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The microbiota that populate the mammalian intestine are critical for proper host physiology, yet
simultaneously pose a potential danger. Intestinal antigen-presenting cells, namely macrophages and
dendritic cells (DCs), are integral components of the mucosal innate immune system that maintain co-
existence with the microbiota in face of this constant threat. Intestinal macrophages and DCs integrate
signals from the microenvironment to orchestrate innate and adaptive immune responses that ulti-
mately lead to durable tolerance of the microbiota. Tolerance is not a default response, however,
because macrophages and DCs remain poised to vigorously respond to pathogens that breach the
epithelial barrier. In this review, we summarize the salient features of macrophages and DCs in
the healthy and inflamed intestine and discuss how signals from the microbiota can influence their
function. (Am J Pathol 2015, 185: 1809e1819; http://dx.doi.org/10.1016/j.ajpath.2015.02.024)
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Career Investigator Award recognizes early career investigators with demon-
strated excellence as an investigator with recently established or emerging in-
dependence andwith a research focus leading to an improved understanding of
the conceptual basis of disease. Timothy L. Denning, recipient of the ASIP
2014 Cotran Early Career Investigator Award, delivered a lecture entitled
“Intestinal Antigen Presenting Cells During Homeostasis and Inflammation”
on April 29, 2014, at the annual meeting of the ASIP in San Diego, CA.
From birth, the mammalian intestine is colonized with a
complex microbiota leading to a lifelong mutualistic rela-
tionship.1 This diverse microbial population confers several
evolutionary advantages to the host while simultaneously
introducing a robust antigenic challenge that has the po-
tential to initiate intestinal inflammation. Despite this threat,
the host manages to maintain intestinal homeostasis via a
sophisticated immune cell network that promotes tolerance
to the microbiota while permitting responsiveness to
invading pathogens.2,3 Central to this discrimination process
are intestinal antigen-presenting cells (APCs), predomi-
nantly composed of macrophages and dendritic cells (DCs),
that are separated from the microbiota by a single layer of
epithelial cells. Together, intestinal macrophages and DCs
integrate cues from epithelial, immune, and stromal cells to
direct innate and adaptive immunity.4e10 Inappropriate re-
sponses to these signals can lead to a breakdown of toler-
ance toward the microbiota and culminate in uncontrolled
inflammation, such as that observed in Crohn disease and
ulcerative colitis.11 This review will focus on the role of
intestinal macrophages and DCs in the steady state and
stigative Pathology.
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during inflammation, as well as how these cells interface
with the microbiota.

Development and Phenotypic Characterization
of Intestinal Macrophages and DCs

Intestinal Macrophage and DC Development

The tissue microenvironment plays a key role in regulating
the differentiation of macrophages and DCs from myeloid
progenitor cells. In the intestine, the local milieu is shaped

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:tdenning@gsu.edu
http://dx.doi.org/10.1016/j.ajpath.2015.02.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajpath.2015.02.024&domain=pdf
http://dx.doi.org/10.1016/j.ajpath.2015.02.024
http://ajp.amjpathol.org
http://dx.doi.org/10.1016/j.ajpath.2015.02.024


Flannigan et al
by the microbiota, enteric antigens, and immune cells that
collectively contribute to the developmental outcome of
macrophage and DC precursors entering the intestine. In-
testinal macrophages, for example, are maintained and
replenished by Ly6Cþ monocytes that continually enter the
intestine during the steady state and inflammation, a process
referred to as the monocyte waterfall. These Ly6Cþ

monocytes subsequently differentiate into resident intestinal
macrophages through a series of intermediary stages.12e15

The monocytes that produce intestinal macrophages are
originally derived from macrophage-DC progenitors, which
are the same bone marrow progenitors that can produce
intestinal DCs.16 The ultimate fate of macrophage-DC pro-
genitors in the intestine is, thus, determined by specific cy-
tokines and growth factors in the tissue microenvironment
that dictate different developmental programs. The matura-
tion of monocytes that produce intestinal macrophages is
under the control of the colony-stimulating factor 1 (Csf1)
receptor and its stimulation byCsf1. Accordingly, the number
of intestinal macrophages is significantly reduced in Csf1
receptoredeficient mice17 and in mice treated with anti-Csf1
receptor antibody.18Csf1op/opmice, which have a mutation in
the gene encoding Csf1, also havemarkedly reduced numbers
of intestinal macrophages.19

Macrophage-DC progenitors can alternatively differentiate
into common DC progenitors that are the precursors of con-
ventional DCs and plasmacytoid DCs. Common DC pro-
genitors can produce pre-DCs that develop into peripheral
DCs, including intestinal CD103þ DCs, in a FMS-like tyro-
sine kinase 3 (Flt3)edependent manner.17 Thus, intestinal
CD103þ DCs expand in vivo in response to Flt3L20 and are
substantially decreased in mice deficient for Flt3 or Flt3L.17

Other growth factors can further influence the homeostasis
of different subsets of DCs, as highlighted by data demon-
strating that CD103þCD11bþ intestinal DCs require Csf2
receptor stimulation via Csf2 (formerly granulocyte-
macrophage colony-stimulating factor) for development in
the steady state; however, this factor is dispensable for the
differentiation of inflammatory DCs.17 The future identifica-
tion of additional mediators that control macrophage and DC
development may further our understanding of their ontogeny.

Phenotype of Intestinal Macrophages and DCs

Studies investigating intestinal macrophage and DC devel-
opment have gained support from recent advancements in
the phenotypic characterization of these cells. Analyses of
cell morphology and surface markers have allowed for the
clear distinction of intestinal macrophages and DCs from
one another as well as the definition of different subsets of
each population. When examining cellular structure, mac-
rophages can typically be identified by the presence of large
phagocytic vacuoles in the cytoplasm, whereas DCs exhibit
dendrite-like projections.5

In addition to microscopy, multicolor flow cytometry has
been instrumental in distinguishing intestinal macrophage
1810
and DC populations from each other, as well as from
additional cell types. Clear identification of APCs from
collagenase-digested intestinal cells can be achieved by in-
clusion of the two core markers: CD45, to select for leu-
kocytes, and major histocompatibility complex (MHC) II,
to mark cells with exogenous antigen-presenting ability.
Additional markers can then be used to define populations
of macrophages and DCs.
Initial work investigating cell surface markers expressed by

intestinal APCs relied on the presence of F4/80 and the alphaX
integrin,CD11c. F4/80has long-standinguse as amacrophage-
specific marker and, when used in combination with the core
APC markers, CD45 and MHCII, can discern macrophages
from DCs in the healthy intestine.21 On the other hand, the
utility of CD11c as a DC-specific marker is limited because of
the fact that intestinal macrophages and DCs both express
moderate to high levels of this antigen, precluding clear
delineation of DCs frommacrophages in the intestine.4,5,7,22,23

A similarly complex issue exists with regard to CD11b
because it is expressed by nearly all macrophages, but also
a subset of intestinal DCs as well as eosinophils and neutro-
phils.7 To ensure exclusion of these cells, the eosinophil-
specific marker, Siglec-F, and the neutrophil-specific marker,
Ly6G, can be used during analysis of intestinal macrophages
and DCs. Another marker that has gained particular attention
on intestinal APCs is CX3 chemokine receptor 1 (CR1), which
is involved in the extension of transepithelial dendrites into
the intestinal lumen during bacterial infection.24 Although
CX3CR1 is highly expressed on resident intestinal macro-
phages25,26 that are located in the lamina propria, as well as the
smooth muscle layer of the intestine,17 it can also be expressed
at intermediate levels by some DCs during inflammation.13,27

The high-affinity IgG receptor, CD64, has also been used to
specifically identify intestinalmacrophages.7,14 Beyond F4/80,
CD11b, CX3CR1, and CD64, intestinal macrophages can also
be further identified by the differential expression of CD14,
CD68, and Toll-like receptor (TLR)2.7

Resident intestinal DCs can be distinguished from macro-
phages primarily by their expression of CD103 and lack of
CX3CR1.22,26CD103þCX3CR1�DCs can further be divided
into CD11bþ and CD11b� subsets, both of which express
CCR7 and can migrate to mesenteric lymph nodes (mLNs)
and imprint gut-homingmarkers on naïveT cells.26 Therefore,
at the steady state, intestinal DCs can be defined among APCs
(CD45þMHCIIþ) as CD11bþ/�CD11cþF4/80�CD103þ

CX3CR1�CD64� cells and may be contrasted from mac-
rophages, which are CD11bþCD11cþ/�F4/80þCD103�

CX3CR1þCD64þ cells (Figure 1).13,22 In addition to this
panel, intestinal DCs can also be further identified by
CD272 and CD26 expression.28 Collectively, thesemarkers
can also be used in complex scenarios, such as inflamma-
tion; however, certain cell surface antigens can change
expression in the presence of inflammatory stimuli.
Continued advancements in cell surface marker character-
ization will aid in elucidating the biological functions of
intestinal macrophages and DCs.
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Figure 1 Distinguishing characteristics of mouse intestinal macro-
phages (MF) and dendritic cells (DCs). Colony-stimulating factor 1 (Csf1)
favors the differentiation of intestinal macrophages from macrophages and
DC progenitors (MDPs), whereas FMS-like tyrosine kinase 3 ligand (Flt3L)
and colony-stimulating factor 2 (Csf2) enhance the differentiation of MDPs
into the DC lineage. After populating the intestine, macrophages and DCs
can be identified by various cell surface markers. Antigens expressed pre-
dominantly by intestinal macrophages include F4/80, CX3CR1, CD14, and
CD64, whereas intestinal DCs express CD103, CD272, CD26, and CCR7.
Additional markers, including CD45, major histocompatibility complex
(MHC) II, CD11b, and CD11c, overlap across both cell types. Macrophages
and DCs in the intestine also exhibit a functional dichotomy. Intestinal
macrophages are avidly phagocytic and constitutively produce IL-10, in
contrast to intestinal DCs, which efficiently migrate to mesenteric lymph
nodes (mLNs) and produce lower levels of IL-10.

Intestinal Antigen-Presenting Cells
Intestinal Macrophages and DCs in the Steady
State

Homeostatic Functions of Intestinal Macrophages

During the steady state, intestinal macrophages maintain
tolerance toward food antigens and the intestinal microbiota
without compromising their ability to react to microbes that
breach the epithelial barrier. To control bacteria that trans-
locate past the epithelium, intestinal macrophages are highly
phagocytic and have robust bactericidal activity.29 On uptake
of bacteria, however, intestinal macrophages do not produce
a strong respiratory burst or synthesize nitric oxide, two
potentially damaging processes.7 Resident intestinal macro-
phages also express low levels of TLRs and associated
signaling machinery, and do not produce inflammatory cy-
tokines, such as IL-1, IL-6, IL-12, IL-23, or tumor necrosis
factor (TNF) after exposure to bacterial signals.5,10,23,29,30 In
mice, this state of inflammatory anergy is largely attributable
to IL-10 that is constitutively expressed by intestinal mac-
rophages. When IL-10 or IL-10 receptors (IL-10Rs) are
blocked, intestinal macrophages become highly responsive to
TLR ligands.23,30,31 These in vitro data provide evidence that
the ability of macrophages to produce and/or respond to IL-
10 are both involved in regulating their proinflammatory
responsiveness. Recent in vivo data have clarified this issue
by illustrating the requirement for IL-10R signaling in mac-
rophages in restraining inflammation. In these studies, spe-
cific deletion of IL-10R, but not IL-10 itself, in CX3CR1þ
The American Journal of Pathology - ajp.amjpathol.org
resident macrophages led to the development of spontaneous
colitis.32 Functional analyses found that IL-10Redeficient
macrophages displayed exaggerated proinflammatory re-
sponses with little IL-10 production.33 In addition, the
transfer of wild-type intestinal macrophages, but not IL-
10Redeficient macrophages, prevented colitis in the T-cell
transfer model of colitis. These changes in IL-10Redeficient
macrophages were also observed in humans with IL-10R
deficiencies who develop early-onset inflammatory bowel
disease (IBD).33 Collectively, these data strongly support the
concept that intestinal macrophage-mediated tolerance of the
microbiota is maintained by responsiveness to IL-10 pro-
duced by nonmacrophage cells. Likely sources of IL-10 in the
intestine are CD4þFoxp3þ regulatory T cells (Treg cells)34

and type 1 regulatory cells.35 In addition, other factors, such
as transforming growth factor (TGF)-b and peroxisome
proliferator-activated receptor g, may help to regulate the
hyporesponsiveness of intestinal macrophages toward
luminal antigens.9,29 This may be particularly relevant for
human intestinal macrophages, which exhibit inflammatory
anergy yet do not spontaneously secrete IL-10.9,29

Despite their hyporesponsiveness to inflammatory stimuli,
intestinal macrophages actively promote tolerogenic immune
responses during the steady state. One way intestinal mac-
rophages do this is by inducing Foxp3þ Treg cells, which are
essential in suppressing inflammation and establishing oral
tolerance. In the presence of TGF-b, production of IL-10 by
intestinal macrophages can lead to the induction,23 mainte-
nance,36 and expansion37 of Foxp3þ Treg cells in vitro and
in vivo. Indeed, initial studies found that intestinal macro-
phages co-cultured with naïve CD4þ T cells could strongly
induce the differentiation of Treg cells in an IL-10e
dependent manner.23 Intestinal macrophage-derived IL-10 is
important for Treg cell induction in vivo, as illustrated by the
fact that CX3CR1-deficient mice display a loss of oral
tolerance coinciding with abolished IL-10 production and
blunted Treg cell proliferation in the lamina propria.37

Whether human intestinal macrophages can similarly influ-
ence Treg cell function is currently unknown. Interestingly,
human intestinal macrophages express chemokine ligand 20
(macrophage inflammatory protein 3a), the ligand for CCR6,
which is expressed on IL-10eproducing induced Treg cells,
and this axis may lead to close interactions between macro-
phages and Treg cells in the intestine.38

The ability of intestinal macrophages to modulate Treg cell
abundance in vitro and in vivo may directly or indirectly
inhibit the differentiation of proinflammatory CD4þ T cells.
For example, loss of intestinal macrophages because of
CX3CR1 or CX3CL1 deficiency resulted in enhanced type 17
helper T-cell (Th17)edriven colitis, which was reversed by
the adoptive transfer of CX3CR1þ macrophages.25 Defi-
ciency of CD11b results in defective oral tolerance and
enhanced Th17 responses, effects that may be associated with
reduced intestinal macrophages.39 The ability of macrophages
to suppress Th17 responses in the intestine may result from
inhibiting the Th17-promoting functions of CD103þCD11bþ
1811
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DCs.23 Notably, resident macrophages do not readily migrate
to mLNs in the presence of intestinal microbiota40 and,
therefore, must exert these regulatory functions locally in the
lamina propria.37 Overall, intestinal macrophages can regulate
themselves and neighboring immune cells through a variety
of innate and adaptive immune mechanisms that ultimately
aid in the prevention of pathological inflammation.

Contributions of DCs to Intestinal Homeostasis

In addition to macrophages, DCs are also found in the intes-
tine, where they drive tolerogenic responses through their
communication with the adaptive immune system.41e43 It is
now well appreciated that many DCs in the intestine express
CD103 and can be further subdivided into CD11bþ and
CD11b� subsets. These CD103þ DCs express high levels of
CCR7,which allows for constitutivemigration tomLNs at the
steady state.44 Examination of oral tolerance to soluble food
antigens illustrated that this migratory ability of intestinal
DCs plays an influential role in establishing immune toler-
ance. Indeed, removal of lymph nodes or deletion of CCR7
interfered with the proper establishment of oral tolerance.44

A fundamental mechanism by which intestinal DCs appear
to promote oral tolerance is through the generation of Foxp3þ

Treg cells. Seminal studies revealed that CD103þ DCs iso-
lated from either the small intestinal lamina propria or mLNs
were able to induce the differentiation of Treg cells from
naïve CD4þ T cells in the presence of TGF-b and retinoic
acid.45e47 Interestingly, retinoic acid production by DCs is
involved in the up-regulation of the gut-homing markers,
a4b7 and CCR9, on T cells.48,49 A loss of this homing ability
abrogates oral tolerance, thus demonstrating the importance
of DC imprinting on T cells for immune tolerance.

In addition to inducing Treg cells, intestinal DCs can also
influence Th17 responses. In particular, CD103þCD11bþ

DCs are able to drive Th17 differentiation in the lamina
propria of mice in a process that is dependent on the tran-
scription factor interferon regulatory factor 4 and production
of IL-6 and IL-23.50,51 Depletion of DCs or loss of inter-
feron regulatory factor 4 function correlates with a signifi-
cant decrease in Th17 cell numbers. CD1cþCD11bþ DCs,
the human equivalent of mouse CD103þCD11bþ DCs, also
expressed interferon regulatory factor 4 and are similarly
capable of promoting Th17 responses.51 CD103þCD11bþ

DCs also appear to be an obligate source of IL-23 that is
required for survival after infection with the attaching-and-
effacing pathogen Citrobacter rodentium.52

Given the divergent roles of intestinal DCs in promoting
Treg and Th17/22 responses, it is important to consider how
the same subsets of intestinal DCs can affect opposing
T-cell responses in vivo. Intestinal DCs exhibit plasticity in
influencing adaptive responses on the basis of the specific
microenvironment they encounter.2,53 Consistent with this
notion, the density of CD103þCD11bþ DCs throughout the
intestine correlates with the number of Th17 cells, with both
being abundant in the small intestine and rare in the colon.
1812
In contrast, DCs and macrophages that preferentially pro-
mote Foxp3þ Treg cells are most abundant in the colon,
where a higher abundance of Treg cells can be found.22

The ability of intestinal DCs to stimulate Th17 responses
is also dependent on the presence of unique microbiota,
specifically segmented filamentous bacteria (SFB).22,54

Although not completely understood, other less prominent
subsets of DCs in the intestine can also influence adaptive
immune responses. Intestinal CD103�CD11bþ cells are a
heterogeneous population of both macrophages and DCs.28

CCR2þ DCs from this CD103�CD11bþ population consti-
tutively express IL-12/IL-23p40 and harbor the ability to drive
IL-17A production by T cells in vitro.28

The involvement of intestinal macrophages and DCs in
promoting distinct adaptive immune responses has led tomany
new intriguing questions regarding their involvement in anti-
gen acquisition and presentation. With the close proximity of
the microbiota to the lamina propria, it has been proposed that
macrophages and DCs can directly sample luminal contents.
CX3CR1þ lamina propria cells, most likely macrophages,

can extend dendrite-like processes into the intestinal lumen
and capture bacteria.24 Although the physiological impor-
tance of this activity remains unclear, it may be involved in
defending against invasive pathogens.24 Interestingly,
CX3CR1þ cells, which do not migrate to mLNs, preferen-
tially take up antigen compared with migratory CD103þ

cells, which are inefficient at sampling and acquiring anti-
gen from the intestinal lumen.55

The conundrum of how intestinal DCs acquire antigen
when macrophages are the main phagocytic cells in the
steady-state intestine was recently clarified. Mazzini et al56

elegantly demonstrated that CX3CR1þ macrophages can
efficiently uptake luminal antigen and transfer it to CD103þ

DCs via a mechanism mediated through direct cell-to-cell
gaps junctions. Deletion of connexin 43, a protein compo-
nent of gap junctions, specific to CD11cþ cells prevented this
antigen transfer and diminished the ability of CD103þDCs to
present antigen and induce Treg cell differentiation in vitro
and prevented the establishment of oral tolerance in vivo.56

Macrophages are not the only cells that can take part in
antigen transfer to intestinal CD103þ DCs. Small-intestine
goblet cells have also been reported to function as pas-
sages delivering low-molecular-weight soluble antigens
from the intestinal lumen to underlying CD103þ DC cells,57

and intestinal CD103þ DCs can directly sample bacterial
antigens on migration into the epithelium.55 The relative
contribution and functional importance of these antigen
acquisition pathways remain to be elucidated.

Functions of Intestinal APCs during
Inflammation

Macrophages and Intestinal Inflammation

The onset of intestinal inflammation in humans and animals
is typically associated with disruptions in the epithelial
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Inflammation/Injury Steady State 

DC 

IL-1 , TNF, IL-12, IL-23

Tregs 

CX3CR1+ 
M

CX3CR1+ 
M

IL-10

Retinoic Acid 
IL-10 

Ly6C+ 
CCR2+ 

Monocyte 

DC 

Th17 

Th17 

Th1 

Treg 

F IL 12IL-6 
IL-23 
 

L 6

+ +

DC

TGF-  

Acid

+

TGF-  

Figure 2 The function of intestinal macrophages (MF) and dendritic
cells (DCs) in the steady state and during inflammation/injury. In the
steady state, resident CX3CR1þ macrophages and CD103þ DCs maintain
tolerance toward the intestinal microbiota via the production of retinoic
acid and IL-10, which, in combination with transforming growth factor
(TGF)-b, induce regulatory T cells (Treg) cells. On encountering certain
bacteria, CD103þ DCs can also produce IL-6 and IL-23, which drive type 17
helper T-cell (Th17) differentiation in a TGF-bedependent manner. During
inflammation/injury, Ly6CþCCR2þ monocytes are recruited into the intes-
tine, where they, along with resident DCs, react to translocating bacteria
through innate signaling pathways [eg, Toll-like receptor (TLR)]. These
signals drive proinflammatory cytokine production, including IL-1b, tumor
necrosis factor (TNF), IL-12, and IL-23, which can promote pathogenic Th1
and Th17 responses.

Intestinal Antigen-Presenting Cells
barrier and the consequent penetration of luminal bacteria
into the lamina propria. Innate immune recognition of these
translocating bacteria can trigger extensive cellular infiltra-
tion and activation with the induction of proinflammatory
cascades that can drastically alter the network of intestinal
APCs.11 Remarkably, amid the influx of intestinal antigen in
response to epithelial barrier damage, resident lamina
propria macrophages exhibit inflammatory anergy, remain
hyporesponsive to TLR agonists, and secrete high levels of
IL-10.13,15 Despite the anergy of resident intestinal macro-
phages, they can be rapidly overwhelmed by a massive
influx of inflammatory macrophages that arise from circu-
lating Ly6Cþ monocytes into the inflamed intestine. These
Ly6Cþ monocytes express CCR2, the receptor for chemo-
kine ligand 2 (alias monocyte chemoattractant protein-1),
which is involved in trafficking these cells to sites of
inflammation.15,58,59

Once in the inflamed intestine, Ly6Cþ monocytes differ-
entiate under the control of local inflammatory cues and
up-regulate TLR2, nucleotide-binding oligomerization domain-
containing protein 2 (NOD2), triggering receptor expressed
bymyeloid cells (TREM)-1, and other inflammatory markers.15

Unlike resident intestinal macrophages that remain re-
fractory to inflammatory stimuli, inflammatory monocytes/
macrophages become highly responsive to microbial stim-
ulation and produce large amounts of proinflammatory
cytokines, including IL-1, IL-6, IL-23, and TNF.15,27,58

These inflammatory mediators subsequently initiate down-
stream effects that contribute to inflammation and damage in
the intestine through the up-regulation of adhesion mole-
cules on the vascular endothelium, increasing epithelial
permeability and enhancing recruitment of additional
mononuclear and granulocytic cells. The mediators secreted
by proinflammatory macrophages also promote DC activa-
tion and the differentiation of Th1 and Th17 cells (Figure 2).

In addition to Ly6C and CCR2, inflammatory macrophages
in the intestine also express lower levels of CX3CR1 and
MHCII, making them easily distinguishable from resident in-
testinal macrophages. Interestingly, both resident and inflam-
matory macrophages are believed to derive from the same
Ly6Cþ monocyte precursors, highlighting the role of the local
inflammatory milieu in intestinal macrophage fate determina-
tion.27 Furthermore, the presence of functionally distinct
macrophage populations in the intestine may help direct thera-
peutic strategies focused on ameliorating pathogenic inflam-
mation. For example, mice deficient for CCR2 are resistant to
acute and chronic models of colitis,15,58 and administration
of CCR2-neutralizing antibodies to mice can prevent the influx
of inflammatory macrophages and colonic inflammation.15

Another target that may also be useful in limiting pathology
induced by inflammatory macrophages is peroxisome
proliferator-activated receptor-g, which is expressed by resident
intestinal macrophages. Peroxisome proliferator-activated
receptor-g stimulation can inhibit proinflammatory cyto-
kine secretion, restrict CCR2-mediated migration of proin-
flammatory monocytes, and ameliorate experimental colitis.60
The American Journal of Pathology - ajp.amjpathol.org
Another area of importance because of its potential for
therapeutic applications is the ability of macrophages to
participate in the resolution of intestinal inflammation and to
promote wound healing. One way intestinal macrophages
can contribute to these processes is through the expression of
TREM2. By using an in vivo acute injury model generated by
taking a biopsy of the colonic mucosa, TREM2-expressing
macrophages were shown to contribute to epithelial prolif-
eration, suppression of proinflammatory cytokine produc-
tion, and closure of the wound bed. Intestinal macrophages
expressing TREM2 were also shown to produce IL-4 and
IL-13, which can function to activate Stat6 and arginase
expression.61 Arginase derived from intestinal macrophages
may shift L-arginine use toward polyamine production,
resulting in epithelial proliferation, which is important for
wound healing.62 Intestinal macrophages have also been re-
ported to significantly reduce the severity of experimental
colitis63 by increasing collagen deposition and secreting IL-
10.64 In agreement with these findings, mice with defective
TGF-b signaling specific to mature macrophages produce
less IL-10 and are unable to resolve dextran sulfate sodiume
induced colitis.65 Intestinal macrophages also express the
enzyme cyclooxygenase 2 and produce prostaglandin E2, a
lipid mediator that can aid in wound healing via its direct ef-
fects on the epithelial stem cell niche.66 Collectively, these
data support the concept that intestinal macrophages help to
not only enforce tolerance in the steady state, but to also
participate in wound healing and repair processes.
1813
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DCs during Intestinal Inflammation

Similar to inflammatory macrophages, DCs display height-
ened levels of activation and increased proinflammatory
cytokine secretion during intestinal inflammation.67 Recent
evidence has demonstrated that intestinal CD103þ DCs
migrate to and accumulate within the mLNs during experi-
mental colitis, where they express low levels of TGF-b and
retinaldehydedehydrogenase enzymes that are required for the
generation of retinoic acid from vitamin A. Thus, instead of
efficiently priming Foxp3þ Treg cells, inflammatory DCs
preferentially induce Th1 and Th17 responses during colitis.53

Thymic stromal lymphopoietin production by CD103þ

DCs, which restrains Th17 responses during the steady
state, is also down-regulated during experimental colitis.68

These changes in DC function may be linked to the find-
ings that intestinal DCs are poised to rapidly respond to
bacterial components, such as flagellin, that breach the
epithelial barrier during intestinal inflammation.

CD103þCD11bþ small-intestine lamina propria DCs can
express TLR5 and respond to flagellin by promoting Th1 and
Th17 cells as well as the differentiation of IgA-producing
plasma cells.69 Consistently, chronic colitis can lead to an
increased number of CD103þCD11bþ DCs and Th17 cells in
the colon.22 Flagellin-mediated stimulation of TLR5 on
CD103þCD11bþ lamina propria DCs was also observed to
rapidly and transiently increase the production of IL-23,which,
in turn, induced IL-22emediated expression of the antimi-
crobial peptide, RegIIIg.70 Thus, activation of intestinal DCs
can potentiate inflammation and promote tissue homeostasis.

Interactions of Intestinal Macrophages and DCs
with the Microbiota

Microbiota-Induced APC Recruitment

Collectively, the microbiota outnumbers the total number
of human cells by >10-fold. The highest abundance of
these bacteria can be found in the intestine, with the
colon harboring the highest density of approximately 1012

organisms/mL of luminal contents. These bacteria are in
close proximity to the intestinal mucosa, and unique bac-
terial species are adept at penetrating the thick mucus layer
and can directly interact with intestinal epithelial cells and
underlying macrophages and DCs.

Because there exists a close temporal relationship be-
tween the acquisition of microbiota and development of the
immune system during ontogeny, it is likely that this rela-
tionship influences intestinal macrophage and/or DC ho-
meostasis. Interestingly, an initial wave of macrophages can
be detected in the intestinal mucosa before birth, when the
intestine has yet to be colonized by bacteria.12 However,
after this initial seeding of the intestine, circulating Ly6Cþ

monocytes are responsible for expanding the pool of intes-
tinal macrophages in a process that is dependent on the
intestinal microbiota.12
1814
In contrast to macrophages, the microbiota appears to be
less involved in recruiting DCs into the intestine because
germ-free and conventionalized mice harbor similar numbers
of lamina propria DCs.71 It is possible that an original wave of
DCs enter the intestine before microbial colonization, which
is required to stimulate the development of lymphoid tissue in
the intestine on colonization with microbiota.72 Although
germ-free and conventionalized mice have similar numbers of
intestinal DCs, conventionalization of germ-free mice leads to
an increase in the number of CD11cþ DCs in Peyer patches,
lymphoid follicles, and mLNs.71 Thus, the intestinal micro-
biota may contribute to the recruitment and/or expansion of
DCs in the gastrointestinal-associated lymphoid tissue,
whereas the major effects of the microbiota on lamina propria
DCs may be to alter functional responses.

Sensing of the Microbiota

Sensing of luminal microbes and their components by macro-
phages and DCs is also important for promoting intestinal
homeostasis. For example, the presence of the microbiota is
required to maintain resident CX3CR1þ macrophages in the
intestinal lamina propria. In mice treated with antibiotics or
mice with MyD88 deficiency, CX3CR1þ macrophages up-
regulate CCR7 and migrate to mLNs, where they can present
antigens to induce T-cell responses and the differentiation of
IgA-producing B cells.40 This study highlighted an interesting
dual role of CX3CR1þmacrophages, especially because these
cells are important for restraining inflammation in the steady
state. In addition, bacteria sensing may be required to promote
the anti-inflammatory program of resident intestinal macro-
phages and influence inflammatory anergy.73 Evidence for this
comes from experiments showing that colonic macrophages
from MyD88-deficient or germ-free mice have reduced
expression of IL-10 and IL-10einducible genes and enhanced
proinflammatory cytokine responses.74

MyD88-dependent sensing of the microbiota by intestinal
macrophages can also stimulate the production of Csf2 by
innate lymphoid cells (ILCs) in a process involving IL-1b
production.75,76 Csf2 derived from type 3 ILCs (ILC3) ap-
pears to be important for the maintenance of intestinal toler-
ance because its loss coincides with decreased intestinal
macrophage and DC numbers, reduced expression of TGF-b,
IL-10, and retinaldehyde dehydrogenase enzymes, and de-
creases in Foxp3þ Treg cells in the intestine.76 Similarly,
ILC3-derived IL-22 can play a beneficial role by enhancing
barrier function and aiding in mucosal healing.75

Investigations of bacterial sensing in the intestine have
established that the responsiveness of macrophages and
DCs can be controlled by unique bacteria-derived signals
(Figure 3). Much of the evidence in this area stems from
studies using germ-free mice colonized with different bac-
teria or bacterial by-products. For example, colonization of
germ-free mice with Bacteroides fragilis77 or a collection of
Clostridium strains from clusters IV and XIVa78 can pref-
erentially promote the induction and function of Treg cells
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Microbial factors condition intestinal macrophages (MF) and
dendritic cells (DCs) to promote unique T-cell responses. Different members of
themicrobiota and their components can stimulate intestinalmacrophages and/
or DCs to induce regulatory T cells (Tregs) or type 17 helper T cells (Th17).
Macrophages secrete IL-1b in response to commensal bacteria, prompting the
production of colony-stimulating factor 2 (Csf2) from type 3 innate lymphoid
cells (ILC3s). Csf2 can then engage macrophages and DCs to produce regulatory
molecules (eg, retinoic acid and IL-10) involved in the induction of Treg cells.
PolysaccharideA (PSA), expressedbyBacteroides fragilis and commensal-derived
short-chain fatty acids (SCFAs), can also act on intestinal macrophages and DCs
to stimulate retinoic acid and IL-10 production, and induce Treg cell differen-
tiation. Segmented filamentous bacteria (SFB) can gain close contact with the
intestinal epithelium, initiating signaling programs that drive the secretion of
IL-6 and IL-23 from macrophages and DCs, leading to Th17 differentiation. ATP
derived from commensal bacteria can bind receptors on intestinal macrophages
and/or DCs, leading to enhanced IL-6 and IL-23 expression and the induction of
Th17 cells. Both Treg and Th17 differentiation also require transforming growth
factor (TGF)-b, which is constitutively expressed in the intestine. mLN,
mesenteric lymph node; pDC, plasmacytoid dendritic cell.
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in the colon. In the case of B. fragilis, expression of poly-
saccharide A can activate plasmacytoid DCs in a TLR2-
depedent manner to induce the expansion of intestinal
Treg cells.77,79,80

In addition, specific members of the gut microbiota are
able to produce short-chain fatty acids (acetate, butyrate, and
propionate) through the fermentation of dietary fiber. Sensing
of butyrate by intestinal macrophages and DCs via the niacin
receptor, GPR109a, can lead to increased production of IL-
10, the up-regulation of retinaldehyde dehydrogenase en-
zymes, and the induction of Treg cell differentiation.81

More important, not all members of the microbiota induce
Treg responses. SFB, for example, is now well appreciated to
potently induce intestinal Th17 responses in mice.54 It has
been demonstrated that intestinal lamina propria macro-
phages and DCs from mice raised in the absence of SFB
preferentially stimulate CD4þ cells to become Treg cells,
whereas mice raised with microbiota containing SFB pref-
erentially stimulate Th17 cells.22 SFB is unique among other
members of the microbiota in that it generates an intestinal
milieu that can induce antigen-specific Th17 differentiation
against food and/or bacterial antigens directly in the intestinal
lamina propria and not gastrointestinal-associated lymphoid
tissue.82e84 Th17 differentiation has also been linked to the
The American Journal of Pathology - ajp.amjpathol.org
ability of SFB to stimulate serum amyloid A production in
the intestine, which then acts on CD103þCD11bþ DCs to
induce IL-6 and IL-23.54

Finally, a subset of CD70þCD11c(low) APCs in the
colon have been reported to induce Th17 cells in response to
bacteria-derived ATP. ATP can signal through the P2X and
P2Y ATP receptors expressed by CD70þ APCs to induce
the production of IL-6 and IL-23, which augments Th17
differentiation. Although the exact sources of ATP remain
unknown, germ-free mice have significantly reduced levels
of fecal ATP, suggesting that components of the microbiota
are major producers.85 These findings further underline the
importance of the microbiota and the local intestinal milieu
in modulating macrophage and DC function.

In addition to macrophages and DCs, ILCs are also
capable of presenting antigen in the intestine. ILCs, which
can be divided into three different subsets on the basis of the
cytokines they produce, have recently been found by several
different groups to express MHCII.83,86,87 The ability of
ILCs to present antigen through MHCII is important for
maintaining intestinal homoeostasis, especially in terms of
regulating host-microbiota reactions. Not only is antigen
presentation by intestinal ILCs important for driving the
expulsion of parasitic helminths,87 but this process in ILCs
is also important for limiting commensal bacteria-specific
CD4þ T-cell responses and restraining intestinal inflam-
mation.86 Indeed, the loss of MHCII expression in ILCs
leads to dysfunctional T-cell responses to the microbiota
and spontaneous intestinal inflammation.86

Human Intestinal Macrophages and DCs in IBD

Although experimental mouse systems have led to major new
insights into the development and function of intestinal
macrophages and DCs, human macrophages and DCs do not
share some of the markers and functions of their mouse
counterparts. For example, human intestinal macrophages do
not express CD11b, CD11c, or CX3CR1, which are all highly
expressed on mouse intestinal macrophages. Instead, human
intestinal macrophages can be identified by the expression of
human leukocyte antigen-D related, CD68, and CD13.

Examination of human intestinal biopsy specimens has
also identified a unique population of inflammatory macro-
phages expressing CD14 that may contribute to the patho-
genesis of Crohn disease.88 These CD14þ cells, which are
derived from blood monocytes, exhibit antigen-presenting
ability and are significantly increased in inflamed intestinal
tissue.88 Interestingly, monocyte chemoattractant protein-1,
the ligand for CCR2, is also significantly up-regulated in
mucosal biopsy specimens from inflamed sites and may be
responsible for the recruitment of CD14þ mononuclear
cells.9 CD14þ macrophages isolated from the inflamed in-
testine produce high levels of IL-23 and TNF, induce inter-
feron-g secretion by mononuclear cells, and can promote Th1
and Th17 differentiation.88,89 The ability of these intestinal
macrophages to influence T-cell responses may also occur
1815
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through the secretion of TNF-like ligand 1A (encoded by
TNFSF15) that works in cooperation with IL-23.90,91

The study of host genetics has also offered additional
insight into the role of intestinal macrophages and DCs in
human IBD. Genome-wide association studies have identi-
fied numerous susceptibility loci for human Crohn disease
and ulcerative colitis. These studies have implicated several
high-risk genes that may be involved in intestinal macro-
phage and DC functions. Of particular interest is the gene
encoding the intracellular pattern recognition receptor
NOD2. Loss-of-function mutations in NOD2 are currently
the strongest genetic link to human IBD development and
have been found in approximately 30% of Crohn disease
patients with small-intestinal inflammation.92

NOD2, which recognizes the bacterial cell wall component
muramyl dipeptide, is expressed in both macrophages and
DCs, and impaired signaling in these cells may be involved in
the initiation of inflammatory hyperresponsiveness. Chronic
stimulation of NOD2 in macrophages leads to down-
regulation of TLRs, induction of inflammatory anergy, and
increased bactericidal activity. Accordingly, monocyte-
derived macrophages from humans harboring loss-of-
function NOD2 mutations demonstrate increased reactivity
to TLR agonists and decreased bacterial killing.93,94

Mutations in NOD2 have also been linked to aberrant
function in intestinal DCs. Intact NOD2 signaling in human
DCs is required for the induction of miR-29 that can down-
regulate IL-23 production and prevent Th17 cell differen-
tiation. DCs isolated from Crohn disease patients harboring
NOD2 polymorphisms fail to induce miR-29 and display
increased IL-23 secretion when exposed to bacteria.95

In addition to NOD2, genome-wide association studies
have identified several autophagy-related genes, including
autophagy-related 16-like 1 (Atg16L1), and the immunity-
related GTPase family M (IRGM) that confer suscepti-
bility to Crohn disease.92,96 Atg16L1 and IRGM are
expressed by intestinal macrophages and DCs, and
dysfunction in these proteins can affect the normal
autophagy process.97e100

Autophagy is an important function of macrophages and
DCs, and its disruption can lead to improper bacterial traf-
ficking and antigen presentation, which can jeopardize in-
testinal homeostasis.97,100 Dysfunctional autophagy in these
cells is also related to increased proinflammatory cytokine
production.98,100 Interestingly, loss of NOD2 leads to
dysfunctional autophagy,97 suggesting a direct link between
these pathways, which may contribute to human IBD devel-
opment. Overall, the identification of these risk genes may
provide further insight into how to manipulate resident and
inflammatorymacrophage andDC functions during IBD.11,96

Conclusions

APCs found in the intestine are an integral part of the
mucosal immune system in both health and disease. Intes-
tinal macrophages and DCs act in concert to perform a
1816
variety of immunoregulatory functions that ultimately help
forge a tolerogenic relationship with the microbiota and
promote intestinal homeostasis. During inflammation,
however, macrophages and DCs can react to microbial
components and contribute to intestinal pathology. The
decision of tolerance versus overt reactivity is, thus, influ-
enced by how macrophages and DCs integrate signals from
the microbiota and immune and nonimmune cells in the
local environment. Although animal studies have greatly
expanded our knowledge of intestinal APCs, future efforts
aimed at understanding intestinal macrophage and DC
function in humans are warranted. Continued advancements
in the identification and characterization of steady-state and
inflammatory APCs in animals and humans will help to
clarify how these cells orchestrate mucosal immune re-
sponses and afford the opportunity to manipulate these cells
for therapeutic purposes in intestinal diseases, such as IBD.
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