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Antifungal therapy is a central component of patient management for acute and chronic
mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal
drug classes. Clinical management of fungal diseases is further compromised by the emer-
gence of antifungal drug resistance, which eliminates available drug classes as treatment
options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many
high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms
refractory to several different classes of antifungal agents, especially among common
Candida species. The mechanisms responsible are mostly shared by both resistant strains
displaying inherently reduced susceptibility and those acquiring resistance during therapy.
The molecular mechanisms include altered drug affinity and target abundance, reduced
intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights
into genetic factors regulating these mechanisms, as well as cellular factors important for
stress adaptation, provide a foundation to better understand the emergence of antifungal drug
resistance.

The global burden of fungal infections is
growing. More than 300 million people are

believed to suffer from a serious fungal infection
resulting in over 1,350,000 deaths (Brown et al.
2012). Fungal infections cause life-threatening
acute diseases, like cryptococcosis and invasive
aspergillosis, severe chronic diseases, such as al-
lergic bronchopulmonary aspergillosis, or they
may present less-threatening superficial infec-
tions, such as Candida vaginitis or oral can-

didiasis (Warnock 2007). Most invasive fungal
infections occur as a consequence of immune
suppression that results from conditions, such
as AIDS or from treatments, such as chemo-
therapy for cancer, immunosuppressive therapy
for organ transplantation, and corticosteroid
therapy for inflammation. More than 90% of
reported fungal-associated deaths result from
species belonging to three genera: Cryptococcus,
Candida, and Aspergillus (Brown et al. 2012).
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Failure to treat effectively, because of inadequate
or delayed diagnostics, may result in serious
chronic illness or blindness or may be fatal. Rec-
ognition of the importance of fungal infections
has led to a dramatic rise in the application of
antifungal agents for the treatment and pre-
vention of infection. Unfortunately, the treat-
ment options are highly limited, as there are
few chemical classes represented by existing an-
tifungal drugs. The antifungal drug classes in-
clude: polyenes, azoles, allylamines, flucytosine,
and echinocandins (Groll et al. 1998; Kathira-
van et al. 2012). The azoles (e.g., fluconazole,
voriconazole, and posaconazole) and allyl-
amines (e.g., terbinafine) inhibit ergosterol bio-
synthesis, whereas polyenes (e.g., amphotericin
B) bind to ergosterol in the plasma membrane,
where they form large pores that disrupt cell
function. Flucytosine (5-fluorocytosine) inhib-
its pyrimidine metabolism and DNA synthesis.
Finally, the echinocandins (caspofungin, anidu-
lafungin, and micafungin) are cell wall–active
agents that inhibit the biosynthesis of b-1,3-D-
glucan, a major structural component of the
fungal cell wall. The widespread use of antifun-
gal agents is presumed to be a factor that pro-
motes drug resistance (Antonovics et al. 2007;
Cowen 2008). The emergence of acquired drug
resistance among prevalent fungal pathogens
restricts treatment options, which alters patient
management. A greater understanding of mech-
anism-specific resistance and the biological fac-
tors that contribute to resistance emergence is
critical to develop better therapeutics, and to
improve diagnostics and intervention strategies
that may overcome and prevent resistance. The
detailed and complex biological nature of anti-
fungal drug resistance mechanisms will be ex-
plored in this review with an emphasis on azoles
and echinocandins, the two main classes of
drugs used as first-line therapy.

ASSESSING RESISTANCE FACTORS

Clinical resistance refers to therapeutic failure in
which a patient fails to respond to an antifungal
drug following administration at a standard
dose. The development of antifungal resistance
is complex and depends on multiple host and

microbial factors (White et al. 1998). Host im-
mune status is a critical factor, as fungistatic
drugs must work synergistically to control and
clear an infection. Patients with severe immune
dysfunction are more likely to fail therapy, as
the antifungal drug must combat the infection
without the benefit of an immune response
(Ben-Ami et al. 2008). The presence of indwell-
ing catheters, artificial heart valves, and other
surgical devices may also contribute to refracto-
ry infections, as infecting organisms attach to
these objects and establish biofilms that resist
drug action (d’Enfert 2006; Ramage et al.
2009; Bonhomme and d’Enfert 2013). Appro-
priate therapy requires that each drug reach the
site of infection at a concentration sufficient for
antimicrobial action. The pharmacokinetics of
many drugs is known, yet we still do not have a
good understanding of drug penetration at all
sites of infection. Thus, some microorganisms
are exposed to drugs at suboptimal levels. This
situation results in cells that persist during ther-
apy and may form subclinical reservoirs seeding
new infection. All of these factors contribute to
microbial resistance, which refers to the selec-
tion of strains that can proliferate despite expo-
sure to therapeutic levels of antifungals. Such
strains contribute significantly to drug failures
during therapy. Microbial resistance involves
both primary resistant strains, which are inher-
ently less susceptible to a given antifungal agent,
and secondary resistant strains, which acquire a
resistance attribute or trait in an otherwise sus-
ceptible strain following drug exposure. The
molecular mechanisms involved in acquired re-
sistance are often expressed at various levels in
primary resistant strains (Fig. 1), and these will
be explored in detail in this review.

MOLECULAR MECHANISMS OF
AZOLE RESISTANCE

Alterations in Ergosterol Biosynthetic
Enzymes: Erg11 (Cyp51A) Substitutions

Azole drugs target the ergosterol biosynthetic
pathway. Ergosterol is a significant component
of the fungal cell membrane; interruption of its
synthesis allows accumulation of 14a-methyl
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Figure 1. Mechanisms of resistance to antifungal drugs that target the cell membrane—the azoles and polyenes.
(A) Azole resistance can emerge through multiple mechanisms including overexpression or alteration of the
drug target, up-regulation of drug transporters, or cellular changes that reduce drug toxicity or enable tolerance
of drug-induced stress. The colored circles indicate ergosterol biosynthesis intermediates. (B) Polyene resistance
generally involves depletion of the target ergosterol attributable to loss-of-function mutations in ergosterol
biosynthetic genes. Bullet points describe resistance mechanisms for Candida albicans, Cryptococcus neofor-
mans, and Aspergillus fumigatus. Dimmed images represent mechanisms that do not play a key role in resistance
to the indicated drug class. (From Cowen 2008; adapted, with permission, from Macmillan # 2008.)
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sterols, which alters membrane stability, perme-
ability, and the action of membrane-bound en-
zymes (White et al. 2002; Odds et al. 2003). The
specific target of azoles is a cytochrome P450-
dependent enzyme lanosterol 14a-demethylase
(known as Erg11 in yeasts, which is homologous
to Cyp51A in molds). Erg11/Cyp51A catalyze
the oxidative removal of the 14a-methyl group
from lanosterol. Azole binding to the ferric iron
moiety of the heme-binding site blocks the en-
zyme’s natural substrate lanosterol, disrupting
the biosynthetic pathway (Odds et al. 2003).
Agents like doxycycline enhance the action of
azoles like fluconazole presumably by depleting
heme-associated iron (Fiori and Van Dijck
2012). Amino acid substitutions in the drug tar-
get that inhibit drug binding are a common
azole-resistance mechanism in Candida; over
140 substitutions have been reported in resistant
strains, many of which have an additive effect
(Morio et al. 2010). Two of the most common
alterations in C. albicans are R467K and G464S,
near the heme-binding site (Casalinuovo et al.
2004; Morio et al. 2010). ERG11 mutations may
play a lesser role in this species than increased
drug efflux (Perea et al. 2001). Despite the po-
tential for ERG11 point mutations to have a
greater impact in haploid organisms (e.g., Can-
dida glabrata) than in diploids (e.g., C. albicans),
increased drug efflux is the most common resis-
tance mechanism in C. glabrata as well (Borst
et al. 2005; Sanguinetti et al. 2005). A limited
number of ERG11 mutations have been reported
in resistant strains of C. neoformans, including
Y145F (Sionov et al. 2012) and G484S (Rodero
2003).

In A. fumigatus, target site alterations are the
most commonly reported resistance mecha-
nism, with over 30 cyp51A mutations identified
(Howard and Arendrup 2011). Resistance can
emerge in response to azole therapy (Verweij
et al. 2007; Howard et al. 2009), and the causative
mechanism can change over the course of infec-
tion (Chen et al. 2005; Howard et al. 2009). The
most commonly reported Cyp51A substitutions
that confer acquired resistance are at codons 54
and 220. The position and nature of the alter-
ation within the protein structure influence
cross-resistancewithin the drug class, with prox-

imity to the heme-binding site affecting the
binding of any azole drug (Xiao et al. 2004;
Snelders et al. 2010; Fraczek et al. 2011). To
date, all known mutations confer resistance to
itraconazole, whereas resistance to voriconazole
and/or posaconazole depend on the specific
modification (Verweij et al. 2007, 2009; Howard
and Arendrup 2011; van der Linden et al. 2011;
Camps et al. 2012b). Resistance has also been
identified in azole-naı̈ve patients, which is envi-
ronmentally derived and appears to be driven by
the agricultural use of azoles (Snelders et al.
2012; Bowyer and Denning 2013; Verweij et al.
2013). These cases involved a Cyp51A substitu-
tion at position 98 (from leucine to histidine),
and a 34-base tandem repeat (TR) in the cyp51A
promoter, which leads to overexpression (Sneld-
ers et al. 2008). Both changes are required to
confer resistance (Mellado et al. 2007). Notably,
these resistant isolates can outcross with suscep-
tible strains, suggesting the potential for resis-
tance to transfer via the sexual cycle (Camps
et al. 2012c). Strains bearing these alterations
have emerged across Europe and beyond (Mor-
tensen et al. 2010; Chowdhary et al. 2012). Fur-
ther, a new resistance mutation selected from the
environment, TR46/Y121F/T289A, is also be-
ing reported among patients in the Netherlands
(van der Linden et al. 2013).

Alterations in Ergosterol Biosynthetic Enzymes

Overexpression of ERG11 is common among
azole-resistant clinical isolates of C. albicans
(White 1997; Franz et al. 1998; Perea et al.
2001). This contributes directly to resistance as
an increase in target abundance requires more
drug for inhibition (Franz et al. 1998), reducing
susceptibility (Akins 2005). Multiple mecha-
nisms account for ERG11 constitutive overex-
pression in azole-resistant clinical isolates. First,
amplification of the ERG11 gene can occur by
the formation of an isochromosome with two
copies of the left arm of chromosome 5 (i(5L)),
in which ERG11 resides, or by duplication of the
entire chromosome (Selmecki et al. 2006). Sec-
ond, activating mutations in the gene encoding
the transcription factor Upc2 up-regulate most
ergosterol biosynthesis genes (Silver et al. 2004;
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MacPherson et al. 2005; Flowers et al. 2012);
disruption of C. albicans UPC2 causes hyper-
susceptibility to azoles.

Overexpression of ERG11 has also been re-
ported for azole-resistant isolates of C. glabrata,
Candida parapsilosis, Candida tropicalis, and
Candida krusei (Barchiesi et al. 2000; Redding
et al. 2002; Vandeputte et al. 2005; Rogers et al.
2006; Jiang et al. 2013). The mechanism for this
overexpression or its contribution to azole
resistance in these species remains largely un-
known. Overexpression of Cyp51A in A. fumi-
gatus (Cyp51) has been observed in two resis-
tant clinical isolates from a patient who failed
azole therapy (Arendrup et al. 2010). Whole
genome sequencing of these isolates revealed a
mutation in the CCAAT-binding transcription
factor complex subunit HapE, leading to a P88L
amino acid substitution, which conferred azole
resistance and increased cyp51A expression
(Camps et al. 2012a).

Inhibition of Erg3, a D5,6-desaturase, leads
to a depletion of ergosterol and accumulation of
14a-methylfecosterol, which allows continued
growth in the presence of azole despite altered
membrane composition (Lupetti et al. 2002).
The erg3 mutations are sufficient for azole resis-
tance in Candida, although they are seldom as-
sociated with high-level resistance. The erg3
mutations are associated with cross-resistance
to polyenes, likely caused by the depletion of
the target ergosterol (White et al. 1998). To date,
Erg3 alterations have not been associated with
resistance in Aspergillus.

Drug Uptake

Drug action often requires import of the drug
into the cell to reach the drug target. Some an-
tifungal agents use specific permeases to enter
cells. For example, 5-fluorocytosine uses perme-
ases (FCA1, FCY2, FCY22, and FCY23) to enter
C. albicans cells (Hope et al. 2004). Recently, it
was shown that the antifungal peptide histatin
5, as well as amine-containing substrates use
the Dur31 permease in C. albicans (Mayer et
al. 2012). The import of azoles into fungal cells
is not completely understood, but may influ-
ence resistance. One recent study suggests that

fluconazole enters C. albicans and other fungi
by energy-independent facilitated diffusion,
with azole import varying among C. albicans
clinical isolates (Mansfield et al. 2010). The azole
permease remains unknown.

Drug Efflux

A ubiquitous resistance mechanism is the acti-
vation of membrane-associated efflux pumps,
which recognize diverse chemicals enabling
multidrug resistance (MDR). In fungi, two dif-
ferent drug efflux systems modulate azole resis-
tance, the ATP-binding cassette (ABC) super-
family and the major facilitator superfamily
(MFS).

ABC proteins are ATP-dependent trans-
porters that usually are arranged in a duplicated
topology, comprising two transmembrane span
(TMS) domains and two cytoplasmic nucleo-
tide-binding domains (NBD) that catalyze ATP
hydrolysis. The analysis of fungal pathogen ge-
nomes has identified varying numbers of ABC
transporters with different topologies. C. albi-
cans is predicted to contain 28 ABC proteins
(Prasad and Goffeau 2012), and C. glabrata ap-
proximately two-thirds of that number. Many
more ABC proteins are found in A. fumigatus
and C. neoformans (Lamping et al. 2010). There
are several classes of fungal ABC transporters
(Braun et al. 2005); however, only the pleiotro-
pic drug resistance (PDR) class will be discussed
here. In C. albicans, the PDR class comprises the
major transporters involved in azole resistance
including CDR1 (for Candida drug resistance)
and CDR2, as well as other PDR-type transport-
ers (Braun et al. 2005). Additional genes that
encode the typical (NBD-TMS6)2 protein to-
pology but that have not yet been implicated
in resistance (CDR3, CDR4, CDR11, SNQ2) are
also found in C. albicans. Up-regulation of both
CDR1 and CDR2 mediates azole resistance by
enhanced drug efflux and reduced azole accu-
mulation (Sanglard et al. 2009).

Specific ABC transporters have also been
implicated in azole resistance in other fungal
pathogens. These include CgCdr1, CgCdr2,
and CgSnq2 in C. glabrata, and Afr1 in C. neo-
formans (Coleman and Mylonakis 2009). In
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A. fumigatus, decreased intracellular accumu-
lation of itraconazole has been observed in
itraconazole-resistant clinical isolates and lab-
oratory-derived strains (Denning et al. 1997;
Manavathu et al. 1999). Whereas the impact of
specific transporters on azole resistance of A.
fumigatus remains largely enigmatic, ABC trans-
porter genes are up-regulated in response to
azole exposure (AfuMDR1, AfuMDR2, and five
genes designated abcA–E) (Tobin et al. 1997; da
Silva Ferreira et al. 2006), and in resistant clinical
isolates (Slaven et al. 2002; Nascimento et al.
2003). AfuMDR1, renamed CDR1B, encodes
the only transporter implicated directly in A.
fumigatus azole resistance (Fraczek et al. 2013).

MFS transporters have multiple TMSs and
use the electrochemical proton-motive force to
power drug efflux. Their topology usually com-
prises 12 or 14 TMSs. MFS transporters are in-
volved in MDR function by proton antiport and
are classified in two groups: the drug:Hþ anti-
porter-1 (12 TMS) DHA1 family, and the
drug:Hþ antiporter-2 (14 TMS) DHA2 family.
The C. albicans genome sequence predicts 95
MFS transporters in 17 families (Gaur et al.
2008), but only one MFS, MDR1, has been im-
plicated in azole resistance of C. albicans and
Candida dubliniensis. MDR1 encodes a DHA1
MFS transporter that leads to enhanced azole
efflux and azole resistance when overexpressed.
Heterologous expression of MDR1 in Saccharo-
myces cerevisiae confers resistance to flucona-
zole but not to other azoles (Sanglard et al.
1995, 1996; Lamping et al. 2007). Expression
of C. albicans FLU1 (for fluconazole resistance)
in S. cerevisiae also confers fluconazole-specific
efflux, although a similar role has not been iden-
tified in C. albicans (Calabrese et al. 2000). In
A. fumigatus, AfuMDR3 encodes MFS trans-
porter that is up-regulated in itraconazole-resis-
tant mutants (Nascimento et al. 2003).

MDR Regulation

There have been considerable advances in un-
derstanding the transcriptional regulation of
fungal multidrug transporters. As expected,
general chromatin and transcriptional regula-
tory complexes influence expression of MDR

genes. Forexample, the mediatorcomplex serves
as a transcriptional coactivator in all eukaryotes
and influences MDR gene expression in S. cer-
evisiae and C. glabrata. The Gal11 subunit binds
Pdr1 in and is required for up-regulation of
Pdr1 targets (Thakur et al. 2008). The mediator
complex can associate with other transcription-
al coactivators. The transcriptional adaptor
Ada2, which is part of the SAGA coactivator
complex, binds to both CDR1 and MDR1 pro-
moters in C. albicans (Sellam et al. 2009a). The
complex landscape of specific cis- and trans-
regulatory elements that control expression of
MDR genes is described below.

Cis-Acting Elements

Cis-acting elements regulating CDR1, CDR2,
and MDR1 were first identified in C. albicans.
The promoters of CDR1 and CDR2 contain
common drug responsive element (DRE) se-
quences that are required for transcriptional
up-regulation in response to inducers (steroids,
fluphenazine) or in azole-resistant strains (de
Micheli et al. 2002). MDR1 cis-acting elements
can have complex arrangements that differ de-
pending on the inducer. For example, a benomyl
response element (BRE, –296 to –260 with re-
spect to the first ATG) is required for benomyl-
dependent MDR1 up-regulation and an H2O2

response element (HRE, –561 to –520) is re-
quired for H2O2-dependent MDR1 up-regula-
tion (Rognon et al. 2006). The BRE contains a
perfect match to the consensus binding se-
quence of Mcm1, which regulates MDR1 expres-
sion (Riggle and Kumamoto 2006).

In C. glabrata, ABC-transporter regulation
is more similar to that in S. cerevisiae (Paul et al.
2011). Pleiotropic drug responsive elements
(PDREs) present in CgCDR1, CgCDR2, and
CgSNQ2 are structurally similar to those in S.
cerevisiae (Sanglard et al. 1999; Torelli et al.
2008). PDREs of CgCDR1 are necessary for
high-level CDR1 expression in mitochondrial
mutants (Paul et al. 2011).

Trans-Acting Elements

The first major transcription factor important
for regulating efflux activity was TAC1 (for tran-

L.E. Cowen et al.

6 Cite this article as Cold Spring Harb Perspect Med 2015;5:a019752

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



scriptional activator of CDR genes), a member
of the Zn2Cys6 transcription factor family from
C. albicans. TAC1 is critical for the up-regulation
of CDR1 and CDR2 in response to drugs or in
clinical azole-resistant isolates. Constitutive up-
regulation of CDR1 and CDR2 can be attributed
to gain-of-function (GOF) mutations in differ-
ent domains of TAC1 (Coste et al. 2004, 2006).
Nineteen different TAC1 mutations have been
confirmed as GOF, whereas others remain can-
didates (Coste et al. 2009; Siikala et al. 2010;
Sanglard 2011). The TAC1 regulon was further
elucidated by genome-wide transcriptional pro-
filing and DNA occupancy analysis of Tac1 (Liu
et al. 2007), demonstrating that Tac1 binds to
the DRE of CDR1 and CDR2, likely via a con-
sensus-binding motif (CGGN4CGG). Recently,
another CDR1 regulator was discovered by sys-
tematic overexpression of modified Zn2Cys6

genes; MRR2 (orf19.6182) is required for the
basal expression of CDR1; however, it does not
regulate CDR2 (Schillig and Morschhauser
2013).

The C. glabrata orthologs of CDR1 and
CDR2 are regulated by the transcriptional acti-
vator, CgPdr1, identified based on homology
with S. cerevisiae Pdr1 and Pdr3, key transcrip-
tional regulators of multidrug resistance (Ver-
mitsky and Edlind 2004). CgPdr1 binds to the
PDRE consensus in CgCDR1 (Paul et al. 2011).
GOF mutations hyperactivate CgPdr1, resulting
in up-regulation of target genes, including the
ABC transporters involved in azole resistance
(Vermitsky and Edlind 2004; Tsai et al. 2006;
Vermitsky et al. 2006; Ferrari et al. 2009; Caudle
et al. 2011). Fifty-eight distinct GOF mutations
have been identified at 51 positions in CgPDR1
alleles from clinical azole-resistant isolates (Fer-
rari et al. 2009). Notably, only a few genes were
commonly regulated by the GOF mutations,
suggesting complex interactions of CgPDR1
with transcriptional machinery (Tsai et al.
2010; Caudle et al. 2011; Ferrari et al. 2011b).
Consistent with this, the Gal11p/MED15
subunit of the mediator coactivator and the
KIX domain interact with CgPdr1, which is crit-
ical for MDR regulation (Monk and Goffeau
2008; Thakur et al. 2008; Naar and Thakur
2009).

The other important regulator of multidrug
resistance in C. albicans is the Zn2Cys6 tran-
scription factor Mrr1 (for multidrug-resistance
regulator 1), which regulates the MFS trans-
porter gene MDR1. MRR1 was discovered by
genome-wide transcriptional analysis of C.
albicans isolates that up-regulated MDR1. Dele-
tion of MRR1 in clinical strains blocked MDR1
up-regulation (Morschhauser et al. 2007). Fif-
teen different MRR1 GOF mutations have been
reported (Sanglard 2011; Eddouzi et al. 2013),
causing constitutive up-regulation of MDR1
(Dunkel et al. 2008). Genome-wide transcrip-
tional studies using clinical strains revealed a
core set of 14 genes involved in diverse functions
that are up-regulated in isolates carrying MRR1
GOF mutations (Morschhauser et al. 2007). Ge-
nome-wide in vivo occupancy studies of a hy-
peractive form of Mrr1 identified 701 binding
sites and a putative binding motif, DCSGHD
(Schubert et al. 2011), which was also found
in MDR1 regulatory regions (Hiller et al. 2006;
Rognon et al. 2006).

Besides Tac1/Mrr1 and CgPdr1, additional
positive regulators of MDR have been reported
in C. albicans. Cap1 is a basic region leucine
zipper (bZIP) transcription factor, which binds
to the MDR1 promoter and regulates MDR1
expression in oxidative stress conditions (Alarco
and Raymond 1999; Znaidi et al. 2009). Mcm1
also binds to the MDR1 promoter at the binding
consensus motif [CC(A/T)6GG] (Riggle and
Kumamoto 2006; Lavoie et al. 2008). There
are distinct requirements for Mcm1 in the acti-
vation of MDR1; Mcm1 is dispensable for in-
duction of MDR1 in response to oxidative stress
or CAP1 gain-of-function mutation, but is re-
quired for full induction of MDR1 in response
to benomyl or MRR1 gain-of-function muta-
tion (Mogavero et al. 2011). Ndt80 is similar
to a meiosis-specific transcription factor in S.
cerevisiae, but regulates CDR1 expression (Chen
et al. 2004). Ndt80 also binds other transporter
genes, including CDR2, CDR4, orf19.4531
MDR1, and FLU1 (Sellam et al. 2009b) as well
as genes, such as ERG11, that encode ergosterol
biosynthesis enzymes.

There are additional negative regulators of
MDR. C. albicans REP1 (for regulator of efflux
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pump 1) has similarity with NDT80, and its
deletion causes up-regulation of MDR1 expres-
sion in response to 4-nitroquinoline-N-oxide
(Chen et al. 2009). FCR1 (for fluconazole resis-
tance) was cloned in a S. cerevisiae screen for
azole resistance (Talibi and Raymond 1999).
However, C. albicans FCR1 appears to have a
different function, as deletion of CaFCR1 en-
ables the emergence of azole resistance (Shen
et al. 2007). In C. glabrata, the Zn2Cys6 tran-
scription factor Stb5 represses expression of
ABC transporter genes including CgCDR1 and
CgCDR2 (Noble et al. 2013). In S. cerevisiae Sbt5
and Pdr1 form a heterodimer (Akache et al.
2004), as do Pdr1 and Pdr3 (Mamnun et al.
2002).

Chromosomal Abnormalities

Multiple genomic alterations have been associ-
ated with azole resistance, including loss of het-
erozygosity (LOH) of specific genomic regions,
increase of chromosome copy number, as well
as segmental or chromosomal aneuploidies.
LOH is common for regions containing azole-
resistance determinants including ERG11,
TAC1, or MRR1. Analysis of sequential C. albi-
cans isolates that evolved resistance in patients
revealed that mutations in these genes often
arise in the heterozygous state and become ho-
mozygous by LOH (Coste et al. 2007; Selmecki
et al. 2010). Larger-scale changes of chromo-
somes harboring azole-resistance determinants
have also been associated with resistance in
C. albicans. ERG11 and TAC1 reside on the left
arm of chromosome 5, thus the formation
of isochromosome i(5L) increases their copy
number and confers resistance (Selmecki et al.
2006). Variant forms of i(5L) exist, including
one that incorporates the region of the chromo-
some 3 right arm that contains CDR1 and
MRR1 (Selmecki et al. 2009), thus facilitating
resistance development. The prevalence of an-
euploidies in azole-resistant isolates raised the
question of whether azole exposure simply se-
lects for the more resistant aneuploid variants
or whether azole exposure contributes to the
generation of aneuploidies. Consistent with
the latter possibility, azole exposure was found

to cause aberrant cell cycle regulation in C. al-
bicans with a tetraploid intermediate preceding
aneuploidy formation (Harrison et al. 2014).

Chromosomal alterations have also been
associated with resistance in C. glabrata and C.
neoformans. C. glabrata can acquire azole resis-
tance by increasing the copy number of ERG11
(Marichal et al. 1997). Further, the formation of
segmental aneuploidies and novel chromosome
configurations has been identified in azole-re-
sistant isolates of C. glabrata (Poláková et al.
2009). For C. neoformans, azole resistance is as-
sociated with specific chromosome alterations,
especially disomies of chromosomes 1 and 4.
Chromosome 1 contains two azole-resistance
determinants, the azole target gene ERG11 and
ABC transporter gene AFR1 (Sionov et al. 2010).
Alteration in copy number of these chromo-
somes also relates to the phenomenon of hetero-
resistance, in which subpopulations within the
same clone vary in resistance based on the fre-
quent loss and gain of chromosomes in response
to selection (Sionov et al. 2010, 2013).

Mitochondrial Defects

The relationship between mitochondrial dys-
function and azole resistance is based mainly
on the observation that both S. cerevisiae and
C. glabrata can survive partial or complete loss
of mitochondrial DNA (formation of “petite”
mutants) (Gulshan and Moye-Rowley 2007).
Petite mutants are intrinsically resistant to
azoles owing to up-regulation of transcriptional
activators (PDR3 in S. cerevisiae; CgPDR1 in C.
glabrata) and their target genes (Ferrari et al.
2011a). For C. glabrata, in vitro exposure to
fluconazole can give rise to mitochondrial mu-
tants at high frequency (Sanglard et al. 2001;
Brun et al. 2003, 2004). Selection of these mu-
tants in the clinical context is much less frequent
(Bouchara et al. 2000; Ferrari et al. 2011a). Al-
though some C. glabrata clinical isolates with
mitochondrial dysfunction do not show fitness
defects compared with wild-type parents in a
mouse infection model (Ferrari et al. 2011a),
other C. glabrata petite mutants are avirulent
(Singh et al. 2009; Singh-Babak et al. 2012).
C. albicans cannot undergo loss of mitochon-
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drial DNA and therefore is considered a “petite-
negative” species. However, pharmacological in-
hibition of mitochondrial complexes involved
in respiration and energy production results in
higher susceptibility to azoles in this species
(Sun et al. 2013). The findings that mitochon-
drial defects are associated with azole resistance
in C. glabrata, but susceptibility in C. albicans,
suggests complex functional relationships be-
tween the azoles activity and mitochondrial
function in fungal pathogens.

Resistance Acquisition through Multiple
Mechanisms

The emergence of azole resistance is often asso-
ciated with stepwise increases in resistance over
time. This has been documented in sequential
isolates from patients before and after antifun-
gal treatment (Sanglard et al. 1995, 1998a,b;
White et al. 1998; Lopez-Ribot et al. 1999;
Marr et al. 2001; Perea et al. 2001; Martinez
et al. 2002). Stepwise acquisition of resistance
involves multiple mechanisms. Molecular epi-
demiology of azole resistance in a large popula-
tion of C. albicans suggests that CDR1/CDR2
up-regulation is more prevalent than ERG11 or
MDR1 up-regulation, with combinations of
CDR1/CDR2 up-regulation and ERG11 alter-
ations as the most common (Goldman et al.
2004; Park and Perlin 2005; Coste et al. 2007;
Siikala et al. 2010; Flowers et al. 2012). Although
CDR1/CDR2 and MDR1 up-regulation can be
explained by TAC1 and MRR1 GOF mutations,
ERG11 up-regulation is not always associated
with UPC2 GOF mutations, implicating ad-
ditional regulators (Flowers et al. 2012). The
contribution of individual mutations to resis-
tance of a clinical isolate was recently dissected
by sequential replacement of mutated alleles
(TAC1/ERG11) with wild-type alleles, confirm-
ing the functional importance of each mutation
(MacCallum et al. 2010). In addition to the se-
quential acquisition of mutations, larger-scale
genomic alterations, such as LOH and changes
in copy number of azole-resistance genes, can
occur during the evolution of high-level azole
resistance in clinical isolates (Selmecki et al.
2006). In contrast to the prevalence of stepwise

increases in resistance caused by multiple mech-
anisms in C. albicans, high-level resistance of
C. glabrata often occurs in a single step via
GOF mutations in CgPDR1 (Ferrari et al. 2009).

Biofilms

Biofilms are one of the most prevalent forms of
microbial growth in nature, and Candida species
are among the most common etiologic agents of
biofilm infections (Kumamoto 2002; Ramage
et al. 2009), although other yeasts and filamen-
tous fungi are important biofilm producers as
well (Ramage et al. 2009). Biofilms display an
organized three-dimensional structure com-
prised of a dense network of yeast and filamen-
tous cells embedded in an exopolymeric matrix
consisting of carbohydrates, proteins, and nu-
cleic acids. The matrix is a major feature that
distinguishes biofilms from planktonic cells.
Candida biofilms are intrinsically resistant to
azoles, and the mechanisms are multifactorial,
involving induction of drug efflux transporters
and drug sequestration within the extensive ma-
trix structure (Kumamoto 2002; Mukherjee
et al. 2003; Chandra et al. 2005; Ramage et al.
2009; Fanning and Mitchell 2012). As with
planktonic C. albicans, active drug efflux can
be induced by up-regulation of CDR and MDR
genes (Ramage et al. 2002; Mukherjee et al.
2003). However, drug sequestration within
the extracellular matrix is the largest determi-
nant of the multidrug-resistance phenotype
(Nett et al. 2010a). Matrix production is highly
regulated and is a key resistance factor for Can-
dida spp., including C. albicans, C. glabrata, C.
parapsilosis, C. tropicalis, and C. dubliniensis
(Silva et al. 2009). A key biofilm constituent is
b-1,3-glucan, which is produced by glucan syn-
thase. Downstream components of the yeast
PKC pathway, including Smi1, Rlm1, Rho1,
and Fsk1, regulate b-1,3-glucan biosynthesis
and biofilm matrix production (Nett et al.
2010a,b, 2011; Desai et al. 2013). Other cellular
proteins, such as the transcription factor Zap1,
alcohol dehydrogenases Adh5, Csh1, and Ifd6, as
well as glucoamylases, CaGca1 and CaGca2, also
affect matrix production and resistance pheno-
types (Nobile et al. 2009).

Drug Resistance Mechanisms
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Hsp90 and Related Factors

Cellular stress-response circuitry provides a
critical strategy for fungi to survive the cell
membrane stress induced by exposure to azoles.
This circuitry enables basal tolerance to azoles,
as well as resistance that was acquired by diverse
mechanisms (Cowen and Steinbach 2008; Sha-
piro et al. 2011). A leading example of a global
cellular regulator that governs stress responses
crucial for azole tolerance and resistance is
the molecular chaperone Hsp90 (Cowen 2008,
2009, 2013). Hsp90 is a conserved and essential
chaperone that regulates cellular signaling by
stabilizing a myriad of client proteins, many of
which are signal transducers (Taipale et al.
2010). Compromise of Hsp90 function geneti-
cally or pharmacologically reduces tolerance of
Candida species to azoles (Cowen et al. 2009).
Inhibition of Hsp90 can also block the evolu-
tion of azole resistance, and abrogate resistance
caused by the loss of function of Erg3 or resis-
tance that evolved in a human host by multiple
mechanisms (Cowen and Lindquist 2005; Co-
wen et al. 2006). In addition to its role in azole
resistance of planktonic cells, Hsp90 also regu-
lates azole resistance of Candida biofilms (Rob-
bins et al. 2011). The circuitry through which
Hsp90 regulates drug resistance is best studied
in C. albicans planktonic cells, where the key
client proteins are calcineurin and Mkc1. Calci-
neurin is a protein phosphatase that is required
to survive the cell membrane stress induced by
azoles (Cruz et al. 2002; Sanglard et al. 2003;
Steinbach et al. 2007). Hsp90 physically inter-
acts with and stabilizes the catalytic subunit of
calcineurin, such that depletion of Hsp90 leads
to depletion of calcineurin (Singh et al. 2009).
Hsp90 also stabilizes the terminal mitogen
activated protein kinase (MAPK) of the cell
wall integrity pathway, Mkc1, thereby modulat-
ing additional responses to azole-induced cell
membrane stress (LaFayette et al. 2010). Al-
though calcineurin and Mkc1 are also implicat-
ed in azole resistance of C. albicans biofilms,
depletion of Hsp90 does not affect their stability
in this cellular state (Robbins et al. 2011). With-
in biofilms, depletion of Hsp90 reduces matrix
glucan levels, thereby reducing azole resistance

(Robbins et al. 2011). Inhibition of Hsp90 func-
tion with drugs that are well tolerated in hu-
mans enhances the efficacy of azoles against
resistant Candida strains in infection models
including the invertebrate Galleria mellonella,
as well as the rat central venous catheter model
of biofilm infection, in which the infection and
drug delivery are localized (Cowen et al. 2009;
Robbins et al. 2011). Toxicity of Hsp90 inhibi-
tors has been observed when in the context of
mouse models of disseminated Candida infec-
tion, motivating the search for fungal selective
Hsp90 inhibitors or inhibitors that target com-
ponents of the Hsp90 chaperone network that
are more divergent between pathogen and host
(Cowen 2009).

Recent studies have revealed upstream reg-
ulators of Hsp90 function with a profound im-
pact on azole resistance. Hsp90 function is reg-
ulated by cochaperones and a complex code of
posttranslational modifications (Taipale et al.
2010). The first analysis of an Hsp90 cochaper-
one in a fungal pathogen revealed that Sgt1
physically interacts with Hsp90 in C. albicans,
and that depletion of Sgt1 abrogates azole tol-
erance and resistance (Shapiro et al. 2012).
Hsp90 function was also found to be regulated
by acetylation such that pharmacological inhi-
bition of lysine deacylases phenocopies inhibi-
tion of Hsp90, blocking the evolution of azole
resistance and reducing resistance of C. albicans
that evolved in a human host (Robbins et al.
2012). Regulation of Hsp90 function by acety-
lation is conserved in A. fumgiatus, in which the
key residue for azole and echinocandin resis-
tance is K27 (Lamoth et al. 2014b). In S. cerevi-
siae, the key lysine deacetylases that modulate
Hsp90 function are Hda1 and Rpd3 (Robbins
et al. 2012), although the relevant players re-
main enigmatic in other fungi.

mRNA Stability

An additional mechanism that contributes to
azole resistance is enhanced mRNA stability.
This has been studied mostly in the context
of CDR1 expression, encoding a multidrug ef-
flux transporter in C. albicans. Analysis of two
matched pairs of azole-susceptible and resistant
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isolates revealed that the half-life of CDR1
mRNA was threefold higher in resistant isolates
compared with their susceptible counterparts
(Manoharlal et al. 2008). The polyA tail of
CDR1 mRNA was also �35%–50% hyperade-
nylated in the resistant isolates (Manoharlal et
al. 2008). mRNA adenylation is controlled by
poly(A) polymerase (Pap1), which is encoded
by two distinct alleles in close proximity to the
mating type locus. Whereas the susceptible iso-
lates were heterozygous for PAP1, the resistant
isolates were homozygous for the PAP1-a allele
(Manoharlal et al. 2010). Pap1-a has a repressive
effect on CDR1 transcript polyadenylation and
stability, such that PAP1-a homozygosity con-
tributes to azole resistance (Manoharlal et al.
2010). Together, this reinforces the importance
elevated of Cdr1 levels for drug resistance, which
can be achieved by transcriptional up-regulation
as well as enhanced mRNA stability.

MECHANISMS OF ECHINOCANDIN
RESISTANCE

FKS Mechanism of Resistance

Echinocandin resistance resulting in clinical
failures is conferred by limited amino acid sub-
stitutions in the Fks subunits of glucan synthase
(Perlin 2011a). Unlike azole antifungal agents,
resistance to echinocandins is largely unaffected
by multidrug transporters (Bachmann et al.
2003; Niimi et al. 2006); this is consistent with
the model that echinocandins may function at
the outer membrane (Healey et al. 2012; John-
son and Edlind 2012). In C. albicans and most
other Candida spp., resistance mutations occur
in two highly conserved “hot-spot” regions of
FKS1 (Garcia-Effron et al. 2009b; Katiyar and
Edlind 2009; Johnson et al. 2011), encompass-
ing residues Phe641–Pro649 and Arg1361 (C.
albicans equivalent) (Park et al. 2005), and/or
equivalent regions of FKS2 in C. glabrata (Ka-
tiyar et al. 2006; Garcia-Effron et al. 2009a). The
amino acid substitutions decrease sensitivity
of glucan synthase to drug by 50- to 3000-fold
(Katiyaret al. 2006; Garcia-Effron et al. 2009a,b),
and elevate MIC values 5- to 100-fold. For
C. albicans, amino acid changes at Ser645 are

the most frequent and cause the most pro-
nounced resistance phenotype (Garcia-Effron et
al. 2009a,b; Perlin 2011a,b). In C. glabrata, com-
parable mutations conferring resistance occur in
both FKS1 and FKS2. Changes at Fks2 Ser663
(equivalent to C. albicans Ser645) in Fks2 are
the most prominent amino acid substitution
(.50%) (Garcia-Effron et al. 2009a). Other
substitutions encountered in clinical failures in-
clude Ser629 in Fks1 and Phe659 in Fks2. Con-
sistent with the clinical experience, substitutions
at positions Ser641 and Ser645 in C. albicans and
equivalent positions in C. glabrata show poor
drug response in pharmacodynamic studies of
murine infection models (Howard et al. 2011;
Slater et al. 2011; Wiederhold et al. 2011; Aren-
drup et al. 2012). Other hot-spot mutations
may confer phenotypic resistance, but escalating
drug doses are more effective against resistant
strains harboring such mutations (Arendrup
et al. 2012). The echinocandin-resistance level
conferred by hot-spot mutations in FKS1 or
FKS2 may also depend on the relative expression
of these genes, which can vary more than 20-fold
(Garcia-Effron et al. 2009a; Katiyar et al. 2012).
FKS2 expression is calcineurin dependent and
down-regulated by FK506 (tacrolimus) (Eng
et al. 1994). Resistance conferred by FKS2 but
not FKS1 is reversed following treatment with
the calcineurin inhibitor FK506 (Katiyar et al.
2012). Recently, a third hot-spot region was
identified that confers in vitro resistance, and
is defined by W695 in S. cerevisiae Fks1 and
equivalent residues F695 and W760 from Scedo-
sporium species and Schizosaccharomyces pombe,
respectively; the equivalent substitution in
C. glabrata also has a role in resistance (Johnson
et al. 2011). Notably, amino acid substitutions in
Fks1 of C. albicans often confer reduced fitness
(Garcia-Effron et al. 2009a; Katiyar et al. 2012),
as they are associated with a decreased catalytic
reaction rate for glucan biosynthesis (Garcia-Ef-
fron et al. 2009a,b), resulting in altered cell wall
morphology (Ben-Ami et al. 2011). A conse-
quence of reduced fitness is that echinocandin-
resistant strains compete poorly with their wild-
type counterpart (Ben-Ami et al. 2011), which
may explain why resistant strains are rarely
transmitted between patients.

Drug Resistance Mechanisms
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Hot-Spot Polymorphisms and Inherent
Reduced Susceptibility

The C. parapsilosis complex (C. parapsilosis sen-
su stricto, Candida orthopsilosis, and Candida
metapsilosis) and Candida guilliermondii display
higher echinocandin MIC values relative to
other susceptible Candida species (Pfaller et al.
2008a, 2010; Tortorano et al. 2013). The mech-
anism underlying reduced echinocandin sus-
ceptibility involves naturally occurring poly-
morphisms in FKS hot-spot regions (Garcia-
Effron et al. 2008). In the C. parapsilosis com-
plex, the highly conserved Pro660 at the distal
edge of hot spot 1 is present as an alanine. Ki-
netic inhibition studies showed that glucan syn-
thase from the C. parapsilosis group was 1–2 logs
less sensitive to echinocandins than typical en-
zymes from C. albicans. Strains of C. albicans
and C. glabrata, as well as engineered strains of
S. cerevisiae that harbor amino acid substitu-
tions at this position show decreases in target
enzyme sensitivity and increased MIC values
(Garcia-Effron et al. 2008). Overall, it appears
that naturally occurring Fks1 polymorphisms in
hot-spot regions of non-albicans Candida spp.
and other fungi contribute to reduced suscept-
ibility (Fig. 2).

Biofilms

As with azole resistance, the glucan matrix se-
questers echinocandin drugs, preventing them
from reaching the cell membrane. Disruption
of this process by genetic or chemical modifi-
cation of b-1,3-glucan synthase decreases drug
sequestration in the matrix, rendering biofilms
susceptible to antifungal agents (Desai et al.
2013). This mechanism accounts for a large
fraction of the drug-resistance phenotype dur-
ing biofilm growth (Nett et al. 2011), and con-
tributes to the formation of a subpopulation
of persister cells that are drug resistant. The
cell wall biosynthesis protein Smi1 has been
implicated in biofilm matrix glucan produc-
tion and the development of drug resistance;
it acts through the transcription factor Rlm1
and glucan synthase Fks1. Smi1 functions in
conjunction with Rlm1 and Fks1 to produce

drug-sequestering biofilm b-glucan (Desai et
al. 2013).

Adaptive Cellular Factors

Fungi possess adaptive cellular factors that con-
fer protection against cellular stresses, such as
those encountered on inhibition of glucan syn-
thase by echinocandins (Perlin 2007; Walker
et al. 2010). These stress adaptation responses
may result in elevated in vitro MIC values to
echinocandins, but they are not typically asso-
ciated with clinical failures (Kartsonis et al.
2005; Pfaller et al. 2008b). However, drug toler-
ance may be an important intermediate stage
for development of FKS-mediated resistance as
it enables a larger population of surviving cells
in response to drug exposure that can respond
to selection and evolve resistance. Consistent
with this model, fungal stress tolerance path-
ways including cell wall integrity, protein
kinase C (PKC), Ca2þ/calcineurin/Crz1, and
high osmolarity glycerol (HOG) cascades enable
survival of echinocandin-induced stress by con-
trolling compensatory up-regulation of chitin
synthesis (Munro et al. 2007; Walker et al.
2008), and constitutive up-regulation of chitin
is associated with echinocandin resistance
caused by FKS1 mutations (Walker et al. 2013).
Also, changes in the cell membrane can alter
echinocandin action. For some laboratory and
clinical isolates, defects in sphingolipid bio-
synthesis lead to a mixed phenotype in which
strains are resistant to caspofungin and hyper-
sensitive to micafungin (Healey et al. 2011,
2012); the opposing effects on susceptibility to
the two echinocandins led to the model that the
altered sphingolipid composition of the plasma
membrane weakens the interaction between Fks
and caspofungin while strengthening the inter-
action between Fks and micafungin.

Chitin Synthesis

As alluded to above, increased chitin synthesis
has emerged as an important mechanism en-
abling fungal cells to survive echinocandin ex-
posure, with implications for resistance. Expo-
sure of C. albicans to low levels of echinocandins
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induces chitin synthase gene expression, and
leads to elevated chitin content and reduced
echinocandin efficacy (Walker et al. 2008).
This compensatory increase in chitin is coordi-
nated by the PKC, HOG, and calcineurin sig-
naling pathways (Munro et al. 2007). Activation

of two of the chitin synthases, Chs2 and Chs8,
enables survival of otherwise lethal doses of
echinocandins (Walker et al. 2008). Elevated
chitin content following echinocandin expo-
sure is also observed in C. tropicalis, C. para-
psilosis, and Candida guillermondii, in addition

Cell wall stress

Target alteration
or overexpression

Up-regulation of
multidrug transporters Cellular stress responses

- Mediators of stress-response
  pathways include: Hsp90,
  calcineurin, PKC, HOG, and KDACs

- Mutations in FKS1

- Mutations in FKS1 increase
  echinocandin resistance in vitro;
  not a common mechanism found
  in the clinc

- Mutations in stress-response
  pathways include: Hsp90,
  calcineurin, Ras, and the unfolded
  protein response
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A Echinocandins

B FKS mutations and polymorphisms

Aspergillus fumigatus

Fks2Fks1 Fks3
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Figure 2. Mechanisms of resistance to antifungal drugsthat target the cellwall—the echinocandins. (A) Mutations
in FKS1, which encodes the catalytic subunit of the echinocandin target (1,3)-b-D-glucan synthase, are the most
prevalent cause of echinocandin resistance. Cellular stress-response pathways modulate resistance phenotypes.
Bullet points describe resistance mechanisms for C. albicans and A. fumigatus. Dimmed images represent mech-
anisms that do not play a key role in resistance. (B) Distribution of acquired mutations and naturally occurring
polymorphisms within FKS genes conferring reduced echinocandin susceptibility. (From Cowen 2008; adapted,
with permission, from Macmillan# 2008, and from Perlin 2007; adapted, with permission, from Elsevier# 2007.)
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to some C. krusei isolates (Walker et al. 2013). In
C. glabrata, the terminal MAPK of the PKC sig-
naling pathway, Slt2, controls chitin increase in
response to echinocandins (Cota et al. 2008).
Echinocandin resistance attributed to muta-
tions in FKS1 is associated with elevated chitin
levels and the absence of compensatory increas-
es in chitin on echinocandin exposure (Walker
et al. 2013). Increased cell wall chitin also con-
fers reduced susceptibility to echinocandins in a
mouse model of systemic C. albicans infection
(Lee et al. 2012). The importance of chitin syn-
thesis for surviving echinocandin exposure ex-
tends beyond Candida species to Aspergillus. In
A. fumigatus, deletion of chitin synthesis genes
CSMA and CSMB has little impact on overall
cell wall chitin content, but leads to disorga-
nized cell wall structure and increased suscep-
tibility to echinocandins (Jimenez-Ortigosa et
al. 2012). Consistent with the importance for
chitin synthesis in responses to echinocandins,
chitin synthesis inhibitors have synergistic ac-
tivity with echinocandins (Walker et al. 2008).
These responses also have been invoked to ex-
plain the “paradoxical growth effect,” which re-
fers to growth of echinocandin susceptible fungi
at highly elevated drug concentrations, vastly
exceeding the MIC (Stevens et al. 2004). For
example, one C. albicans strain undergoing par-
adoxical growth showed a 900% increase in chi-
tin content (Clemons et al. 2006). The paradox-
ical effect is eliminated by chitin synthase
inhibitor nikkomycin Z and calcineurin inhib-
itors (Shields et al. 2011).

Hsp90

Hsp90 orchestrates cellular stress-response cir-
cuitry that has a profound impact not only on
azole resistance, but also on echinocandin resis-
tance. Genetic or pharmacological compromise
of Hsp90 function reduces basal echinocandin
tolerance and resistance of C. albicans, C. glab-
rata, and A. fumigatus (Cowen and Lindquist
2005; Cowen 2009; Cowen et al. 2009; Singh
et al. 2009; Singh-Babak et al. 2012; Lamoth
et al. 2014a). Inhibition of Hsp90 reduces echi-
nocandin resistance acquired by mutation in the
drug target, and resistance that evolved in the

human host (Singh et al. 2009; Singh-Babak
et al. 2012). Hsp90 affects resistance to echino-
candins through its client proteins calcineurin
and Mkc1 (Singh et al. 2009; LaFayette et al.
2010). The Hsp90 cochaperone Sgt1 is also re-
quired for echinocandin tolerance and resis-
tance acquired by mutation in the drug target
(Shapiro et al. 2012). Hsp90 inhibitors in clin-
ical development for cancer enhance the efficacy
of echinocandins against A. fumigatus in the
G. mellonella model of pathogenesis (Cowen
et al. 2009), and genetic reduction of Hsp90
levels enhances the efficacy of echinocandins
against C. albicans in murine models of systemic
infection (Singh et al. 2009). Collectively, these
studies suggest a broad therapeutic potential of
targeting Hsp90 in enhancing the efficacy of the
two leading classes of antifungal drugs against
diverse fungal pathogens.

Cell Integrity Circuit

Cell wall integrity signaling is regulated by
Hsp90 and is crucial for chitin synthesis, with
profound effects on echinocandin tolerance and
resistance. In S. cerevisiae, exposure to echino-
candins induces genes from the PKC cell wall
integrity-signaling pathway (Reinoso-Martin
et al. 2003). Deletion of genes encoding cell
wall integrity components, such as WSC1,
PKC1, BCK1, and SLT2, confers hypersuscepti-
bility to echinocandins (Reinoso-Martin et al.
2003; Markovich et al. 2004). Defects in cell wall
integrity, such as those induced by the echino-
candins, are sensed by transmembrane proteins
of the Wsc family and Mid2, which then activate
the GTPase Rho1. Rho1 positively regulates
multiple effectors including Pkc1, as well as
the echinocandin targets Fks1 and Fks2 (Sha-
piro et al. 2011). In C. albicans, the cell integrity
circuitry is also implicated in mediating crucial
responses to the cell wall stress induced by echi-
nocandins. The terminal MAPK of the C. albi-
cans PKC pathway, Mkc1, is induced by echino-
candins and is required for basal tolerance
(Wiederhold et al. 2005; LaFayette et al. 2010).
Consistent with the importance of cell wall in-
tegrity signaling in echinocandin resistance, a
potent and selective fungal Pkc1 kinase inhibi-
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tor is synergistic with echinocandins against
C. albicans (Sussman et al. 2004). The broad-
spectrum protein kinase inhibitor staurospor-
ine is also synergistic with echinocandins against
Candida and Aspergillus (Markovich et al. 2004;
LaFayette et al. 2010). The cell wall integrity cir-
cuitry is not only crucial for responses to cell
wall stress induced by echinocandins, but it is
also required for cell membrane stress induced
by azoles (LaFayette et al. 2010), highlighting
its central role in mediating antifungal drug re-
sistance.

CONCLUDING REMARKS

Antifungal therapy continues to be an impor-
tant element of patient management for fungal
diseases, and the development of both mono-
resistant and multidrug-resistant strains will be
a challenge for the medical community. The
mechanisms contributing to azole and echino-
candin resistance are now well characterized
and include reducing drug–target interactions
either by modifying the target (drug affinity
changes or target abundance) or by reducing
the effective cellular content of drug (ABC
or MFS drug pumps, biofilm glucan trap). C.
albicans shows a full complement of resistance
mechanisms, yet not all mechanisms are present
in all fungal strains despite the genetic potential.
Much progress has been made in understanding
the importance of biofilms, as they convert nor-
mally susceptible planktonic cells into highly
resistant cell communities. Similarly, a great
deal has been learned about the genetic regula-
tory elements that influence overexpression
of ERG11 and FKS genes, as well as ABC and
MFS transporters. Fungal cells are dynamic and
adapt readily to environmental challenges.
Compensatory responses involving enhanced
chitin biosynthesis following inhibition of glu-
can biosynthesis by echinocandin action helps
maintain cell wall integrity. Critical cellular fac-
tors, such as Hsp90, stabilize enzymes during
stress, thereby promoting cell survival. All com-
ponents contribute to the development of cells,
which transiently adapt to drug exposure with
the potential to more fully breakthrough thera-
py by induction of more permanent resistance

mechanisms. A detailed understanding of the
principal resistance mechanisms and the factors
that contribute to their evolution is important
for developing new diagnostic approaches to
more easily identify drug resistance and create
new strategies for therapeutic intervention that
can prevent and overcome resistance.
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résistance. PLoS Pathog 5: e1000486.

Coste AT, Karababa M, Ischer F, Bille J, Sanglard D. 2004.
TAC1, transcriptional activator of CDR genes, is a new
transcription factor involved in the regulation of Candida
albicans ABC transporters CDR1 and CDR2. Eukaryot
Cell 3: 1639–1652.

Coste A, Turner V, Ischer F, Morschhäuser J, Forche A, Sel-
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