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Very few chemically novel agents have been approved for antibacterial chemotherapies
during the last 50 yr. Yet new antibacterial drugs are needed to reduce the impact on
global health of an increasing number of drug-resistant infections, including highly drug-
resistant forms of tuberculosis. This review discusses how genetic approaches can be used to
study the mechanism of action of whole-cell screening hits and facilitate target-driven strat-
egies for antimicrobial drug development.

Many classes of antibiotics in clinical use to-
day stem from the golden age of antibiotic

discovery, which had its most productive period
from 1940 to 1960 (Davies 2006; Silver 2011).
These drugs are one of the reasons why most
bacterial infections can be cured with a few pills,
generally without side effects, within a couple of
weeks. It is thus easy to forget that bacterial in-
fections have remained a majorcause of prevent-
able deaths in developing countries and contin-
ue to exert a profound impact on human health.
The relative paucity of novel antibacterials dis-
covered after 1960 coincided with the appear-
ance and contributed to the spread of drug-re-
sistant bacterial infections. When resistant to
not onlyone, but multiple drugs, such infections
threaten to erode a cornerstone of modern
health care.

Tuberculosis (TB) is a prime example of how
treatment has succeeded in developed countries
while meeting frequent failure in the developing
nations. Treatment failure contributed to the re-
emergence of a thought-to-be-conquered dis-

ease that now constitutes as a major public
health threat. First-line treatment of TB consists
of drugs originally identified during the golden
age of antibiotic discovery. Together with social
changes, these drugs contributed to a drastic
reduction of TB cases in Europe and North
America while continuing to kill millions in Af-
rica and Asia. Drug-resistant Mycobacterium tu-
berculosis (Mtb) appeared shortly after the intro-
duction of TB chemotherapy and evolved into
extremely drug-resistant Mtb, which threatens
the TB control programs worldwide. Therefore,
the need for new therapies for treatment of this
deadly disease remains unchanged since the pre-
antibiotic era. This review discusses how genetic
approaches can facilitate the development of
drugs for such new therapies.

GENETICS AND CLASSICAL WHOLE-CELL
SCREENING

Whole-cell screening (WCS)-based antibacteri-
al drug discovery begins with identifying small
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molecules (hits) that inhibit bacterial growth.
This inhibitor-first approach provided the foun-
dation of the golden age of antibacterial drug
discovery and remains the only development
strategy that has delivered antibacterial drugs
to the clinic (Brotz-Oesterhelt and Sass 2010).
This includes all first-in-class drug candidates
currently under clinical development for the
treatment of TB (Lechartier et al. 2014). The
superior success rate of inhibitor-first strategies
is not unique to antibacterial drug development
as phenotypic screening has been more produc-
tive than target-driven approaches across a spec-
trum of diseases (Swinney and Anthony 2011).

Several features contribute to the success of
classical WCS. These screens allow for selective
investment into the chemical structures that can
overcome the major challenge of antibacterial
drug development: ability to penetrate the bac-
terial cell envelope. Furthermore, WCS provides
an opportunity to discover compounds that in-
hibit growth by diverse mechanisms, including
those that engage multiple targets. The draw-
back is that the mechanism of all hits remains
to be determined.

Whereas it is not required to understand a
drug candidate’s mechanism of action (MOA)
to obtain regulatory approval for use in hu-
mans, knowing how a compound exerts its bi-
ological function during development is desir-
able for several reasons. First, many WCS hits
act in a nonspecific manner (e.g., as alkylating
agents or detergents) and therefore cannot be
developed into drugs (Payne et al. 2007; Roemer
and Boone 2013). Second, not all hits that are
toxic to the host have to be discarded as toxicity
need not necessarily result from a compound’s
antibacterial activity. Antibacterial activity and
toxicity are linked if they both stem from in-
hibition of the same target, for example, an
enzyme that is conserved in both the pathogen
and the host. Such compounds are not suited
for further development. However, in cases in
which the mechanism of toxicity differs from
that of bacterial growth inhibition, chemical
modifications can sometimes eliminate a com-
pound’s toxicity without compromising its an-
tibacterial activity. Third, after identifying the
target, the structure activity relationship (SAR)

of the compound can be explored in more de-
tail. Fourth, and perhaps most importantly,
the antibacterial MOA of a compound is a de-
terminant of its in vivo potency. This is exem-
plified by recently identified pyrimidine-imid-
azoles, which were active against Mtb in vitro,
had appropriate pharmacokinetic properties,
but showed no potency in Mtb-infected mice
(Pethe et al. 2013). The activity of these mole-
cules relied on the presence of glycerol, which is
used in many standard liquid media, but it is
not a physiological carbon source. Therefore,
lack of in vivo potency in these pyrimidine-im-
idazoles was mechanism-based, leaving no path
to develop these compounds further.

The potential for discovering other com-
pounds with MOAs that intrinsically have no
in vivo potency (here referred to as novip com-
pounds) is significant because screening media
can, at best, only mimic some of the environ-
ments encountered during an infection. More
often, they create a physiological context that
is quite different from that within the host as
many standard media contain nutrients Mtb
cannot obtain from the host in the provided
form (e.g., iron) (Rodriguez and Smith 2006),
cannot obtain from the host at all (e.g., biotin)
(Sassetti and Rubin 2003; Woong Park et al.
2011), and lack nutrients that Mtb is apparently
able to scavenge from the host (e.g., NAD pre-
cursors) (Boshoff et al. 2008). These differences
can cause some mutations to either result in
death of Mtb in vitro but not during infections
(e.g., mutations in nadA [Boshoff et al. 2008])
or prevent growth during infections but not in
standard media (e.g., mutations required to
scavenge iron from the host [Rodriguez and
Smith 2006]). One conceptually straightfor-
ward strategy to reduce the risk of identifying
novip compounds is to screen against intracellu-
lar Mtb (Christophe et al. 2009). However, such
screening procedures can also reveal genes that
are required ex vivo but not during an infection
(Munoz-Elias et al. 2006). Furthermore, Mtb in-
duces acomplex and dynamic pathologyand can
be found in multiple different intracellular and
extracellular locations (Barry et al. 2009; Dartois
and Barry 2013). Some of these locations permit
the pathogen to replicate, whereas others may
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restrict its growth and yet allow its persistence.
Therefore, it seems impossible to design screen-
ing conditions that mimic the pathophysiol-
ogical context of an Mtb infection in humans
well enough to completely bias against novips.
The best insurance against MOA-based attrition
is therefore a solid understanding of a com-
pound’s MOA.

Genetic Strategies for Studying the
MOA of Bioactive Small Molecules’
RNA Profiling

A cell’s genome-wide RNA profile is defined by
the abundance of the total RNA produced at a
given time. Taking snapshots of these profiles
became straightforward after DNA microarrays
were invented (Schena et al. 1995; Lashkari et al.
1997), and they can now be reported with even
higher resolution by sequencing total RNA ex-
tracts (Nagalakshmi et al. 2008; Wilhelm et al.
2008; Arnvig and Young 2012). The foremost
study to show the use of genome-wide RNA
profiling for characterizing the MOA of bioac-
tive molecules was performed with the anesthet-
ic dyclonine (Hughes et al. 2000). Hughes et al.
collected Saccharomyces cerevisiae RNA profiles
induced by hundreds of different genetic or
chemical treatments. This generated a compen-

dium of reference profiles to which the RNA
profile induced by dyclonine could be com-
pared. Pattern matching algorithms revealed
that dyclonine caused changes similar to those
induced by mutations in the ergosterol pathway.
This suggested that dyclonine inhibited sterol
biosynthesis and follow-up experiments con-
firmed the sterol isomerase Erg2p as a target of
dyclonine. This pattern matching approach, as
illustrated in Figure 1, has since been used to
uncover targets and the MOA of many other
antimicrobial compounds (Brazas and Hancock
2005; Smith et al. 2010; Wecke and Mascher
2011). Indeed, Mtb microarrays were first used
to study the effect of isoniazid on the RNA
profile of Mtb (Wilson et al. 1999). Hundreds
of compound-induced RNA profiles were re-
ported 5 yr later in a landmark study by Boshoff
et al. (2004). These profiles helped to investi-
gate a variety of antimycobacterial small mole-
cules, including capreomycin (Fu and Shinnick
2007), isoniazid (Karakousis et al. 2008), PA-
824 (Manjunatha et al. 2009), an inhibitor
of menaquinone production (Dhiman et al.
2009), b-lactams (Slayden and Belisle 2009),
vancomycin (Provvedi et al. 2009), the benzo-
thioazinone, BTZ043 (Makarov et al. 2009),
the natural product chelerythrine (Liang et al.
2011), thioridazine (Thorsing et al. 2013), and

No drug

No drug

RIF

INH

Compound of unknown MOA

RIF INH
Compound
of unknown
MOA

Figure 1. RNA profiling. RNA molecules produced by four genes of the Mtb genome with and without drug
treatment are represented as colored lines. The color of the squares depicted below the RNA molecules reflects
their abundance, with darker colors identifying more abundant RNAs. The fictional data here would suggest that
the compound of unknown MOA functions in a manner similar to RIF.
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several other WCS hits (Stanley et al. 2013; Wang
et al. 2013).

The principal limitations of RNA profiling
are twofold. First, these profiles fail to identify
the direct target of a compound as they only
reveal the biological pathway(s) that respond
to the drug. In part, this is because inhibition
of different proteins can produce similar RNA
profiles, such as in situations in which the pro-
teins form a complex or are required for the
same metabolic pathway. Second, the profiles
(and other pattern matching approaches) are
most informative for compounds, which induce
a signature similar to the compounds with a
known MOA. Specific predictions are difficult
to make for compounds with an entirely novel
MOA as appropriate reference profiles are lack-
ing in such cases. This drawback can be over-
come by enriching the reference compendium
with RNA profiles from genetically defined mu-
tants (Hughes et al. 2000; Mnaimneh et al. 2004;
Freiberg et al. 2005). Unfortunately, too few
such profiles are available for Mtb to apply
this principle to facilitate the analysis of anti-
mycobacterial compounds.

Even for relatively small bacterial genomes,
genome-wide RNA profiles consist of thou-
sands of individual measurements. This com-
plexity offers the potential to generate unique
signatures for many bioactive small molecules
while making it difficult to identify the most
informative RNAs. The amount of data gener-
ated by RNA profiling is not only large, but
more importantly, the biological responses to
growth perturbation are often complex. This
foremost applies to RNA profiles collected at
time points or at drug concentrations that im-
pact the abundance of hundreds of RNAs. The
nonspecific stress responses contained in such
profiles can mask a compound-specific re-
sponse. Reducing the treatment time and/or
drug concentration often simplifies the analysis
of bioactive molecules by RNA profiling. Fur-
thermore, the abilityof genome-wide RNA anal-
yses to detect minute changes in any single gene
coupled with a highly dynamic transcriptional
response prevalent in bacteria increases the
existing complexity by severalfold. Therefore,
obtaining very similar RNA profiles in two ap-

parently identical experiments can be a chal-
lenge. Description of all experimental details,
strict standardization, and avoidance of proce-
dural changes of gene expression (as can occur,
for example, by centrifugation of live Mtb) are
therefore crucial for producing informative
RNA profiles.

Selection and Identification of Resistance
Mutations

The first indication that bedaquiline (BDQ, for-
merly known as TMC207 and originally pub-
lished as R207910) prevents the growth of Mtb
by inhibiting the adenosine triphosphate (ATP)
synthase was provided by the mutants selected
for their ability to grow in the presence of BDQ
(Andries et al. 2005). Whole-genome sequenc-
ing of these BDQ-resistant strains revealed point
mutations in atpE, which encodes subunit c of
ATP synthase. Genetic and biochemical studies
further established that BDQ inhibits ATP syn-
thesis by binding to AtpE, thus confirming ATP
synthase as a direct target (Koul et al. 2007).
Selecting for resistance followed by whole-ge-
nome sequencing (Fig. 2A) has identified mu-
tations that permit growth in the presence of
several other small molecules with antimyco-
bacterial activities. Examples include mutations
in genes involved in respiration (qcrB) (Abra-
hams et al. 2012b; Pethe et al. 2013), fatty acid
synthesis (inhA) (Hartkoorn et al. 2012), pro-
tein synthesis (aspS) (Ioerger et al. 2013), pro-
tein secretion (eccB3) (Ioerger et al. 2013), poly-
ketide biosynthesis ( pks13) (Ioerger et al. 2013;
Wilson et al. 2013), mycolic acid transport
(mmpL3) (Grzegorzewicz et al. 2012; La Rosa et
al. 2012; Stanley et al. 2012; Tahlan et al. 2012;
Ioerger et al. 2013; Remuinan et al. 2013), and
arabinogalactan synthesis (dprE1) (Christophe
et al. 2009; Makarov et al. 2009; Magnet et al.
2010; Stanley et al. 2012; Wang et al. 2013).

Resistance mutations can directly identify
high-value drug targets. Selection and identi-
fication of such mutations requires no target-
specific assay development, can be fast, and is
comprehensive as it surveys the entire genome.
However, this approach is not without limita-
tions and fails when a resistant strain cannot be
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obtained. Furthermore, alteration of the target
responsible for the growth inhibitory effect of
a small molecule constitutes only one of the
several mechanisms by which mutations can
impart resistance. Alternatively, methods such
as chemical inactivation, efflux, or failure to
transform an inactive prodrug into its active
derivative can form the basis of resistance. The
knowledge of mutation frequencies that cause
resistance by these mechanisms proves highly
useful to determine the value of a compound.
A high frequency of resistance owing to such
mechanisms significantly devalues the com-
pound. However, this knowledge rarely plays
a role in defining a compound’s MOA. Never-
theless, in scenarios in which a mutation can
be mapped to a true target, resistance mutation
provides one of the simplest ways to define a
compound’s MOA.

Linking Small Molecules to Candidate
Targets by Increasing or Reducing
Gene Activity

To be directly involved in the MOA of a bioactive
small molecule, a protein has to physically in-
teract with that small molecule. That a candi-
date protein has the potential for such an in-
teraction within live bacteria can be confirmed
indirectly by showing an immediate correlation
between the protein’s abundance and the min-
imal inhibitor concentration required to inhib-
it growth (MIC) (Fig. 2B). This type of experi-
ment has helped to clarify the MOA of INH
(isoniazid), which was debated to impair one
of two enzymes involved in fatty acid biosyn-
thesis, InhA or KasA. Strains that overexpressed
these proteins were analyzed for their suscepti-
bilities to INH and the KasA inhibitor thiolac-

Select
drug-resistant

mutant

A B C

Whole-genome
sequencing

Wild type

G GGA AT T T T TT TTTC C CCAA A

Drug Mutant

Growth
with drug

Growth
without drug
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Figure 2. Forward and reverse genetic approaches to investigate small molecule MOAs. (A) Selection of resistant
mutants. Mutants that are resistant to the compound are selected on agar plates supplemented with the
compound of interest. The mutations present in these resistant isolates are identified by whole-genome se-
quencing. (B) Under/over-expression. Reducing or increasing the expression of a candidate target (black circles)
can either decrease or increase the MIC of a compound (yellow triangle) inhibiting the target. (C) Phenotyping
pooled mutants. Mutants are labeled with a genetic barcode and their fitness is analyzed in a competitive growth
experiment. This principle can be applied to deletion mutants, underexpressors, overexpressors, or a mix of
these strains. The orange-label mutant shows increased sensitivity to the tested drug; the black-labeled mutant
(which is only shown in the graph) shows decreased sensitivity.
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tomycin (TLM). Overexpression of InhA in-
creased the MIC of INH but did not change
the MIC of TLM; overexpression of KasA had
the opposite effect (Larsen et al. 2002). These
results supported the view that InhA and KasA
are primary targets of INH and TLM, respec-
tively. Similar overexpression studies have often
been performed with Mycobacterium smegmatis
in which the MOA of different inhibitors was
linked to one or more targets, including D-cy-
closerine to alanine racemase (Alr) and D-ala-
D-ala ligase (Ddl) (Feng and Barletta 2003), pla-
tensimycin to KasA and KasB (Brown et al.
2009), ethambutol to the arabinosyltransferases
EmbB and EmbC (Goude et al. 2009), and cer-
tain diphenylurea compounds to inosine mo-
nophosphate dehydrogenase (Olaleye et al.
2010; Usha et al. 2011).

In mycobacteria, overexpression has pri-
marily been used to evaluate the role of specif-
ic candidate target proteins for compound
activity, but it can also provide a means to find
candidate targets for a compound with an en-
tirely unknown MOA. To achieve this, librar-
ies of overexpression clones are systematically
screened for those that improve growth in the
presence of the inhibitor. Such a screen, which
used an ordered library of overexpression clones
for all essential Escherichia coli genes, identified
the lipoprotein chaperon, LolA, as a candidate
target of the novel antibacterial compound,
MAC12343. Biochemical studies confirmed
that MAC12343 binds LolA and perturbs
lipoprotein trafficking (Pathania et al. 2009).
Similar overexpression libraries are under con-
struction for Mtb and will hopefully be availa-
ble soon.

A complication of overexpression screens,
especially when using random libraries, is the
frequent isolation of efflux pumps. These
pumps increase resistance by lowering the intra-
cellular concentration of the compound under
investigation, and their isolation does not re-
veal a compound’s MOA. Difficult to interpret
MIC shifts can also occur if the candidate tar-
get belongs to a protein family of which sever-
al members are encoded in the same genome.
If the inhibitor binding site is conserved, over-
expression of any member of such a protein

family will increase the MIC even when only
one family member is the physiological target.
This has been discussed for inosine-50-mono-
phosphate (IMP) dehydrogenases (GuaB1/2/
3) (Usha et al. 2011), ketoacyl-ACP synthases
(KasA/B) (Brown et al. 2009), and methionine
aminopeptidases (MapA/B) (Olaleye et al.
2010). In some of these cases, the MIC may
have increased because the overproduced pro-
tein sequestered the inhibitor from its physio-
logical target.

As target overexpression should increase a
compound’s MIC, so should target underex-
pression decrease the MIC (Fig. 2B). This was
indeed observed for several conditional M. smeg-
matis knockdown mutants described recently.
Underexpression of gyrase subunit A (GyrA,
target of quinolones [Sugino et al. 1977], Alr
[Caceres et al. 1997], dihydrofolate reductase
[DHFR, target of trimethoprim] [Schweitzer
et al. 1990], RNA polymerase subunit B [RpoB,
target of RIF] [Lancini et al. 1969]), and protein
biotin ligase (BirA, target of BioAMS [Duck-
worth et al. 2011]) sensitized M. smegmatis to
ciprofloxacin, D-cycloserine, trimethoprim,
RIF, and BioAMS, respectively (Duckworth
et al. 2011; Kim et al. 2010; Wei et al. 2011).
Similar observations were made with Mtb, in
which partial genetic inactivation of the biotin
synthesis enzyme BioA or DHFR increased its
susceptibility toward the novel inhibitors of
these enzymes (Shi et al. 2011; Kumar et al.
2012). For many of these mutants, it was also
shown that they were most strongly sensitized to
inhibitors of the partially depleted protein.
These and other data (Giaever et al. 1999; De-
Vito et al. 2002; Lum et al. 2004; Yin et al. 2004;
Donald et al. 2009; Abrahams et al. 2012a; Ol-
linger et al. 2012) confirmed that partial deple-
tion of an in vitro essential protein often causes
compound-specific MIC shifts and can thus
provide information on the MOA of a bioactive
small molecule. However, as is the case for over-
expression, underexpression studies by them-
selves are not sufficient to claim the underpro-
duced protein as the MIC determining target of
an inhibitor, as underexpression could also de-
crease the MIC by sensitizing other enzymes in
the same pathway to chemical inhibition.
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That underexpression nevertheless provides
a powerful tool for identifying candidate tar-
gets is apparent from work with S. cerevisiae.
Construction of underexpressors is relatively
straightforward in S. cerevisiae and is often
achieved with deletion of one gene copy. Such
heterozygous deletion strains are available for
almost all S. cerevisiae genes including those
that are essential for normal growth. This mu-
tant collection has been used extensively to
study the MOA of bioactive small molecules
by drug-induced haploinsufficiency profiling
(HIP). HIP measures the effect of sublethal
drug concentrations on the relative growth rates
of individual mutants (Fig. 2C). Primarily, these
studies confirmed that the mutants of known
targets of antimicrobial agents are among those
most susceptible to growth inhibition by the re-
spective drug (Giaever et al. 1999, 2004; Lum et
al. 2004) and were later implemented in iden-
tification of novel candidate targets for estab-
lished drugs. This included the rRNA processing
exosome, which was predicted by HIP (Giaever
et al. 2004; Lum et al. 2004) and confirmed by
various experiments (Fang et al. 2004; Hoskins
and Scott Butler 2007; Hoskins and Butler 2008;
Kammler et al. 2008) to be involved in the MOA
of the anticancer drug 5-fluorouracil. In the
opportunistic pathogen Candida albicans, HIP
helped to identify the guanine monophosphate
synthase (Rodriguez-Suarez et al. 2007), a fatty
acid desaturase (Xu et al. 2009), and poly(A)
polymerase (Jiang et al. 2008) as targets of novel
inhibitors. Experiments conceptually similar to
HIP have been performed in bacteria where gene
expression can be efficiently reduced by anti-
sense RNAs (Donald et al. 2009; Huber et al.
2009; Xu et al. 2010). Unfortunately, antisense
RNAs have only rarely been efficient in Mtb.
Currently, the generation of a large collection
of Mtb underexpressors depends on approaches
that require homologous recombination during
mutant construction, such as transcriptional or
proteolytic silencing (Ehrt et al. 2005; Wei et al.
2011).

WCS hits are growth inhibitory by defini-
tion and thus should primarily target the es-
sential gene products. Nevertheless, mutations
in nonessential genes often modulate a com-

pound’s activity. Evidence for this came from
several studies including those that used the
E. coli Keio collection. This library contains al-
most 4000 mutants each of which has a sin-
gle gene deleted. Of these 4000 mutants, 283
showed greater sensitivity than wild type to at
least one of the 14 different antibiotics tested
(Tamae et al. 2008; Liu et al. 2010). Whereas
some strains were more susceptible to several
classes of antibiotics, others were only sensitized
to compounds with the same MOA (Girgis et al.
2009; Liu et al. 2010). The drug sensitivity pro-
files of the latter mutants can be used to classify a
compound’s MOA with strategies similar to
those implemented in RNA profiling. The dis-
criminative power of these profiles can be en-
riched with mutations that decrease antibiotic
susceptibility, which in E. coli are as frequent as
those that increase susceptibility (Girgis et al.
2009).

The homozygous deletion mutants in S.
cerevisiae are equivalent to the E. coli Keio mu-
tants. Chemical profiling of such mutants (ho-
mozygous deletion profiling, HOP) has been
particularly useful for compounds whose pri-
mary target is not a protein. For example,
HOP of �4700 S. cerevisiae mutants revealed
that fitness defects caused by deletion of genes
involved in DNA repair or in survival during
DNA damage can be diagnostic for DNA-dam-
aging agents. In fact, the profiles of these mu-
tants were distinct for chemicals that damage
DNA by different mechanisms as they could
distinguish compounds that generate inter-
strand cross-links from those that do not (Lee
et al. 2005). The interpretation of HOP exper-
iments can be facilitated by data from genetic
interaction studies. Two genes are defined as
interacting if the phenotype of their double mu-
tant deviates from the expected phenotypes of
the two single gene mutants (Dixon et al. 2009).
In S. cerevisiae, many such digenic interactions
have been defined. These interactions are valu-
able for analyses of bioactive small molecules
as the genetic interaction profile of a gene can
be similar to the HOP profile of a small mole-
cule and thus link the small molecule to the
respective gene (Parsons et al. 2004, 2006; Cos-
tanzo et al. 2010).
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FACILITATING TARGET-BASED DRUG
DISCOVERY

Target-based approaches typically begin with
a screen for inhibitors of a purified enzyme.
Unfortunately, most inhibitors identified in sev-
eral high-throughput screenings (HTSs) against
bacterial enzymes had no activity against live
bacteria (Payne et al. 2007). Nevertheless, tar-
get-based approaches have their own advantag-
es. Primarily, MOA studies are more straightfor-
ward for a target-based approach than for WCS
hits. For example, a bisubstrate inhibitor (Bio-
AMS) designed to inactivate the protein biotin
ligase (BirA) was recently found to inhibit the
growth of Mtb. The study conducted by Duck-
worth et al. (2011) examined the impact of Bio-
AMS on growth and biotinylation of proteins in
M. smegmatis and Mtb. As expected, the activity
of BioAMS (but not of INH or ethambutol)
against Mtb and M. smegmatis directly correlat-
ed with expression of BirA, and growth inhibi-
tion coincided with the depletion of biotinylated
proteins. Together, these straightforward obser-
vations confirmed BirA as the primary target of
BioAMS (Duckworth et al. 2011). The second
main advantage of target-based approaches is
that they can survey a much larger chemical
space than what can be covered in phenotypic
screens, especially if fragment-based approaches
are included (Scott et al. 2012). This is signifi-
cant because the physicochemical properties
of most molecules in a typical WCS library are
different from those of known antibacterials
(Brotz-Oesterhelt and Sass 2010).

The Power and Limits of Genetic Target
Validation

Choosing a poor target will doom a target-
based drug discovery program from the start,
yet this might become obvious only after years
of work and millions of dollars have been in-
vested. Identifying appropriate targets is thus
crucial. Ideally, the selected protein should be
(1) conserved among all isolates of the targeted
pathogen(s), (2) susceptible to inhibition by a
small molecule, (3) different enough from any
human homolog to allow development of low

toxicity inhibitors, (4) amenable to biochemical
HTS, and (5) required for bacterial growth (or
survival) in a manner that its partial inactiva-
tion suffices to improve a patient’s health.
Showing that a target fulfills all these criteria
requires a small-molecule inhibitor that is safe
for use in humans (i.e., a drug). Trying to de-
velop drugs against new targets, therefore, al-
ways bears the additional risk that comes from
working against a target that is yet to be fully
validated. This additional risk applies to inhib-
itors identified from either WCS or biochemical
screens and is one of the factors causing the high
rate of attrition of compounds with entirely
novel MOAs (Kola and Landis 2004).

Druggability assessments evaluate potential
binding pockets by computational or chemical
methods (Perot et al. 2010; Barelier and Krimm
2011; Fauman et al. 2011); sequence conser-
vation—within bacteria and between bacterial
and human homologs—can be assessed with
genome sequence data. An important contribu-
tion of genetics to the evaluation of potential
targets is its ability to determine the importance
of a potential target for growth and survival.
The most complete source for this information
stems from transposon mutagenesis. Many of
the genes that Mtb requires to grow normally
in vitro (Sassetti et al. 2001, 2003), in macro-
phages (Rengarajan et al. 2005), or in mouse
spleens (Sassetti and Rubin, 2003) were de-
fined by transposon site hybridization (TraSH).
TraSH uses DNA microarrays to simultaneously
map and analyze the phenotypic consequences
of thousands of transposon insertions. Recently,
Tn-seq, which uses next-generation DNA se-
quencing instead of microarrays, has improved
these analyses by providing single-nucleotide
resolution and a larger dynamic range (Griffin
et al. 2012; Zhang et al. 2012, 2013). TraSH
and Tn-seq have contributed more to the phe-
notypic characterization of gene functions in
Mtb than any other genetic approach. However,
they are not ideal to validate gene products as
targets for drug development for two reasons.
First, TraSH and Tn-seq can identify in vitro
essential genes, but neither approach generates
mutants for such genes that could be analyzed
under a variety of conditions. In the same man-
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ner as WCS can identify novip compounds, ge-
netic screens can identify novip targets (i.e., tar-
gets whose inactivation kills Mtb under a specific
in vitro condition but does not prevent per-
sistence or even growth in animals or humans).
It is therefore important to evaluate the role of a
gene product for survival under a variety of con-
ditions including those that induce nonrepli-
cating persistence. For genes that Mtb requires
to grow under standard laboratory conditions,
which are among the most attractive targets for
drug development, these analyses require condi-
tional knockdown mutants.

The construction of conditional knock-
down mutants in Mtb became possible with
the development of chemically controlled ge-
netic switches for mycobacteria (Schnappinger
and Ehrt 2014). Many of the switches devel-
oped for mycobacteria depend on placing the
gene of interest downstream from a modified
promoter so that its transcription can be regu-
lated by a tetracycline repressor and a tetracy-
cline derivative (Blokpoel et al. 2005; Carroll
et al. 2005; Ehrt et al. 2005; Klotzsche et al.
2009; Boldrin et al. 2010). These regulatory
systems facilitated the analyses of several genes
in Mtb (Schnappinger and Ehrt 2014), but they
depend on secondary events, most notably cell
division, to deplete the protein of interest. They
are therefore less suited to study the impor-
tance of gene functions for survival of nonrep-
licating Mtb. Analyses of nonreplicating bacte-
ria can be performed more efficiently with
regulatory systems that directly increase protein
turnover. In Mtb, this can be achieved by mod-
ifying a gene’s 30 end so that it encodes the
sequence of the DASþ4 degradation tag (Kim
et al. 2010). Conditionality is achieved by con-
trolling the expression of a protein (SspB) that
activates the degradation tag. Recently, tran-
scriptional and proteolytic modes of regulation
have been combined in a dual-control (DUC)
switch, which can achieve efficient and robust
gene inactivation in growing and nonreplicat-
ing Mtb (Kim et al. 2013). Application of the
DUC switch to analyses of the NAD synthetase
(NadE) identified this enzyme to be essential
for survival of both replicating and nonrepli-
cating bacteria. Its inactivation was further suf-

ficient to rapidly eliminate culturable bacteria
from mouse lungs and spleens during acute
and chronic infections (Kim et al. 2013). Es-
sentiality of NadE for viability of Mtb under all
conditions tested so far strongly suggests that
this enzyme is also required for growth and
survival under most (if not all) conditions
that Mtb encounters in humans. Whether it
allows the development of small-molecule in-
hibitors that would be safe for use in humans
remains to be shown.

The second limitation of TraSH and Tn-seq
is that they do not allow measurement of the
extent to which a gene product needs to be in-
activated to impair growth. Although the impact
of a transposon insertion on gene function can
vary with its insertion site, the phenotypes re-
ported by TraSH/Tn-seq are often attributable
to insertions that create a null allele. Complete
inactivation of a protein in live bacteria is rarely,
if ever, achieved by small molecules. The pheno-
types that are caused by complete deletion are
thus less relevant to evaluating a new target for
drug development than those that result from its
partial depletion. All other factors being equal, a
protein that needs to be inactivated by .90%
(or less) is a more attractive target than one that
needs to be inhibited by 90% before growth is
inhibited. That vulnerability of mycobacteria to
partial depletion indeed varies among different
essential proteins was first shown in M. smegma-
tis. For example, HIV-protease-induced degra-
dation depleted M. smegmatis of .97% of
DHFR and Alr, but this depletion only slowed
growth down. In contrast, even modest deple-
tion of RpoB was sufficient to stop growth en-
tirely (Wei et al. 2011). Unfortunately, the extent
of functional inactivation that is necessary to
impair the growth of Mtb is known only for a
few proteins, including BioA and PptT, which
are required for the synthesis of biotin and poly-
ketides, respectively. Mtb is not particularly vul-
nerable to partial inactivation of either enzyme,
as both require to be depleted by .90% to affect
growth (Woong Park et al. 2011; Leblanc et al.
2012). Applying conditional gene inactivation
systems to the characterization of more genes
will hopefully identify proteins that need to be
depleted . 90% to stop Mtb from growing.
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Target-Directed WCS

Classical WCS often requires complex studies to
define the MOA of hits; biochemical screens
rarely identify inhibitors that can penetrate the
bacterial cell envelope. Both difficulties can be
overcome with target-directed WCS. The prin-
ciple of this approach was first established in
Staphylococcus aureus. Overexpression of a fabF
antisense RNA caused the 50 end of the fabF
mRNA to be degraded. This decreased the ex-
pression of FabF, an enzyme required for fatty
acid biosynthesis, and increased the sensitivity
of S. aureus to FabF inhibitors (Young et al.
2006). Agar diffusion assays were then used to
screen small-molecule libraries against wild-type
S. aureus and the FabF underexpressor. Mole-
cules that were more active against the under-
expressor included platencin and platensimycin,
two novel inhibitors of fatty acid biosynthesis
with broad-spectrum activity against Gram-
positive bacteria (Wang et al. 2006, 2007; Jaya-
suriya et al. 2007; Fischbach and Walsh 2009). In
Mtb, transcriptional repression instead of anti-
sense RNA has been used to generate mutants
expressing lower than wild-type levels of panto-
thenate synthase (PanC), diaminopimelate de-
carboxylase (LysA), isocitrate lyase (Icl1), or the
type I signal peptidase (LepB). In addition, these
recently constructed mutants show target-spe-
cific changes in their susceptibility to different
small-molecule inhibitors (Abrahams et al.
2012a; Ollinger et al. 2012). WCS with these
strains promises to identify new inhibitors that
are able to reach the cytoplasm of Mtb and in-
hibit a desired target.

CONCLUDING REMARKS

None of the approaches discussed in this review
existed during the golden age of antibiotic dis-
covery, and antibacterial drug discovery can be
pursued without them. However, modern ge-
netics can help improve a process that has deliv-
ered few novel molecular entities during the last
50 yr. One important contribution would be to
help reduce late-stage attrition (i.e., failure in
clinical trials). The cost of introducing a new
drug to the market varies between US$500 and

2000 million (Adams and Brantner 2006; Paul
et al. 2010). Late-stage attrition can therefore
drain the resources of commercially unattractive
areas, like antibacterial drug development, and
cause them to fail entirely over a long period of
time. The two main causes of late-stage attrition
are lack of safety and efficacy in people (Kola and
Landis 2004; Bennani 2012). Predicting clinical
efficacy will remain imprecise. However, if we
understand the MOA of the drug candidates
that are being tested in the clinic, it should be
possible to avoid trials with chemically different
compounds that fail for the same mechanistic
reasons. The genetic approaches discussed here
have helped to characterize the MOA of several
antibacterial compounds. However, the MOA
of many antibacterials is complex and new in-
sights are still gained into the MOA of drugs that
have been in clinical use for decades (Chakra-
borty et al. 2013). No single approach will there-
fore be sufficient to define the MOA of most
antibacterials. Studies that combine several ap-
proaches—for example, underexpression, over-
expression, resistance selection, and biochemi-
cal studies (Huber et al. 2009)—promise to be
the most successful. Drug candidates with novel
MOAs are attractive because they could improve
TB chemotherapy fundamentally (e.g., by re-
ducing its duration). But they bear a higher
risk of late-stage failure if they inactivate targets
that have not yet been clinically validated. Mea-
suring the effects that can be achieved by inacti-
vating such novel targets (e.g., by genetic means)
in a variety of assays, including animal models,
seems prudent.

Second, genetics can also contribute to drug
development by providing single-gene underex-
pressors that help increase the sensitivityof WCS
and bias hits toward a desired target. Underex-
pressors can furthermore be used in a secondary
assay to evaluate biochemical HTS hits. This
distinguishes compounds that penetrate the
bacterial cell envelope poorly (and are not active
against wild type but active against an under-
expressor) from those that do not penetrate at
all (and are active neither against wild type nor
the underexpressor). Such compounds could be
starting points for medicinal chemistry efforts
to improve compound efficacy against wild-type

D. Schnappinger

10 Cite this article as Cold Spring Harb Perspect Med 2015;5:a021139

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



bacteria, which could expand the chemical space
into the area that is effective against bacteria and
underrepresented in most screening libraries.
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