest that TSC-C is a promising candidate for PCM treatment.
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Introduction
Paracoccidioidomycosis (PCM) is a systemic mycosis geographically restricted to Latin
America caused by thermodimorphic fungi of the genus Paracoccidioides. The fungi usually
infect the host through the respiratory tract by inhalation of conidia, which are the infectious
propagules found in the environment. In the lungs, these propagules differentiate into the
pathogenic form in a temperature-dependent manner, corresponding to the yeast phase of
the fungus, and spreads to other organs through lymphohematogenous dissemination.
Because this mycosis affects mainly rural males of working age between the ages of 30 and 50
years, the disease has socioeconomic repercussions due to its potential to debilitate. In addi-
tion to the lungs, PCM frequently compromises the mucous membranes, lymph nodes, liver,
spleen and bone marrow [1,2].

Treating PCM remains a challenge due to the toxicity of the antifungals commonly used
to treat this mycosis—sulfonamides, azoles and polyenes [3,4]. Additionally, despite the use
of antifungals, individuals with PCM have persistent latent foci, which slow down treatment
and may extend it over months or years depending on the severity of the disease and the site
of injury [5,6,7]. Thus, the need to research and develop new therapeutic approaches is
increasingly evident. With this aim, our group has invested effort into identifying and charac-
terizing novel targets for antifungal drugs against Paracoccidioides spp. [8–16] and searching
for new antifungal compounds obtained from natural sources or their synthetic derivatives
[17,18,19].

The monoterpenoids are the components of essential oils, which are produced in large
quantities by plants. These molecules are significant due to their therapeutic potential, low
cost as well as the commercial availability, being used as starting material for synthesis of bio-
active compounds [20,21]. Following this approach a series of thiosemicarbazides and thiose-
micarbazones deriving from bisabolol, kaurenoic acid, limonene and camphene were
synthetized by our research group [22,23,24]. Among them, the tiosemicarbazide camphene
derivative (TSC-C) showed remarkable antifungal activity. The previous study showed that
TSC-C inhibited the growth of Trichophyton mentagrophytes by damaging the cell wall struc-
ture or interfering with its formation during the process of cell division, growth or morpho-
genesis [24]. Based on these results, we elected TSC-C to study its activity and mode of action
on Paracoccidioides brasiliensis.

We constructed a cDNA library to obtain expressed sequences tags (ESTs) from P. lutzii in
response to TSC-C with the ultimate aim to identify the likely mode of action of the compound
in the fungus. We performed assays to confirm the transcriptome data to P. lutzii and Paracoc-
cidioides brasiliensis, such as quantitative real-time PCR (qRT-PCR), fluorescence microscopy,
DNA fragmentation, cell cycle analysis by flow cytometry and enzymatic assays.

Materials and Methods

General procedure for the preparation of compounds
The TSC-C was prepared as described by Yamaguchi [24].

Microorganism and cell culture
The P. lutzii ATCCMYA 826 and P. brasiliensis ATCC 60855 strains were used in the assays.
Yeast cells were maintained in Fava-Netto liquid medium [25] for 3 days. The cells were then
transferred and grown overnight in McVeigh Morton (MMcM) liquid medium overnight [26]
and subsequently used in experiments.

Response of Paracoccidioides to Camphene Thiosemicarbazide Derivative

PLOS ONE | DOI:10.1371/journal.pone.0130703 June 26, 2015 2 / 25

Goiás), CAPES (Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior), FINEP (Financiadora
de Estudos e Projetos), and INCT-IF (Instituto
Nacional de Ciência e Tecnologia para Inovação
Farmacêutica). Additionally, LCS was supported by
fellowship from CNPq and SVCC, LBP, NPC from
CAPES. The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



Determination of inhibitory concentration (IC50)
Preparation of resazurin. Resazurin powder (Sigma Aldrich, St. Louis, MO, USA) was

dissolved in sterile distilled water at a final concentration of 0.02%, sterilized by filtration and
stored at 4°C until use.

Preparation of the camphene thiosemicarbazide derivative. The stock solution of
TSC-C was prepared in dimethyl sulfoxide (10% DMSO) and diluted to obtain the evaluated
concentrations (316 μM, 158 μM, 79 μM, 39.5 μM and 19.5 μM).

The determination of IC50 was performed according to the micro-dilution method
described in the Clinical and Laboratory Standards Institute (CLSI) [27] and De Paula et al.
[28]. Were inoculated 1x106 cells/mL of P. lutzii yeast cells per microplate well in MMcM liq-
uid medium supplemented with 316 μM, 158 μM, 79 μM or 39.5 μMTSC-C. To determine the
maximum growth rate (positive control), some wells received culture medium in place of the
100 mL of test compound dilution. The plates were incubated at 36°C with shaking at 150 rpm
for 48 h. Each well then received 15 μL of the resazurin solution, and the plate was re-incubated
for 24 h. The IC50 was defined as the concentration of compound capable of inhibiting 50% of
cell growth of the fungus according to the absorbance at 600 nm.

Determination of the susceptibility of P. lutzii to the camphene
thiosemicarbazide derivative
The TSC-C sensitivity test was carried out on plates containing Fava-Netto semi-solid medium
supplemented with TSC-C. The concentrations tested were 316 μM, 158 μM, 79 μM and
39.5 μM. Negative control plates were prepared in the absence of TSC-C. A total of 105, 106

and 107 yeast cells were inoculated on each plate. The plates were incubated for 7 days at 36°C
and photographed.

Viability curve
Cell viability was determined using trypan blue staining and standard cell count techniques in
a Neubauer chamber. We inoculated 1x106 cells/mL of P. lutzii yeast cells in MMcM liquid
medium supplemented with TSC-C at 79 μM—the IC50 concentration—for 0, 1, 2, 3, 4, 8 and
24 h of incubation. The negative control was performed in the absence of TSC-C. For counting,
samples were collected at specific time points, and 10 μL of the cell solution was added to
190 μL trypan blue solution and diluted to a final volume of 1 mL. Yeast cells were observed
under light microscopy with a 40X lens.

RNA extraction and purification of mRNA
Total RNA was extracted after the incubation of Paracoccidiodies spp. yeast with TSC-C at
79 μM for 8 h of cultivation. The RNA was extracted with Trizol reagent (Invitrogen), precipi-
tated with isopropanol, and resuspended with diethyl pyrocarbonate- (DEPC-) treated water.
The mRNA was purified using the GenElute mRNA kit (Sigma Aldrich).

cDNA library construction and DNA sequencing
The cDNA library was built using the SuperScript Plasmid System with Gateway Technology
for cDNA Synthesis and Cloning kit (Invitrogen). The cDNA was cloned into the pCMV.
SPORT6 plasmid vector and transformed into E. coli (XL1blue) cells. The cDNA library was
plated at approximately 200 colonies per plate (150 mm Petri dish). The colonies were ran-
domly selected and transferred to a 96-well polypropylene plate containing LB medium and
grown overnight. Plasmid cDNA was isolated and purified.
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cDNA inserts were sequenced from the 5’ end by employing standard fluorescence labeling
with the DYEnamic ET dye terminator kit with an M13 flanking vector primer. Automated
sequence analysis was performed in a MegaBACE 1000 DNA sequencer (GE Healthcare, Upp-
sala, Sweden).

Pipeline processing and annotation of ESTs
PHRED [29], Crossmatch (http://www.macvector.com/Assembler/trimmingwithcrossmatch.
html) and CAP3 [30] tools were integrated into a pipeline (http://www.lbm.icb.ufg.br/
pipelineUFG/). Only sequences with at least 50 nucleotides and a PHRED quality greater or
equal to 20 were considered for assembly and cluster formation. ESTs were screened for vector
sequences against the UniVec data. All of the clustered sequences were queried for similarity
using BLASTX (http://www.ncbi.nlm.nih.gov/BLAST) sequence comparison software against
the nucleotide database generated from the P. lutzii Pb01 structural genome (http://www.
broad.mit.edu/annotation/genome/paracoccidioides_brasiliensis/MulHome.html). Sequences
were grouped into functional categories with the PEDANT3 database (http://pedant.
helmholtz-muenchen.de/index.jsp). Similarities with E-values� 10−5 were considered signifi-
cant. The Munich Information Center for Protein Sequences (MIPS) (http://mips.gsf.de/) data-
base was used to assign functional categories. EC numbers were obtained by the Enzyme
Database-Brenda (http://www.brenda-enzymes.info)

In silico determination of up-regulated genes
To assign a differential expression character, ESTs from contigs formed from yeast cells treated
with TSC-C were statistically evaluated using the method by Audic and Claverie [31]. Overex-
pressed genes, determined by comparison to the P. lutzii transcriptome database (https://dna.
biomol.unb.br/Pb/), were determined with a 95% confidence rate.

Generation of P. brasiliensis SOD1-aRNA isolate
DNA from the P. brasiliensis wild-type strain ATCC 60855 (WT) was extracted from yeast
cultures during exponential growth. We employed a high-fidelity Platinum Taq DNA poly-
merase (Invitrogen, Carlsbad, CA, USA) to amplify aRNA oligonucleotides designed on the
PABG_03954 (www.broadinstitute.org) sequence of the SOD1 gene. P. brasiliensis plasmid
construction for aRNA and Agrobacterium tumefaciens-mediated transformation were per-
formed as previously described [32]. Briefly, the amplified SOD1-aRNA oligonucleotides
were inserted into the pCR35 plasmid under the control of the Calcium Binding Protein 1
(CBP-1) promoter region from Histoplasma capsulatum [33]. The pUR5750 plasmid was
used as a parental binary vector to harbor the aRNA cassette within the transfer DNA
(T-DNA). The constructed binary vectors were introduced into A. tumefaciens LBA1100
ultracompetent cells by electroporation as described previously [34] and isolated by kanamy-
cin selection (100 mg/mL).

P. brasiliensis and A. tumefaciens were combined in a 1:10 ratio and incubated for 3 days of
co-culture at 28°C. Selection of P. brasiliensis transformants was performed in BHI solid media
containing hygromycin B (Hyg; 200 mg/mL) over a 15 day incubation period at 36°C. Ran-
domly selected Hyg resistant transformants were tested for mitotic stability. P. brasiliensis
yeast cells transformed with the empty parental vector pUR5750 (EV) were used as controls
alongside the experimental yeast in the assays carried out in this study. The integration of the
a-RNA cassette in the P. brasiliensis genome was confirmed by PCR analysis.
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Determination of the susceptibility of P. brasiliensis and the SOD1-aRNA
isolate to TSC-C
To evaluate the susceptibility of P. brasiliensis to TSC-C, the WT, EV and SOD1-aRNA isolate
strains were grown in Fava-Netto liquid medium for 72 h under constant shaking at 150 rpm
and 36°C. Yeast were then transferred into MMcM liquid medium and cultured overnight.
Yeast cells were then washed with 1X PBS, and the assays were performed with 1x106 cells. The
different isolates were distributed in solid BHI medium supplemented with 316 μM, 158 μM,
79 μM and 39.5 μMTSC-C. The controls were carried out in the same medium without the
addition of TSC-C. The SOD1-aRNA isolated was growth in the presence of TSC-C added of
ascorbic acid aiming to validate the influence of TSC-C as indutor agente of ROS. Initially, the
concentrations from 0.08 to 100 mM ascorbic acid were used to determinate IC50 (data not
shown). So, 0.2 mM ascorbic acid was added at 316 μM, 158 μM, 79 μM and 39.5 μMTSC-C.
All plates were incubated for 6 days at 36°C before being photographed.

Gene expression analysis by qRT-PCR
Total RNA was obtained from Paracoccidioides spp. yeast cells grown in the presence or absence
of TSC-C for 8 h. After treatment with DNase, the cDNA was synthesized from total RNA
using Superscript II reverse transcriptase (Invitrogen) according to the manufacturer's instruc-
tions. The primers for, ATP synthase, Superoxide dismutase (SOD1) [PABG_03954 (www.
broadinstitute.org)], Heat shock protein 30 kDa (HSP30), alcohol dehydrogenase (ADH), alde-
hyde dehydrogenase (ALDH) and α-tubulin genes were designed using the Primer Express soft-
ware (Applied Biosystems, Foster City, CA, USA). The sequences of the oligonucleotide
primers are shown in Table 1. The qRT-PCR analyses were performed in triplicate with the Ste-
pOnePlus real-time PCR system (Applied Biosystems). The expression values were calculated
using the alpha tubulin transcript (XM_002796593) as the endogenous control as reported pre-
viously [35]. For transcripts of interest, relative expression levels were calculated using the stan-
dard curve method for relative quantification [36]. The relative standard curve was generated
by pooling cDNAs from all conditions and serially diluting them from 1:5 to 1:625.

Preparation of protein extracts from P. lutzii
Protein extracts were obtained after 8 h incubation in MMcM in the presence of 79 μMTSC-C
or in its absence. Yeast cells were centrifuged at 10,000 x g for 10 min at 4°C, and the proteins
were extracted using extraction buffer (20 mM Tris-HCl pH 8.8; 2 mM CaCl2) with a mixture
of protease inhibitors (GE Healthcare). After the addition of glass beads (0.45 mm), the cells
were lysed in a bead-beater, followed by centrifugation at 10,000 x g for 15 min at 4°C. The
supernatant was collected and used in enzyme activity assays. The protein concentrations were
determined using the Bradford reagent (Sigma-Aldrich), as previously described [37].

Table 1. Oligonucleotide primers used in qRT-PCR.

Sequence Name Forward primer (5’-3’) Reverse primer (5’-3’) Tm (GC+AT)

Alpha-Tubulin ACAGTGCTTGGGAACTATACC GGGACATATTTGCCACTGCC 62

Superoxide dismutase 1 ACTGCGCAAGTTATGATGGAA CACGGGAAGGGTCCATTTTC 62

ATP synthase AAGCAGCGAAAATAATGGGATC GCAAATAATCCTGTAGCTTCTG 62

Heat shock protein 30 kDa GGCCTTGACAGCATTCTGG CTGGCGATAAAGGGCAGAAG 62

Alcohol dehydrogenase ACCTTGTTGTGCTGGAGTAGA GGAGTCTGGAATCGGGGTG 62

Aldehyde dehydrogenase CCTCTTACGGCCTTGCTGC CGGACGCCCTTGATCTGAG 62

doi:10.1371/journal.pone.0130703.t001
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Determination of enzymatic activity
SOD activity was measured using a commercially available kit (SOD assay Kit Sigma-Aldrich)
following the manufacturer's instructions. The SOD assay kit utilizes the water-soluble tetrazo-
lium salt-WST-1 (2-[4- Iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H-tetrazolium,
monosodium salt), which produces a water-soluble formazan dye upon reduction with a super-
oxide anion, and the product can be detected by a colorimetric method at 440 nm. 1 μg/mL of
proteins was used in assay, and the levels of SOD activity were quantified by measuring the
decrease in absorbance.

Reactive oxygen species (ROS) detection
Intracellular H2O2 was measured by detecting the fluorescence intensity of 2`,7`-dichloro-
fluorescein, the oxidation product of 2`,7`-dichlorofluorescein diacetate. After treatment
with 79 μM TSC-C for 4, 8 and 12 h, yeast cells were centrifuged and incubated with 20 μM
2`,7`- dichlorofluorescein diacetate for 30 min at 37°C. After washing with PBS, yeast cells
were resuspended in 1 mL PBS and analyzed with a BD Accuri C6 flow cytometer (Accuri
Cytometers, Ann Arbor, MI, USA). A total of 10,000 cells per sample were acquired with the
FL1-H channel.

Fluorescence microscopy
Yeast cells were inoculated in 100 mL MMcMmedium at 1x106 cells/mL. The cultures were
incubated overnight at 36°C with gentle shaking. Cells were then centrifuged at 5,000 x g for
5 min and transferred into MMcMmedia containing 79 μM TSC-C for 4, 8 and 12 h. Control
cells were incubated in MMcM without TSC-C. To detect ROS, cells were centrifuged and
incubated with 20 μM 2`,7`- dichlorofluorescein diacetate for 30 min at 37°C. The specimens
were analyzed with an Axio Scope A1 microscope and Axio Vison LE software (Carl Zeiss
AG, Germany).

DNA fragmentation assay
Yeast cells were treated with 79 μMTSC-C for 4, 8 and 12 h. Samples were centrifuged, the cell
pellet was resuspended in 300 mL of cell lysis buffer (10 mM Tris, 0.5% Triton X-100, pH 7.5),
and the sample was incubated on ice for 30 min. The lysates were centrifuged at 12,000 x g for
10 min at 4°C, and the supernatants were extracted once with buffered phenol and once with
chloroform. DNA was precipitated with 3 M sodium acetate and butanol. DNA samples were
resuspended in 50 μL Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, pH 7.5) treated with RNa-
seA. Extracted DNA was electrophoresed through a 2% agarose gel and stained with ethidium
bromide.

Cell cycle analysis
The DNA content of yeast cells in the G0/G1, S and G2/M phases was measured using a BD
Accuri C6 flow cytometer (Accuri Cytometers). Cells were incubated with 79 μMTSC-C for 4,
8 and 12 h. After treatment, the cells were collected, washed with PBS 1X, and 1x106 cells/mL
were fixed with cold absolute ethanol overnight at 4°C. After two washes with PBS 1X, the cells
were incubated with 1 mL propidium iodide staining solution (2 μg/mL) and 50 μL RNase (10
mg/mL) and incubated for 30 min at room temperature in the dark. A total of 10,000 cells per
sample were acquired with the FL2-H channel. Data were collected using FCS Express 4 Plus
Research Edition software (Denovo Software, Los Angeles, CA, USA).
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Mitochondrial membrane potential measurement
The mitochondrial membrane potential was measured using rhodamine 123 (Rho123). Yeast
cells were treated with 79 μMTSC-C for 4, 8 and 12 h. After treatment, the cells were collected
by centrifugation and incubated with 20 μM Rho123 for 20 min at room temperature. After a
PBS wash, the cells were resuspended in 1 mL PBS and analyzed using a BD Accuri C6 flow
cytometer (Accuri Cytometers) with excitation and emission wavelengths of 488 and 530 nm,
respectively.

Statistical analysis
Descriptive statistics were calculated from the results, and charts were created in Microsoft
Office Excel 2003 (Microsoft, Redmond, WA, USA). In this study, all of the values were
expressed as arithmetic means with S.D. of triplicates. The significant differences between the
groups were analyzed by Student’s t-test and p-values�0.05 were considered statistically
significant.

Results and Discussion

The camphene thiosemicarbazide derivative affects Paracoccidioides
spp. growth and viability
Here, we aimed to evaluate the effect of TSC-C on P. lutzii. The cells were incubated in the
presence of TSC-C. Fig 1A demonstrates that TSC-C inhibited yeast growth in a dose-depen-
dent manner. TSC-C at a concentration of 79 μM inhibited the cellular growth by 50% and
became the IC50 value of TSC-C for Paracoccidioides yeast. Additionally, the cellular viability
of the fungus was monitored in the presence of 79 μMTSC-C for 24 h. Fig 1B reveals that the
yeast cell viability drops to 85% after 8 h of exposure to TSC-C, time used for the transcrip-
tomic analysis. The dose-dependent inhibition was also observed in yeast cells grown on the
solid medium supplemented with different concentrations of TSC-C (Fig 2). TSC-C (79 μM)
was not toxic to Balb 3T3 cells (data not shown), These results confirmed the antifungal activity
of this compound.

cDNA library construction and overview of ESTs from P. lutzii exposed to
TSC-C
A cDNA library was constructed to determine the expression profile of Paracoccidioides spp.
exposed to TSC-C. The dosage and duration of antifungal treatment are known to be critical
steps in adaptive gene expression [38]; thus, the choice of these parameters was necessary for
the construction of a cDNA library. The concentration used in the experiments was 79 μM cor-
responding to IC50 of TSC-C for P. lutzii. The fungus was exposed to TSC-C for 8 h, since
exhibited 85% viability.

We obtained a total of 2,012 clones, and 1,844 of these were successfully sequenced. All
sequences were arranged into 68 contigs and 686 singlets representing different transcripts. Of
these, 33 genes were down-regulated and 84 genes were up-regulated when compared to the
transcriptome P. lutzii yeast cells grown in vitro. A total of 64 genes were unique to TSC-C-
treated P. lutzii yeast cells. The ESTs obtained were submitted to the National Center for Bio-
technology Information (NCBI) under accession numbers: LIBEST_028508 Paracoccidioides
thiosemicarbazide Library.
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Functional annotation and analysis of sequences
All up- and down-regulated ESTs were compared to Paracoccidioides Pb01 genes in the Broad
Institute database with the Blast X program. Only ESTs with e-value< 10−5 were considered in
this analysis. All contigs and singlets were annotated with Blas2GO. The ESTs were grouped
according to the MIPS functional annotation scheme (Munich Information Center for Protein
Sequences) into general functional categories affected by TSC-C. The ESTs were related to

Fig 1. Effect of TSC-C on P. lutzii yeast cell growth. (A) Inhibition of Paracoccidioides cell growth after treatment with TSC-C. The inhibition was visualized
by addition of resazurin reagent to culture and measuring the absorbance at 600 nm. To calculate the IC50 value, two absorbance readings were performed;
‘1° day’ refers to reading at the beginning of the experiment, ‘3° days’ refers to reading after 3 days of incubation with 316 μM, 158 μM, 79 μM and 39.5 μM
TSC-C. The positive control was performed in the absence of the compound. (B) Cell viability after 1, 2, 3, 4, 8 and 24 h exposure to TSC-C. The data are
presented as percentage of cell viability. The Student’s t-test was used for statistical comparisons, and the observed differences were statistically significant
(p� 0.05). The error bars represent the standard deviation of three biological replicates.

doi:10.1371/journal.pone.0130703.g001
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Fig 2. Susceptibility of P. lutzii yeast cells exposed to TSC-C. Samples containing 1x107, 1x106 and
1x105 yeast cells were spotted on Fava-Netto plates supplemented with TSC-C at the concentrations
indicated above. The plates were incubated for 7 days at 36°C before photo documentation.

doi:10.1371/journal.pone.0130703.g002
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metabolism; cell cycle and DNA processing; biogenesis of cellular components; cellular com-
munication/signal transduction mechanism; cell rescue, defense and virulence; energy; protein
synthesis; protein fate; translation; and unclassified proteins (Table 2).

Graphs were plotted to demonstrate the statistically enriched MIPS functions with up- or
down-regulated genes after exposure to the compound. A total of 51% (161 ESTs) were associ-
ated with proteins of unknown function (Fig 3A). Transcriptome analysis revealed that ESTs
associated with metabolism (9%) and protein synthesis (9%) were the most highly represented
after 8 h of TSC-C exposure (Fig 3B). The TSC-C treatment resulted in the up- and down-regu-
lation of genes involved in different biological processes (Table 2; Fig 3C and 3D). The groups
with the highest percentage of up-regulated genes were unclassified proteins (50%); metabo-
lism (12%); cell cycle and DNA processing (8%); energy (6%); transcription (5%); protein fate
(5%); cellular transport, transport facilities and transport routes (5%); biogenesis of cellular
components (2%); protein synthesis (1%); and cell rescue, defense and virulence (1%) (Fig 3C).
The highest percentage of down-regulated genes were grouped within protein synthesis (43%);
unclassified proteins (27%); cellular transport, transport facilities and transport routes (9%);
energy (6%); and cell rescue, defense and virulence (3%) (Fig 3D).

We analyzed transcript occurrence by determining the number of ESTs found for each tran-
script. The transcripts with the highest occurrence of up-regulated ESTs were as follows: hypo-
thetical protein PAAG_02996 (18 ESTs), histone H 4.1 (8 ESTs), hypothetical protein
PAAG_03567 (6 ESTs), hypothetical protein PAAG_07875 (5 ESTs), histone H2a (5 ESTs),
membrane-associated progesterone receptor component 1 (5 ESTs), 3-demethylquinone-9
3-methyltransferase (5 ESTs), hydroxymethylglutaryl-CoA lyase (5 ESTs) and superoxide dis-
mutase (5 ESTs). For down-regulated ESTs, the highest abundance were as follows: hypotheti-
cal protein PAAG_04431 (7 ESTs), hypothetical protein PAAG_03385 (5 ESTs), nucleoside
diphosphate kinase (5 ESTs) and ribosomal protein 60S –L31 (5 ESTs).

Description of transcripts changed during exposure to TSC-C
ABC transporter CDR4 was induced in TSC-C-treated P. lutzii yeast cells. These are transmem-
brane proteins that utilize energy generated by the hydrolysis of adenosine triphosphate (ATP)
to carry out biological processes including the translocation of various substrates across mem-
branes [39]. In addition, they are involved in multidrug resistance in other human pathogens
such as Candida albicans [40,41] Aspergillus fumigatus [42,43] and Cryptococcus neoformans
[44]. Notably, its induction has been correlated with the protection of Aspergillus nidulans
against cytotoxic agents [45].

Similarly, most genes related to protein fate were induced in the presence of TSC-C. Con-
versely, genes related to protein synthesis, mainly ribosomal proteins, were inhibited. It is well
established that ribonuclease inhibitors such as the vanadyl ribonucleoside complex (VRC) can
inhibit RNases involved in ribosomal subunit formation, resulting in a decreased rate of ribo-
somal subunit synthesis [46].

Another gene strongly repressed in the presence of TSC-C was the endoplasmic reticulum
and nuclear membrane protein NPL4. In Saccharomyces cerevisiae, the Npl4p protein is part of
a highly conserved protein complex required for the proteasome-mediated processing and acti-
vation of ER-membrane-bound transcription factors, resulting in proper membrane fluidity
and organelle function. Furthermore, the perturbation of membrane composition in mutant
npl4 cells leads to the loss of ER/nuclear envelope integrity, which in turn causes the observed
defects in nuclear transport [47].

Here, we observed the down-regulation of a high affinity copper transporter (Table 2), sug-
gesting that TSC-C could interfere with copper homeostasis on Paracoccidioides spp. Copper is
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Table 2. Functional classification of up and down-regulated genes from P. lutzii yeast cells in the presence TSC-C.

Functional classification/ Accession
number

Gene product EC
number

Number of occurences
ESTs

Metabolism

Amino acid metabolism
PAAG_00468.2 4-aminobutyrate aminotransferase 2.6.1.19 +3

PAAG_04052.2 Homoserine O-acetyltransferase 2.3.1.31 +2

C-compound and carbohydrate metabolism

PAAG_00771.2 Enolase 4.2.1.11 -1

PAAG_05580.2 NAD dependent epimerase/dehydratase family protein 5.1.3.2 +2

PAAG_08949.2 GPI Mannosyltransferase 2.4.1 +2

Lipid, fatty acid and isoprenoid metabolism

PAAG_05837.2 Palmitoyl-protein thioesterase 3.1.2.22 +2

PAAG_06329.2 3-hydroxybutyryl-CoA dehydrogenase 1.1.1.157 +1

PAAG_06215.2 Hydroxymethylglutaryl-coa lyase 4.1.3.4 +5

PAAG_08410.2 Acyl-coenzyme A:6-aminopenicillanic-acid-acyltransferase 40
kDa form

2.3.1.164 +2

PAAG_03203.2 Protoheme IX farnesyltransferase 2.5.1 +2

Nitrogen, sulfur and selenium metabolism
PAAG_00954.2 Urease 3.5.1.5 +2

Nucleotide/nucleoside/nucleobase metabolism
PAAG_04291.2 Nucleoside diphosphate kinase 2.7.4.6 -5

Cell cycle and DNA processing

DNA recombination and DNA repair
PAAG_04357.2 DNA mismatch repair protein +2

PAAG_05988.2 DNA-repair protein rad2 +2

PAAG_04646.2 Mold-specific protein MS95 +2

Cell cycle
PAAG_02186.2 Nuclear segregation protein Bfr1 +2

PAAG_00513.2 Cell division control protein +2

PAAG_07814.2 Subunit of condensin complex +2

PAAG_03188.2 Nuclear movement protein NUDC +2

Biogenesis of cellular componentes

Cytoskeleton/structural proteins
PAAG_05855.2 Ankyrin repeat domain containing protein +2

Cellular communication/signal transduction mechanism

Cellular signalling

PAAG_03783.2 GAF domain nucleotide-binding protein +3

PAAG_03386.2 cAMP—Dependent protein kinase catalytic subunit 2.7.11.11 +3

PAAG_03923.2 TRAF-type zinc finger protein +2

PAAG_01861.2 Membrane associated progesterone receptor component 1 1.6.2.2 +5

Cell rescue, defense and virulence

Stress response

PAAG_00871.2 Heat shock protein 30 kDa -1

PAAG_04164.2 Superoxide dismutase 1.15.1.1 +5

Cellular transport, transport facilities and transport routes

Transport routes

PAAG_00782.2 Small COPII coat GTPase sar +2

PAAG_07328.2 Transport protein SEC61 subunit alpha +4

(Continued)
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Table 2. (Continued)

Functional classification/ Accession
number

Gene product EC
number

Number of occurences
ESTs

PAAG_09049.2 ENTH domain-containing protein +2

PAAG_05643.2 Endoplasmic reticulum and nuclear membrane proteinc Npl4 -3

PAAG_08587.2 GPR1/FUN34/yaaH family protein -1

PAAG_05251.2 High affinity copper transporter -1

Transported compounds (substrates)

PAAG_00635.2 ABC transporter CDR4 3.6.3.44 +3

Energy

Glycolysis and gluconeogenesis
PAAG_00403.2 Alcohol dehydrogenase 1.1.1.1 -4

Energy conversion and regeneration
PAAG_04570.2 ATP synthase D chain, mitochondrial 3.6.3.14 -2

Respiration

PAAG_08901.2 Glyoxylate reductase 1.1.1.26 +2

PAAG_05249.2 Aldehyde dehydrogenase 1.2.1.3 -2

Electron transport and membrane-associated energy conservation
PAAG_06595.2 3-demethylubiquinone-9 3-methyltransferase +5

PAAG_05031.2 NADH-ubiquinone oxidoreductase 40 kDa subunit 1.6.5.3 +3

PAAG_01307.2 NADH dehydrogenase iron-sulfur protein 1.6.99.3 +2

PAAG_07593.2 Cytochrome-c oxidase chain VIIc 1.9.3.1 +2

Protein synthesis

Ribosome biogenesis
PAAG_09043.2 Ribossomal protein 40S—S2 -1

PAAG_01785.2 Ribossomal protein 40S—S3 -1

PAAG_05017.2 Ribossomal protein 40S—S10-A -3

PAAG_01433.2 Ribossomal protein 40S—S14 -1

PAAG_00088.2 Ribossomal protein 60S—L3 -2

PAAG_07955.2 Ribossomal protein 60S—L18 -1

PAAG_00205.2 Ribossomal protein 60S—L24 -1

PAAG_04965.2 Ribossomal protein 60S—L31 -5

PAAG_07841.2 Ribossomal protein 60s—P1 -2

PAAG_03664.2 Ribossomal protein L28e -2

PAAG_00206.2 Ribossomal protein S30 -2

PAAG_07649.2 Ribossomal protein S36 -2

PAAG_03828.2 Ribossomal protein 40 S-S9 -1

Translation
PAAG_02024.2 Elongation factor 1-alpha -2

PAAG_07105.2 Isoleucyl-tRNA synthetase 6.1.1.5 +2

Protein fate (folding, modification, destination)

Assembly of protein complexes
PAAG_05879.2 Complex I intermediate-associated protein -2

PAAG_02594.2 Phosphoprotein phosphatase 2C 3.1.3.16 +2

Protein folding and stabilization

PAAG_05788.2 Peptidyl-prolyl cis-trans isomerase A2 5.2.1.8 +2

Protein/peptide degradation
PAAG_05052.2 AAA Family ATPase +2

Protein modification

(Continued)
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Table 2. (Continued)

Functional classification/ Accession
number

Gene product EC
number

Number of occurences
ESTs

PAAG_05777.2 Dual specificity phosphatase catalytic domain containing
protein

+2

Transcription

RNA synthesis
PAAG_07098.2 Histone H4.1 +8

PAAG_08917.2 Histone H2a +5

PAAG_08532.2 Ribonuclease Z 3.1.26.11 +2

PAAG_00891.2 AT hook motif Family protein +2

Unclassified Proteins

PAAG_04823.2 Hypothetical protein +3

PAAG_03567.2 Hypothetical protein +6

PAAG_05112.2 Hypothetical protein +2

PAAG_04156.2 Hypothetical protein +2

PAAG_01567.2 Hypothetical protein +3

PAAG_03475.2 Hypothetical protein +2

PAAG_03684.2 Hypothetical protein +4

PAAG_03129.2 Hypothetical protein +3

PAAG_06864.2 Hypothetical protein +2

PAAG_01497.2 Hypothetical protein +2

PAAG_07875.2 Hypothetical protein +5

PAAG_04268.2 Hypothetical protein +3

PAAG_02546.2 Hypothetical protein +4

PAAG_08699.2 Hypothetical protein +3

PAAG_04869.2 Hypothetical protein +4

PAAG_02037.2 Hypothetical protein +2

PAAG_02676.2 Hypothetical protein +3

PAAG_07947.2 Hypothetical protein +3

PAAG_08808.2 Hypothetical protein +2

PAAG_00149.2 Hypothetical protein +2

PAAG_01940.2 Hypothetical protein +3

PAAG_07462.2 Hypothetical protein +3

PAAG_01216.2 Hypothetical protein +2

PAAG_02607.2 Hypothetical protein +3

PAAG_05412.2 Hypothetical protein +2

PAAG_05607.2 Hypothetical protein +4

PAAG_05415.2 Hypothetical protein +2

PAAG_07420.2 Hypothetical protein +2

PAAG_07885.2 Hypothetical protein +3

PAAG_00947.2 Hypothetical protein +2

PAAG_02407.2 Hypothetical protein +2

PAAG_08549.2 Hypothetical protein +3

PAAG_08355.2 Hypothetical protein +2

PAAG_02237.2 Hypothetical protein +2

PAAG_02996.2 Hypothetical protein +18

PAAG_07710.2 Hypothetical protein +3

PAAG_04455.2 Hypothetical protein +4

(Continued)
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an essential cofactor for a wide variety of enzymes in crucial biological processes critical for cell
growth, differentiation and survival [48,49]. Some studies suggest that copper acquisition plays
an important role in the virulence of C. neoformans [50]. However, at high intracellular concen-
trations, copper can be toxic due to the perturbation of the cellular redox potential, which
increases production of reactive free radicals and indirectly increases oxidative stress [51]. In S.
cerevisiae, the high-affinity copper transport proteins, which play an important role in regulating
copper homeostasis, are induced by copper deprivation and repressed by copper excess [52,53].

The mitochondrial electron transport chain performs the transfer of electrons from glycoly-
sis and the Krebs cycle and thereby creates an electrochemical gradient and energy, which is
used for a variety of vital processes that include, ATP synthesis [54], ion homeostasis [55], pro-
tein import [56] and programmed cell death [57]. Because energy metabolism and redox state
are potential targets, the development of drugs that specifically compromise the structural and
functional integrity of mitochondria may provide novel opportunities to combat fungal infec-
tions [58]. Studies in vitro have demonstrated the interaction between drugs and mitochondria
that may prove useful in several therapies [59,60,61]. In this sense, mitochondrial insult or fail-
ure can rapidly lead to the inhibition of cell survival and proliferation [62]. Furthermore, here
we uncovered that genes related to electron transport, such as NADH-ubiquinone oxidoreduc-
tase 40 kDa subunit, NADH dehydrogenase iron-sulfur protein and cytochrome-c oxidase
chain VII c, were induced in the presence of TSC-C; however, the expression of the ATP
synthase D chain was inhibited (Fig 4A), suggesting that TSC-C could destabilize the electron
transport chain and, as a consequence, decrease the production of ATP in P. lutzii.

TSC-C induces SOD1 up-regulation as a consequence of TSC-C-
induced ROS
Superoxide dismutases (SODs) constitute the primary antioxidant defense against ROS, pro-
moting dismutation of the superoxide radical (O2−) into molecular oxygen and H2O2, which

Table 2. (Continued)

Functional classification/ Accession
number

Gene product EC
number

Number of occurences
ESTs

PAAG_06704.2 Hypothetical protein +2

PAAG_08976.2 Hypothetical protein +2

PAAG_04152.2 Hypothetical protein +2

PAAG_05097.2 Hypothetical protein +2

PAAG_06142.2 Hypothetical protein +2

PAAG_01456.2 Hypothetical protein +2

PAAG_04691.2 Hypothetical protein -2

PAAG_04913.2 Hypothetical protein -1

PAAG_04707.2 Hypothetical protein -2

PAAG_03385.2 Hypothetical protein -5

PAAG_07334.2 Hypothetical protein -4

PAAG_04431.2 Hypothetical protein -7

PAAG_08722.2 Hypothetical protein -2

PAAG_00415.2 Hypothetical protein -3

PAAG_03232.2 Hypothetical protein -2

Genes in bold correspond to single genes in condition TSC-C. The signs + and - represent induced and repressed genes, respectively.

doi:10.1371/journal.pone.0130703.t002
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are less toxic for the cell. ROS-generating agents induce fungal SODs, among other proteins
[63]. SOD3 protects H. capsulatum yeast cells from host-derived oxidative stress by detoxifying
ROS produced by macrophages and neutrophils, thereby enabling the survival of the fungus
[64]. In the case of Paracoccidioides spp., the induction of SOD1 protein is similarly observed in
cells exposed to H2O2 [65]. In C. albicans, another fungal pathogen, the inactivation of ROS
detoxifying enzymes has been shown to attenuate its virulence [66].

Here, we confirmed the up-regulation of SOD1 in P. lutzii and P. brasiliensis by qRT-PCR
(Figs 4A and 6D) and by enzymatic activity assay in P. lutzii (Fig 4B), suggesting that TSC-C
could induce the formation of ROS leading to oxidative stress in Paracoccidioides spp. yeast
cells. Thus, to confirm our hypothesis, we evaluated the production of ROS by means of

Fig 3. Statistically enrichedMIPS functions. (A) Total ESTs represented by classified and unclassified categories. (B)Genes expressed differentially in
the presence of camphene thiosemicarbazide derivate. Up- (C) or down- (D) regulated P. lutzii genes after exposure of yeast cells to TSC-C. The functional
classification was based on the MIPS functional annotation scheme. Each functional class is represented as a color-coded segment and expressed as a
percentage of the total number of ESTs.

doi:10.1371/journal.pone.0130703.g003
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Fig 4. Effect of TSC-C on the genes and SOD1 activity of P. lutzii (A)Gene expression profile of yeast cells exposed to TSC-C for 8 h. Changes in the gene
expression levels were calculated by the relative standard curve method using the non-treated control samples to calibrate. Each error bar represents the
standard error of the mean (±SD), and significant fold changes are denoted by asterisks in the figure (*p�0.05). Data were normalized with the transcript
encoding the α-tubulin protein. (B) SOD1 activity. Yeast cells were grown in the presence of TSC-C for 8 h, and total protein was extracted to measure SOD1
activity. The Student’s t-test was used for statistical comparisons, and the observed differences were statistically significant (p�0.05). Error bars represent
the standard deviation of three biological replicates.

doi:10.1371/journal.pone.0130703.g004
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Fig 5. Formation of ROS by TSC-C. (A) Fluorescence microscopy of P. lutzii yeast cells stained with 2`,7`-dichlorofluorescein diacetate. Yeast cells were
grown in the absence of TSC-C for i) 4 h, ii) 8 h and iii) 12 h and in the presence of TSC-C for iv) 4 h, v) 8 h and vi) 12 h. (B) Flow cytometry analysis of yeast
cells grown in the absence or in the presence of TSC-C. The cells were monitored for i) 4 h, ii) 8 h and iii) 12 h stained with 2`,7`-dichlorofluorescein
diacetate. Black histograms represent control yeast cells, and green histograms represent yeast cells treated with TSC-C.

doi:10.1371/journal.pone.0130703.g005
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fluorescence microscopy and flow cytometry. In yeast cells treated with TSC-C, we observed an
increase in fluorescence in a time-dependent manner, indicating that this compound could be
inducing the formation of ROS in P. lutzii (Fig 5A and 5B). The main classes of antifungal
drugs used in the treatment of invasive fungal infections, such as azoles, polyenes and echino-
candins, are also capable of inducing ROS production [67,68].

Taking into account the above results, we inquired about the importance of SOD1 during
TSC-C treatment. To validate our assumption, we created a P. brasiliensis isolate (SOD1-
aRNA) with down-regulated SOD1 gene expression (Fig 6A and 6B). The PCR analysis was
performed to confirm the integration of the a-RNA cassette in the P. brasiliensis genome (Fig
6C). SOD1-aRNA was obtained to ATCC 60855 isolate since SOD1 was also induced in this
isolate (Fig 6D) and the protocol to obtainment of mutant to P. brasiliensis has not yet stan-
dardized. The susceptibility of ATCC60855 and SOD1-aRNA to TSC-C was evaluated (Fig 7).
When SOD1-aRNA isolate cells were exposed to TSC-C, we observed a reduced growth rate
relative to WT and EV yeast cells. The growth was restored in the presence of antioxidant,
ascorbic acid. This result corroborates our transcriptional data that indicate an up-regulation
of SOD1 during TSC-C treatment and suggests that the up-regulation of this gene is important
for Paracoccidioides survival in the presence of the compound.

Fig 6. Gene silencing of SOD1 in P. brasiliensis. (A) Transfer DNA (T-DNA) inserted into the genome of P. brasiliensis yeast cells via ATMT in order to
silence the SOD1 gene. The antisense oligonucleotide was directed to exon 3 (black box) that amplify a length of 85 bp. This AS oligonucleotide was placed
under the control of the calcium binding protein (CBP-1) with a terminator (CAT-B); the plasmid contained hygromycin B phosphotransferase (HPH) under the
control of glyceraldehyde 3-phosphate of Aspergillus nidulans (PGPDA) with a terminator (TTRCP). (B) PbSOD1 gene expression levels obtained by RT-
qPCR. The measurement was normalized with the housekeeping gene alpha-tubulin in WT, EV and SOD1-aRNA yeast cells growing in the exponential
phase. Mitotic stability was confirmed by sub-culturing P. brasiliensis SOD1-aRNA yeast cells and testing for low expression levels in this isolate after
successive sub-cultures. (C) Validation by PCR of the presence and integration of the Transfer DNA (T-DNA) into the genome of P. brasiliensis transformant.
The genomic DNA from the SOD1-aRNA isolate was tested by PCR using specific primers for the alpha-tubulin gene TUB (Tub, lane 3), for the
transformation constructs pCR35 (pCR, lane 4) and pUR5750 (pUR, lane 5) and for the hygromycin resistance gene (hph, lane 6). (D) SOD1 expression
profile in P. brasiliensis after exposure to TSC-C. RNA was extracted after 8 h of exposure of yeast cells to TSC-C. Changes in gene expression levels were
calculated by the relative standard curve method using the non-treated control samples to calibrate.

doi:10.1371/journal.pone.0130703.g006
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TSC-C-induced ROS leads to the collapse of the P. lutziimitochondrial
membrane
Mitochondrial ROS production can lead to the oxidative damage of mitochondrial proteins,
membranes and DNA, thereby impairing the ability of this organelle to synthesize ATP and
carry out its wide range of metabolic functions; such functions include the tricarboxylic acid
cycle, fatty acid oxidation, the urea cycle and amino acid metabolism, which are pivotal for the
normal function of most cells [69]. Furthermore, ROS also would cause a transition in mito-
chondrial permeability. This transition consists of the loss of the mitochondrial membrane

Fig 7. Susceptibility of P. brasiliensis SOD1-aRNA to TSC-C. 1x106 yeast cells of P. brasiliensisWT60855, EV60855 and SOD1-aRNA were spotted on
solid BHI supplemented with 39.5, 79 and 158 μM TSC-C. Control cells were spotted on BHI without TSC-C or with 39.5, 79 and 158 μM TSC-C and ascorbic
acid. The plates were incubated for 7 days at 36°C before photo documentation.

doi:10.1371/journal.pone.0130703.g007
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potential, resulting from the formation of pores, and subsequent cell death [70]. Because
TSC-C induces the production of ROS, we evaluated the mitochondrial membrane integrity by
estimating the electric potential (ΔCm) with fluorescence in yeast grown in the presence of
TSC-C for 4, 8 and 12 h. Flow cytometry analysis revealed a ΔCm decrease in the yeast cells
exposed to the compound relative to control cells (Fig 8), suggesting that the TSC-C-induced
ROS lead to the collapse of the mitochondrial membrane.

TSC-C inhibits cell proliferation by changing the expression profile of
genes related to the cell cycle
Cell cycle and DNA processing were among the major classes of overexpressed genes in P. lut-
zii cells exposed to TSC-C. From these, 8 were unique to yeast cells grown in the presence of
TSC-C, and these included DNA mismatch repair protein and DNA repair protein RAD2.
Therefore, we explored the possibility that the induction of these genes was associated with
DNA damage through a DNA fragmentation assay. In fact, we did not observe DNA fragmen-
tation in the samples cultured in the presence of TSC-C for any of the times tested (S1 Fig).

Considering the identity of the genes differentially regulated by the presence of the com-
pound, we evaluated the P. lutzii cell cycle by analyzing DNA content by flow cytometry. The
phase of the cell cycle was determined by the difference in DNA content between cells in the
pre-replicative (G0 and G1) phases, the replicative (S) phase (DNA synthesis) and the post-
replicative plus mitotic (G2+M) phases [71]. The results showed that the percentage of yeast
cells in the G1 phase increased in a time-dependent manner after exposure to TSC-C; further-
more, the number of cells in the S and G2 phases decreased (Fig 9). Altogether, these results
indicate that TSC-C inhibits cell proliferation by changing the expression profile of genes
related to the cell cycle.

Conclusion
TSC-C seems to induce the formation of ROS in Paracoccidioides spp., leading to the collapse
of the mitochondrial membrane, and also to inhibit cell proliferation by changing the expres-
sion of genes related to the cell cycle. Relevant genes related to protein synthesis, copper
homeostasis and cellular response induced by drugs or stress conditions were also observed in

Fig 8. Effect of TSC-C on the mitochondrial membrane potential of P. lutzii. The mitochondrial membrane potential (ΔΨm) was determined by flow
cytometry analysis of yeast cells treated with TSC-C for A) 4 h, B) 8 h andC) 12 h and stained with rodhamine123. Histograms in black represent the
controls, and red histograms represent cells treated with TSC-C.

doi:10.1371/journal.pone.0130703.g008
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Fig 9. Effect of TSC-C on the P. lutzii cell cycle. The DNA content of yeast in each cell cycle phase was
analyzed by flow cytometry in the absence of TSC-C for A) 4 h,B) 8 h andC) 12 h or in the presence of
TSC-C for D) 4 h, E) 8 h and F) 12 h and subsequently stained with ethidium iodide as represented by
histograms.

doi:10.1371/journal.pone.0130703.g009
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Paracoccidioides yeast cells exposed to TSC-C. The high percentage of unclassified proteins
found here indicates that further studies are needed in order to better understand how TSC-C
affects Paracoccidioides spp.

Supporting Information
S1 Fig. DNA fragmentation assay. DNA fragmentation was carried out in P. lutzii yeast cells
exposed to TSC-C at 79 μM for 4, 8 and 12 h. The controls were performed with yeast cells
incubated in the absence of TSC-C.
(TIF)

Author Contributions
Conceived and designed the experiments: LCS MP OHR JGMO CMAO CCS. Performed the
experiments: LCS DPTO SVCC LBP NPC. Analyzed the data: LCS CMAO AMB JAPR CMAS
MP. Contributed reagents/materials/analysis tools: CCS CMAS OHRMP. Wrote the paper:
LCS DPTO CMAO AMB JAPR OHR JGMOMP.

References
1. Bagagli E, Theodoro RC, Bosco SM, McEwen JG. Paracoccidioides brasiliensis: phylogenetic and eco-

logical aspects. Mycopathologia 2008; 165: 197–2007. PMID: 18777629

2. Bocca AL, Amaral AC, Teixeira MM, Sato PK, Shikanai-Yasuda MA, Soares Felipe MS. Paracoccidioi-
domycosis: eco-epidemiology, taxonomy and clinical and therapeutic issues. Future Microbiol. 2013;
8: 1177–1179. doi: 10.2217/fmb.13.68 PMID: 24020744

3. Marques SA. Paracoccidioidomycosis: epidemiological, clinical, diagnostic and treatment up-dating.
An Bras Dermatol. 2013; 88: 700–711. doi: 10.1590/abd1806-4841.20132463 PMID: 24173174

4. Travassos LR, Taborda CP, Colombo AL. Treatment options for paracoccidioidomycosis and new strat-
egies investigated. Expert Rev Anti Infect Ther. 2008; 6: 251–262. doi: 10.1586/14787210.6.2.251
PMID: 18380607

5. Borges SR, Silva GM, Chambela Mda C, Oliveira Rde V, Costa RL, Wanke B, et al. Itraconazole vs. tri-
methoprim-sulfamethoxazole: A comparative cohort study of 200 patients with paracoccidioidomyco-
sis. Med Mycol. 2014; 52: 303–310. doi: 10.1093/mmy/myt012 PMID: 24577007

6. Bocca AL, Amaral AC, Teixeira MM, Sato PK, Shikanai-Yasuda MA, Soares Felipe MS. Paracoccidioi-
domycosis: eco-epidemiology, taxonomy and clinical and therapeutic issues. Future Microbiol. 2013;
8: 1177–1191. doi: 10.2217/fmb.13.68 PMID: 24020744

7. Yasuda MA. Pharmacological management of paracoccidioidomycosis. Expert Opin Pharmacother.
2005; 6: 385–397. PMID: 15794730

8. De Oliveira KM, da Silva Neto BR, Parente JA, da Silva RA, Quintino GO, Voltan AR, et al. Intermolecu-
lar interactions of the malate synthase of Paracoccidioides spp. BMCMicrobiol. 2013; 13: 107. doi: 10.
1186/1471-2180-13-107 PMID: 23672539

9. Santana LA, Vainstein MH, Tomazett PK, Santos-Silva LK, Góes AM, Schrank A, et al. Distinct chiti-
nases are expressed during various growth phases of the human pathogen Paracoccidioides brasilien-
sis. Mem Inst Oswaldo Cruz. 2012; 107: 310–316. PMID: 22510825

10. Cruz AH, Brock M, Zambuzzi-Carvalho PF, Santos-Silva LK, Troian RF, Góes AM et al. Phosphoryla-
tion is the major mechanism regulating isocitrate lyase activity in Paracoccidioides brasiliensis yeast
cells. FEBS J. 2011; 278: 2318–2332. doi: 10.1111/j.1742-4658.2011.08150.x PMID: 21535474

11. Tomazett PK, Castro Nda S, Lenzi HL, de Almeida Soares CM, Pereira M. Response of Paracocci-
dioides brasiliensis Pb01 to stressor agents and cell wall osmoregulators. Fungal Biol. 2011; 115: 62–
69. doi: 10.1016/j.funbio.2010.10.005 PMID: 21215956

12. Tomazett PK, Félix CR, Lenzi HL, de Paula Faria F, de Almeida Soares CM, Pereira M. 1,3-β-d-Glucan
synthase of Paracoccidioides brasiliensis: recombinant protein, expression and cytolocalization in the
yeast and mycelium phases. Fungal Biol. 2010; 114: 809–816. doi: 10.1016/j.funbio.2010.07.007
PMID: 20943190

13. Pereira M, Song Z, Santos-Silva LK, Richards MH, Nguyen TT, Liu J, et al. Cloning, mechanistic and
functional analysis of a fungal sterol C24-methyltransferase implicated in brassicasterol biosynthesis.
Biochim Biophys Acta. 2010; 1801: 1163–1174. doi: 10.1016/j.bbalip.2010.06.007 PMID: 20624480

Response of Paracoccidioides to Camphene Thiosemicarbazide Derivative

PLOS ONE | DOI:10.1371/journal.pone.0130703 June 26, 2015 22 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130703.s001
http://www.ncbi.nlm.nih.gov/pubmed/18777629
http://dx.doi.org/10.2217/fmb.13.68
http://www.ncbi.nlm.nih.gov/pubmed/24020744
http://dx.doi.org/10.1590/abd1806-4841.20132463
http://www.ncbi.nlm.nih.gov/pubmed/24173174
http://dx.doi.org/10.1586/14787210.6.2.251
http://www.ncbi.nlm.nih.gov/pubmed/18380607
http://dx.doi.org/10.1093/mmy/myt012
http://www.ncbi.nlm.nih.gov/pubmed/24577007
http://dx.doi.org/10.2217/fmb.13.68
http://www.ncbi.nlm.nih.gov/pubmed/24020744
http://www.ncbi.nlm.nih.gov/pubmed/15794730
http://dx.doi.org/10.1186/1471-2180-13-107
http://dx.doi.org/10.1186/1471-2180-13-107
http://www.ncbi.nlm.nih.gov/pubmed/23672539
http://www.ncbi.nlm.nih.gov/pubmed/22510825
http://dx.doi.org/10.1111/j.1742-4658.2011.08150.x
http://www.ncbi.nlm.nih.gov/pubmed/21535474
http://dx.doi.org/10.1016/j.funbio.2010.10.005
http://www.ncbi.nlm.nih.gov/pubmed/21215956
http://dx.doi.org/10.1016/j.funbio.2010.07.007
http://www.ncbi.nlm.nih.gov/pubmed/20943190
http://dx.doi.org/10.1016/j.bbalip.2010.06.007
http://www.ncbi.nlm.nih.gov/pubmed/20624480


14. Zambuzzi-Carvalho PF, Cruz AH, Santos-Silva LK, Goes AM, Soares CM, Pereira M. The malate
synthase of Paracoccidioides brasiliensis Pb01 is required in the glyoxylate cycle and in the allantoin
degradation pathway. Med Mycol. 2009; 47: 734–744. doi: 10.3109/13693780802609620 PMID:
19888806

15. da Silva Neto BR, de Fátima da Silva J, Mendes-Giannini MJ, Lenzi HL, de Almeida Soares CM, Per-
eira M.The malate synthase of Paracoccidioides brasiliensis is a linked surface protein that behaves as
an anchorless adhesin. BMCMicrobiol. 2009; 9: 272. doi: 10.1186/1471-2180-9-272 PMID: 20034376

16. Bonfim SM, Cruz AH, Jesuino RS, Ulhoa CJ, Molinari-Madlum EE, Soares CM, et al. Chitinase from
Paracoccidioides brasiliensis: molecular cloning, structural, phylogenetic, expression and activity anal-
ysis. FEMS Immunol Med Microbiol. 2006; 46: 269–283. PMID: 16487309

17. Zambuzzi-Carvalho PF, Tomazett PK, Santos SC, Ferri PH, Borges CL, Martins WS, et al. Transcrip-
tional profile of Paracoccidioides induced by oenothein B, a potential antifungal agent from the Brazilian
Cerrado plant Eugenia uniflora. BMCMicrobiol. 2013; 13: 227. doi: 10.1186/1471-2180-13-227 PMID:
24119145

18. Santos GD, Ferri PH, Santos SC, Bao SN, Soares CM, Pereira M. Oenothein B inhibits the expression
of PbFKS1 transcript and induces morphological changes in Paracoccidioides brasiliensis. Med Mycol.
2007; 45: 609–618. PMID: 18033615

19. Prado RS, Alves RJ, Oliveira CMA, Kato L, Silva RA, Quintino GO, et al. Inhibition of Paracoccidioides
lutzii Pb01 isocitrate lyase by the natural compound argentilactone and its semisynthetic derivatives.
PLoS One. 2014; 21; 9(4):e94832 doi: 10.1371/journal.pone.0094832 PMID: 24752170

20. Figueiredo IM, Santos LV, Costa WF, Carvalho JE, Silva CC, Sacoman JL, Kohn LK, Sarragiotto MH.
Synthesis and Antiproliferative Activity of Novel Limonene Derivates with a Substituted Thiourea Moi-
ety. Braz. J. Chem. 2006; 5: 954–960.

21. Piochon M, Legault J, Gauthier C, Pichette A. Synthesis and cytotoxicity evaluation of natural alpha-
bisabolol beta-D-fucopyranoside and analogues. Phytochem. 2009; 70: 228–236. doi: 10.1016/j.
phytochem.2008.11.013 PMID: 19136127

22. Da Silva AP, Martini MV, de Oliveira CM, Cunha S, de Carvalho JE, Ruiz AL, da Silva CC. Antitumor
activity of (-)-alpha-bisabolol- based thiosemicarbazones agains human tumor cell lines. Eur J Med
Chem. 2010; 45: 2987–2993. doi: 10.1016/j.ejmech.2010.03.026 PMID: 20413188

23. Haraguchi SK, Silva AA, Vidotti GJ, dos Santos PV, Garcia FP, Pedroso RB, Nakamura CV, de Oliveira
CM, da Silva CC. Antitrypanasomal activity of novel benzaldehyde-thiosemicarbazone derivates from
kaurenoic acid. Molecules. 2011; 16: 1166–1180. doi: 10.3390/molecules16021166 PMID: 21270733

24. Yamaguchi UM, Silva APB, Nakamura TU, Filho BPD, Silva CC, Nakamura CV. Effects of a thiosem-
carbazide camphene derivative on Trichophyton mentagrophytes. Molecules. 2009; 14: 1796–1807.
doi: 10.3390/molecules14051796 PMID: 19471200

25. Fava-Netto C. Estudos quantitativos sobre a fixação de complemento na blastomicose sul-americana,
com antigeno polissacarídico. Arq Cir Clin Exp.1955; 18: 197–254. PMID: 13363721

26. Restrepo A, Jiménez BE. Growth of Paracoccidioides brasiliensis yeast phase in a chemically defined
culture medium. J Clin Microbiol. 1980; 12: 279–281. PMID: 7229010

27. Clinical Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility
testing of filamentous fungi: Approved Standards 2nd Edition M27-A2. 2002.

28. De Paula e Silva ACA, Oliveira HC, Silva JF, Sangalli-Leite F, Scorzoni L, Fusco-Almeida AM, et al.
Microplate alamar Blue Assay for Paracoccidioides Susceptibility Testing. J Clin Microbiol. 2013; 51:
1250–1252. doi: 10.1128/JCM.02914-12 PMID: 23345296

29. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I.
Accuracy assessment. Genome Res. 1998; 8: 175–185. PMID: 9521921

30. Huang X, Madan A. CAP3: a DNA sequence assembly program. Genome Res. 1999; 9: 868–877.
PMID: 10508846

31. Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997; 7: 986–
995. PMID: 9331369

32. Almeida AJ, Carmona JA, Cunha C, Carvalho A, Rappleye CA, GoldmanWE, et al. Towards a molecu-
lar genetic system for the pathogenic fungus Paracoccidioides brasiliensis. Fungal Genet Biol. 2007;
44: 1387–1398. PMID: 17512227

33. Rappleye CA, Engle JT, GoldmanWE. RNA interference in Histoplasma capsulatum demonstrates a
role for alpha-(1,3)-glucan in virulence. Mol microbiol. 2004; 53: 153–165. PMID: 15225311

34. Den Dulk-Ras A, Hooykaas PJ. Electroporation of Agrobacterium tumefaciens. Methods Mol Biol.
1995; 55: 63–72. PMID: 8528423

35. Bailão AM, Nogueira SV, Rondon Caixeta Bonfim SM, de Castro KP, de Fatima da Silva J, Mendes
Giannini MJ, et al. Comparative transcriptome analysis of Paracoccidioides brasiliensis during in vitro

Response of Paracoccidioides to Camphene Thiosemicarbazide Derivative

PLOS ONE | DOI:10.1371/journal.pone.0130703 June 26, 2015 23 / 25

http://dx.doi.org/10.3109/13693780802609620
http://www.ncbi.nlm.nih.gov/pubmed/19888806
http://dx.doi.org/10.1186/1471-2180-9-272
http://www.ncbi.nlm.nih.gov/pubmed/20034376
http://www.ncbi.nlm.nih.gov/pubmed/16487309
http://dx.doi.org/10.1186/1471-2180-13-227
http://www.ncbi.nlm.nih.gov/pubmed/24119145
http://www.ncbi.nlm.nih.gov/pubmed/18033615
http://dx.doi.org/10.1371/journal.pone.0094832
http://www.ncbi.nlm.nih.gov/pubmed/24752170
http://dx.doi.org/10.1016/j.phytochem.2008.11.013
http://dx.doi.org/10.1016/j.phytochem.2008.11.013
http://www.ncbi.nlm.nih.gov/pubmed/19136127
http://dx.doi.org/10.1016/j.ejmech.2010.03.026
http://www.ncbi.nlm.nih.gov/pubmed/20413188
http://dx.doi.org/10.3390/molecules16021166
http://www.ncbi.nlm.nih.gov/pubmed/21270733
http://dx.doi.org/10.3390/molecules14051796
http://www.ncbi.nlm.nih.gov/pubmed/19471200
http://www.ncbi.nlm.nih.gov/pubmed/13363721
http://www.ncbi.nlm.nih.gov/pubmed/7229010
http://dx.doi.org/10.1128/JCM.02914-12
http://www.ncbi.nlm.nih.gov/pubmed/23345296
http://www.ncbi.nlm.nih.gov/pubmed/9521921
http://www.ncbi.nlm.nih.gov/pubmed/10508846
http://www.ncbi.nlm.nih.gov/pubmed/9331369
http://www.ncbi.nlm.nih.gov/pubmed/17512227
http://www.ncbi.nlm.nih.gov/pubmed/15225311
http://www.ncbi.nlm.nih.gov/pubmed/8528423


adhesion to type I collagen and fibronectin: identification of potential adhesins. Res Microbiol. 2012;
163: 182–191. doi: 10.1016/j.resmic.2012.01.004 PMID: 22306611

36. Bookout AL, Cummins CL, Mangelsdorf DJ, Pesola JM, Kramer MF. High-throughput real-time quanti-
tative reverse transcription PCR. Curr Protoc Mol Biol. 2006; 15: 8. doi: 10.1002/0471142727.
mb1508s73 PMID: 18265376

37. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz-
ing the principle of protein-dye binding. Anal Biochem. 1976; 7: 248–254.

38. Freiberg C, Brotz-Oesterhelt H. Functional genomics in antibacterial drug discovery. Drug Discov
Today. 2005; 10: 927–935. PMID: 15993812

39. Goffeau A, de Hertogh B, Baret PV. ABC transportadores. In: Enciclopédia of Biol. Chemistry. 2004; 1:
1–5.

40. Franz R, Michel S, Morschhauser J. A fourth gene from theCandida albicansCDR family of ABC trans-
porters. Gene. 1998; 220: 91–98. PMID: 9767132

41. Prasad R, DeWP, Goffeau A, Balzi E. Molecular cloning and characterization of a novel gene of Can-
dida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet. 1995; 27:
320–329. PMID: 7614555

42. Slaven JW, Anderson MJ, Sanglard D, Dixon GK, Bille J, Roberts IS, et al. Increased expression of a
novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itracona-
zole resistant clinical isolate. Fungal Genet Biol. 2002; 36: 199–206. PMID: 12135575

43. Tobin MB, Peery RB, Skatrud PL. Genes encoding multiple drug resistance-like proteins in Aspergillus
fumigatus and Aspergillus flavus. Gene. 1997; 200: 11–23. PMID: 9373135

44. Posteraro B, Sanguinetti M, Sanglard D, La SM, Boccia S, Romano L, et al. Identification and character-
ization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter-encoding gene,
CnAFR1, involved in the resistance to fluconazole. Mol Microbiol. 2003; 47: 357–371. PMID:
12519188

45. Andrade AC, Van Nistelrooy JG, Peery RB, Skatrud PL, deWaard MA. The role of ABC transporters
from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen
Genet. 2000; 263: 966–977. PMID: 10954082

46. Frazier AD, ChampneyWS. Inhibition of ribosomal subunit synthesis in Escherichia coli by the vanadyl
ribonucleoside complex. Curr Microbiol. 2013; 67: 226–223. doi: 10.1007/s00284-013-0350-5 PMID:
23512123

47. Hitchcock AL, Krebber H, Frietze S, Lin A, Latterich M, Silver PA.The conserved npl4 protein complex
mediates proteasome-dependent membrane-bound transcription factor activation. Mol Biol Cell. 2001;
12: 3226–3241. PMID: 11598205

48. Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem
Biol. 2008; 4: 176–185. doi: 10.1038/nchembio.72 PMID: 18277979

49. Samanovic MI, Ding C, Thiele DJ, Darwin KH. Copper in microbial pathogenesis: meddling with the
metal. Cell Host Microbe. 2012; 11: 106–115. doi: 10.1016/j.chom.2012.01.009 PMID: 22341460

50. Waterman SR, HachamM, Hu G, Zhu X, Park YD, Shin S, et al. Role of a CUF1/CTR4 copper regula-
tory axis in the virulence of Cryptococcus neoformans. J Clin Invest. 2007; 117: 794–802. PMID:
17290306

51. Park HJ, Nguyen TT, Yoon J, Lee C. Role of reactive oxygen species in Escherichia coli inactivation by
cupricion. Environ Sci Technol. 2012; 46: 11299–11304. doi: 10.1021/es302379q PMID: 22998466

52. Dancis A, Haile D, Yuan DS, Klausner RD. The Saccharomyces cerevisiae copper transport protein
(Ctr1p). Biochemical characterization, regulation bycopper, and physiologic role in copper uptake. J
Biol Chem. 1994; 269: 25660–25667. PMID: 7929270

53. Pena MM, Puig S, Thiele DJ. Characterization of the Saccharomyces cerevisiae high affinity copper
transporter Ctr3. J Biol Chem. 2000; 275: 33244–33251. PMID: 10924521

54. Dimroth P, Kaim G, Matthey U. Crucial role of the membrane potential for ATP synthesis by F(1)F(o)
ATP synthases. J Exp Biol J. 2000; 203: 51–59. PMID: 10600673

55. Nicholls DG. Mitochondria and calcium signaling. Cell Calcium. 2005; 38: 311–317. PMID: 16087232

56. Martin J, Mahlke K, Pfanner N. Role of an energized inner membrane in mitochondrial protein import.
Delta psi drives the movement of presequences. J Biol Chem.1991; 266: 18051–18057. PMID:
1833391

57. Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an
update. Apoptosis. 2003; 8: 115–128. PMID: 12766472

Response of Paracoccidioides to Camphene Thiosemicarbazide Derivative

PLOS ONE | DOI:10.1371/journal.pone.0130703 June 26, 2015 24 / 25

http://dx.doi.org/10.1016/j.resmic.2012.01.004
http://www.ncbi.nlm.nih.gov/pubmed/22306611
http://dx.doi.org/10.1002/0471142727.mb1508s73
http://dx.doi.org/10.1002/0471142727.mb1508s73
http://www.ncbi.nlm.nih.gov/pubmed/18265376
http://www.ncbi.nlm.nih.gov/pubmed/15993812
http://www.ncbi.nlm.nih.gov/pubmed/9767132
http://www.ncbi.nlm.nih.gov/pubmed/7614555
http://www.ncbi.nlm.nih.gov/pubmed/12135575
http://www.ncbi.nlm.nih.gov/pubmed/9373135
http://www.ncbi.nlm.nih.gov/pubmed/12519188
http://www.ncbi.nlm.nih.gov/pubmed/10954082
http://dx.doi.org/10.1007/s00284-013-0350-5
http://www.ncbi.nlm.nih.gov/pubmed/23512123
http://www.ncbi.nlm.nih.gov/pubmed/11598205
http://dx.doi.org/10.1038/nchembio.72
http://www.ncbi.nlm.nih.gov/pubmed/18277979
http://dx.doi.org/10.1016/j.chom.2012.01.009
http://www.ncbi.nlm.nih.gov/pubmed/22341460
http://www.ncbi.nlm.nih.gov/pubmed/17290306
http://dx.doi.org/10.1021/es302379q
http://www.ncbi.nlm.nih.gov/pubmed/22998466
http://www.ncbi.nlm.nih.gov/pubmed/7929270
http://www.ncbi.nlm.nih.gov/pubmed/10924521
http://www.ncbi.nlm.nih.gov/pubmed/10600673
http://www.ncbi.nlm.nih.gov/pubmed/16087232
http://www.ncbi.nlm.nih.gov/pubmed/1833391
http://www.ncbi.nlm.nih.gov/pubmed/12766472


58. GhannoumMA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation
of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999; 12: 501–517. PMID:
10515900

59. Dias N, Bailly C. Drugs targeting mitochondrial functions to control tumor cell growth. Biochem Pharma-
col. 2005; 70: 1–12. PMID: 15907809

60. Grivicich I, Regner A, da Rocha AB, Grass LB, Alves PA, Kayser GB, et al. Irinotecan/5-fluorouracil
combination induces alterations in mitochondrial membrane potential and caspases on colon cancer
cell lines. Oncol Res. 2005; 5: 385–392.

61. Moreno-Sanchez R, Bravo C, Vasquez C, Ayala G, Silveira LH, Martínez-Lavín M. Inhibition and
uncoupling of oxidative phosphorylation by nonsteroidal anti-inflammatory drugs: study in mitochondria,
submitochondrial particles, cells, and whole heart. Biochem Pharmacol. 1999; 57: 743–752. PMID:
10075080

62. Ruy F, Vercesi AE, Kowaltowski AJ. Inhibition of specific electron transport pathways leads to oxidative
stress and decreasedCandida albicans proliferation. J Bioenerg Biomembr. 2006; 38:129–135.63.
PMID: 17053999

63. Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS. Oxidative stress response of fila-
mentous fungi induced by hydrogen peroxide and paraquat. Mycol Res. 2005; 109: 150–158. PMID:
15839099

64. Youseff BH, Holbrook ED, Smolnycki KA, Rappleye CA. Extracellular superoxide dismutase protects
Histoplasma yeast cells from host-derived oxidative stress. PLoS Pathog. 2012; 8: e1002713. doi: 10.
1371/journal.ppat.1002713 PMID: 22615571

65. De Arruda Grossklaus D, Bailão AM, Vieira Rezende TC, Borges CL, de Oliveira MA, Parente JÁ, et al.
Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis.
Microbes Infect. 2013; 15: 347–364. doi: 10.1016/j.micinf.2012.12.002 PMID: 23421979

66. Hwang CS, Rhie GE, Oh JH, HuhWK, Yim HS, Kang SO. Copper- and zinc-containing superoxide dis-
mutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and
the expression of its full virulence. Microbiol. 2002; 148: 3705–3713. PMID: 12427960

67. Delattin N, Cammue BP, Thevissen K. Reactive oxygen species-inducing antifungal agents and their
activity against fungal biofilms. Future Med Chem. 2014; 6: 77–90. doi: 10.4155/fmc.13.189 PMID:
24358949

68. Vandenbosch D, Braeckmans K, Nelis HJ, Coenye T. Fungicidal activity of miconazole against Can-
dida spp. Biofilms. J Antimicrob Chemother. 2010; 65: 694–700. doi: 10.1093/jac/dkq019 PMID:
20130024

69. Murphy MP. Howmitochondria produce reactive oxygen species. Biochem J. 2009; 417: 1–13. doi: 10.
1042/BJ20081386 PMID: 19061483

70. Vercesi AE, Kowaltowski AJ, Grijalba MT, Meinicke AR, Castilho RF. The role of reactive oxygen spe-
cies in mitochondrial permeability transition. Biosci Rep. 1997; 17: 43–52. PMID: 9171920

71. Delobel P, Tesnière C. A simple FCMmethod to avoid misinterpretation in Saccharomyces cerevisiae
cell cycle assessment between G0 and sub-G1. PLoS One. 2014; 9: e84645. doi: 10.1371/journal.
pone.0084645 PMID: 24392149

Response of Paracoccidioides to Camphene Thiosemicarbazide Derivative

PLOS ONE | DOI:10.1371/journal.pone.0130703 June 26, 2015 25 / 25

http://www.ncbi.nlm.nih.gov/pubmed/10515900
http://www.ncbi.nlm.nih.gov/pubmed/15907809
http://www.ncbi.nlm.nih.gov/pubmed/10075080
http://www.ncbi.nlm.nih.gov/pubmed/17053999
http://www.ncbi.nlm.nih.gov/pubmed/15839099
http://dx.doi.org/10.1371/journal.ppat.1002713
http://dx.doi.org/10.1371/journal.ppat.1002713
http://www.ncbi.nlm.nih.gov/pubmed/22615571
http://dx.doi.org/10.1016/j.micinf.2012.12.002
http://www.ncbi.nlm.nih.gov/pubmed/23421979
http://www.ncbi.nlm.nih.gov/pubmed/12427960
http://dx.doi.org/10.4155/fmc.13.189
http://www.ncbi.nlm.nih.gov/pubmed/24358949
http://dx.doi.org/10.1093/jac/dkq019
http://www.ncbi.nlm.nih.gov/pubmed/20130024
http://dx.doi.org/10.1042/BJ20081386
http://dx.doi.org/10.1042/BJ20081386
http://www.ncbi.nlm.nih.gov/pubmed/19061483
http://www.ncbi.nlm.nih.gov/pubmed/9171920
http://dx.doi.org/10.1371/journal.pone.0084645
http://dx.doi.org/10.1371/journal.pone.0084645
http://www.ncbi.nlm.nih.gov/pubmed/24392149

