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abstract BACKGROUND: Current pain assessment methods in youth are suboptimal and vulnerable to bias and
underrecognition of clinical pain. Facial expressions are a sensitive, specific biomarker of the presence
and severity of pain, and computer vision (CV) and machine-learning (ML) techniques enable reliable,
valid measurement of pain-related facial expressions from video. We developed and evaluated a CVML
approach to measure pain-related facial expressions for automated pain assessment in youth.

METHODS: A CVML-based model for assessment of pediatric postoperative pain was developed
from videos of 50 neurotypical youth 5 to 18 years old in both endogenous/ongoing and
exogenous/transient pain conditions after laparoscopic appendectomy. Model accuracy was
assessed for self-reported pain ratings in children and time since surgery, and compared with
by-proxy parent and nurse estimates of observed pain in youth.

RESULTS: Model detection of pain versus no-pain demonstrated good-to-excellent accuracy (Area under
the receiver operating characteristic curve 0.84–0.94) in both ongoing and transient pain conditions.
Model detection of pain severity demonstrated moderate-to-strong correlations (r = 0.65–0.86
within; r = 0.47–0.61 across subjects) for both pain conditions. The model performed equivalently to
nurses but not as well as parents in detecting pain versus no-pain conditions, but performed
equivalently to parents in estimating pain severity. Nurses were more likely than the model to
underestimate youth self-reported pain ratings. Demographic factors did not affect model performance.

CONCLUSIONS: CVML pain assessment models derived from automatic facial expression
measurements demonstrated good-to-excellent accuracy in binary pain classifications, strong
correlations with patient self-reported pain ratings, and parent-equivalent estimation of
children’s pain levels over typical pain trajectories in youth after appendectomy.

WHAT’S KNOWN ON THIS SUBJECT: Clinical pain
assessment methods in youth are vulnerable to
underestimation bias and underrecognition. Facial
expressions are sensitive, specific biomarkers of the
presence and severity of pain. Computer vision–based
pattern recognition enables measurement of pain-
related facial expressions from video.

WHAT THIS STUDY ADDS: This study
demonstrates initial validity for developing
computer vision algorithms for automated pain
assessment in children. The system developed
and tested in this study could provide
standardized, continuous, and valid patient
monitoring that is potentially scalable.
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Pain is one of the most common
surgical complications,1 with
undertreatment associated with
adverse outcomes.2,3 Published
guidelines mandate adequate
postoperative pain control for all,
including children, to ensure safety
and efficacy in pain management, and
maintain maximum physical function,
psychological well-being, and quality
living.4,5

Pain assessment is required for
effective delivery of pain control but
relies heavily on self-report of pain.
However, self-report measures
require cognitive, linguistic, and
social competencies not available to
many vulnerable populations,
including infants, young children, and
persons with communicative/
neurologic impairments. In addition,
self-report is vulnerable to bias,6,7

and human-based self-report pain
assessment methods are sporadically
applied, thereby lacking the time-
sensitivity to alter treatment plans
promptly when pain changes.

In children, pain assessment by-proxy
is common, yet underrecognition and
underestimation of pain is pervasive
even when performed by trained
professionals and parents.8–12

Observational scales focusing on
nonverbal behaviors in response to
pain have been developed,13 but
place substantial demands on
clinician time, have notable variability
in pain cue definitions,14,15 and are
subject to observer bias.15–22 Similar
to pain self-report, observational
scales often lack the ability to
meaningfully alter pain interventions
in a time-sensitive fashion. Taken
together, these limitations indicate
a need for the development of more
automated, standardized, continuous,
minimally biased, and scalable pain
measures.

Facial expressions represent
a sensitive and specific biomarker of
the presence and severity of pain.23,24

They can be assessed by using the
Facial Action Coding System
(FACS),25 which measures facial

expressions by using 46 anatomically
based component movements known
as facial action units (AUs). Manual
coding of FACS captures facial
information reliably and accurately,
but typically requires 1 to 3 hours to
code each minute of video.26

Computer vision (CV) and machine-
learning (ML) techniques can
automatically code facial expressions
of pain27–29 and reliably and validly
measure pain-related FACS AUs from
video.29 The Computer Expression
Recognition Toolbox (CERT)29

measures FACS AUs in real time.
An ML model based on CERT was
able to distinguish genuine from
faked pain in adults statistically
significantly better than human
observers.30

In the current study, we examined the
application of CERT to automatically
analyze facial expressions indicative
of pain in children after
appendectomy. We hypothesized that
ML on facial measures from CERT
would provide accurate, standardized
pain monitoring as compared with
self-reported and by-proxy methods
of pain assessment in children.

Two major forms of postsurgical pain
have been identified31,32: (1) pain at
rest, or endogenous pain associated
with disease and injury, including
surgery; and (2) movement-evoked
pain or exogenous pain brought on or
aggravated by pain-evoking
maneuvers (eg, movement, clinical
examination, or physiotherapy).
Analgesia varies in its impact on
endogenous versus exogenous pain,
and experts advocate assessment of
both pain types in postsurgical
trials.32 Both were examined in this
study.

METHODS

Participants

Fifty youth, 5 to 18 years old, who
had undergone laparoscopic
appendectomy within the past
24 hours were recruited from a pediatric
tertiary care center. Exclusion criteria

included regular opiate use within the
past 6 months, documented mental or
neurologic deficits preventing study
protocol compliance, and any facial
anomaly that might alter CV facial
expression analysis. Parents provided
written informed consent and youth
gave written assent. The local
institutional review board approved
research protocols.

Study participants were on average
12 (5, 17) (median [minimum,
maximum]) years old and 54% were
boys. Thirty-five were Hispanic,
9 non-Hispanic white, 5 Asian, and
1 Native American. Participants were
hospitalized for 3 (1, 9) hospital days.

Experimental Design and Data
Collection

Data Collection

Data collection occurred over 3 study
visits: (1) within 24 hours after
appendectomy; (2) 1 calendar day
after the first visit (median [25%,
75%]) time lapse of 20 (19, 21) hours
between visits 1 and 2; and (3) at a
follow-up visit (median [25%, 75%])
21 [17, 27] days postoperatively).
At every study visit, facial video
recordings and self-reported pain
ratings by the participant and by-proxy
pain ratings by parent (all visits) and
nurse (visits 1 and 2) were collected.
Demographic and clinical data also
were collected.

Pain Video Recordings

Video recordings captured both
endogenous (hereafter labeled
ongoing) and exogenous (transient)
pain experiences. Participants faced
a Canon VIXIA-HF-G10 (Melville, NY)
video camera in an upright position,
and video was recorded at 30 frames
per second at 1440 3 1080 pixel
resolution. First, facial activity was
recorded for 5 minutes as a measure
of ongoing pain. Then, video
recordings of facial activity were
collected as representative transient
pain samples when manual pressure
was exerted at the surgical site for 2,
10-second periods (typical of
a clinical examination, with each
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press averaging 1.5 to 2.0 inches in
depth).

Participant Pain Ratings and Proxy
Estimates

Study participants rated pain during
ongoing and transient pain samples
by using an 11-point 0-to-10
Numerical Rating Scale (NRS),
a reliable and valid pediatric pain
assessment instrument13 used
universally at the hospital where this
study was performed. Participants
were asked to point at the number
representing their pain level on
a card. Parent (visits 1–3) and
inpatient nurses (visits 1–2)
simultaneously estimated
participants’ pain by using the NRS,
without knowledge of participants’
pain ratings. At each pain-rating
session, parents remained in the
room to remove possible participant
anxiety related to parental absence
and to standardize context.

Analysis

Video Analysis

Videos were analyzed by CERT29 to
measure facial AUs. Fourteen pain-
related AUs were selected for analysis
(Table 1, Fig 1). Three statistics
(mean, 75th percentile, and 25th
percentile) for each AU were
computed across each pain event
probe (ongoing and transient) and
comprised the input to ML models.
Details are provided in the
Supplemental Information.

ML Models for Estimating Pain From
Facial Expressions

Two types of models were developed
to estimate pain from the facial AU
measures: binary pain classification
(presence or absence of clinically
significant pain) and pain-intensity
estimation (pain as a continuous
measure). The ML methods were
based on regression, and are detailed
in the Supplemental Information. For
binary pain classification, child NRS
ratings $4 were defined as trials
containing clinically significant pain
based on a common interpretation of

ratings,33–35 whereas pain ratings of
0 were defined as trials with no pain.
Consistent with previous studies,27,36

trials with self-ratings of 1 to 3 were
excluded from the binary pain
classification analysis. For pain-
intensity estimation, all videos were
used, with ratings across the full NRS
scale of 0 to 10.

Time since surgery provided an
alternate, objective ground truth for
pain. The objective model for binary
pain classification was trained to
differentiate visit 1 from visit 3. The

objective model for pain-intensity
estimation was trained to predict the
number of days since surgery.

Evaluation of CVML Pain Estimation
Models

Performance of the CVML models was
evaluated by using cross-validation,37

a method to test performance on
data not used to develop the model.
Basically, each model was developed
multiple times, each time leaving
out a predetermined number of
participants from the dataset. Each
model was then tested by using
participants’ data not included to
develop the model. Performance was
aggregated over the multiple tests.
Details are provided in the
Supplemental Information. Area
under the receiver operating
characteristic curve (AUC) and
Cohen’s k were used to measure the
performance of the binary pain
classification models. Pearson
correlations (both within and across
subjects) were computed to evaluate
pain-intensity estimation models, and
z-tests were performed to test
differences between models.

Comparison of CVML Models With Proxy
Pain Estimates

Performance of the CVML models was
compared with human observers’
(parents and nurses) ability to
estimate pain. Because inpatient
nurse estimates were not available
for visit 3 after patient discharge, and

TABLE 1 List of AUs and Other Facial
Information Extracted From Video
Clips by CERT

Action
Unit

Description

4 Brow lower
6 Cheek raiser (orbit tighten)
7 Lid tightener
9 Nose wrinkler
10 Upper lip raiser
12 Lip corner puller
25 Lips part
26 Jaw drop
27 Mouth stretch
43 Eye closure
Smile Smile detector
Yaw Rotation of the head left and right

(measured in degrees)
Pitch Rotation up and down (measured in

degrees)
Roll Rotation in-plane, as in “tilt” (measured

in degrees)

Data from the CERT smile detector were included, be-
cause it detects a combination of lip corner pulls (AU12)
and cheek raise (AU6), and is a more robust detector
because of being trained on 2 orders of magnitude more
data.

FIGURE 1
Examples of a child’s facial expressions of pain from the study, illustrating many of the core facial
actions observed in pain.
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because most patients who received
laparoscopic appendectomy are no
longer in pain by the time of visit
3,38–40 nurse estimates for visit 3
were assigned a 0 rating. Median
(minimum, maximum) pain ratings by
children at the final visit were 0 (0, 0)
for ongoing pain and 0 (0, 2) for
transient pain.

For binary pain classification, nurse
and parent estimates were compared
with child ratings by using AUC and
Cohen’s k. See Supplemental
Information for details.

For pain-intensity estimation,
Pearson correlations were computed
between observer estimates and
child ratings. Fisher z-tests were
performed to compare overall
correlations. Because parents and
nurses were aware of elapsed time
since surgery when assessing pain,
the following 2 CVML pain-intensity
estimation models were generated to
compare the CVML performance with
human observers: (1) CVML model
trained only on facial AUs, and (2)
CVML model trained on facial AUs
and time since surgery. Pain-rating
discrepancy (difference between
observer estimate and child’s self-
rating) also was calculated as
a measure of accuracy.

RESULTS

Pain Ratings

Pain-rating trajectories, Table 2,
demonstrate known patterns of
injury and healing associated with
laparoscopic appendectomy38–40

(most severe immediately after
surgery with pain resolution by
follow-up).

Binary Classification of Clinically
Significant Pain by CVML Models

Performance of the CVML binary pain
classification models is shown in
Table 3. AUC scores demonstrated
good-to-excellent41,42 signal
detection for both ongoing and
transient pain, for the model trained
to predict child ratings and for the

model trained with objective
ground truth. Categorical agreement
rates were fair to substantial
(k = 0.36–0.61) for the model trained
with child ratings, and substantial for
the model trained with objective
ground truth (k = 0.70–0.72).
Inclusion of demographic data as
independent variables did not alter
binary pain classification model
performance.

Estimation of Pain Intensity by CVML
Models

Performance of the CVML pain-
intensity estimation model is shown
in Table 4. The pain-intensity
estimation model is moderately to
strongly43 correlated (r = 0.66–0.72)
with child self-reports of pain when
compared within-subject. Overall
(across-subjects) correlations
between the pain-intensity estimation
model and self-report pain ratings
were moderate (r = 0.46–0.47,
z = 4.4–6.0, P , .0001). Inclusion of
demographic data as independent
variables did not alter pain-intensity
estimation model performances for
either ongoing or transient pain
conditions (z , 0.3, P . .80 for both).

Within-subject correlations for the
objective pain-intensity estimation
models were strong (r = 0.80–0.86).
The overall correlations for the
objective models were moderate (r =
0.55–0.61), but higher than those for
the pain-intensity estimation model
trained using subjective ground truth
of self-ratings (z = 2.6, P = .01) for
transient pain.

Comparison of CVML Models With
Nurse and Parent Estimates

CVML model performances are
compared with nurses’ and parents’
ability to estimate children’s pain in
Tables 3 and 4. For pain versus no-
pain categorization, Table 3, nurses
attained only slight agreement with
the children’s self-ratings (k = 0.15)
for ongoing pain, whereas the binary
pain classification model attained fair
agreement (k = 0.36). Agreements
for transient pain were the same for
nurses as for the binary pain
classification model, and were in the
substantial range (k = 0.61 for both).
Parents attained the highest
agreement rates with their children
(k = 0.50–0.72). AUC was similar for
nurses and the binary pain
classification model for both ongoing
and transient pain (z = 0.18–0.74,
P. .5). Parents had the highest signal
detection rates for clinically significant
pain in their children (AUC = 0.96),
and parental AUC was higher than the
CVML model AUC (ongoing: z = 2.4,
P = .02; transient: z = 2.1, P = .04).

Pain-intensity estimation by CVML
models are compared with nurses
and parents in Table 4. For ongoing
pain, the pain-intensity estimation
model demonstrated a higher
correlation with child self-ratings
than nurses (z = 2.0, P = .04) and
performed similar to parents (z = 1.2,
P = .22). For transient pain, the
pain-intensity estimation model
performed similarly to nurses
(z = 1.7, P = .09), but demonstrated
a lower correlation than parents with

TABLE 2 NRS Child Pain Ratings, Machine Model Pain Level Estimates, and Proxy Estimates Over
Time by Source and Condition

Source Condition Study Visit Number

1 2 3

Child Ongoing 4.2 6 0.33 2.7 6 0.31 0
Transient 4.86 6 0.28 3.61 6 0.22 0.08 6 0.03

Machine Ongoing 4.3 6 0.05 2.3 6 0.06 0.25 6 0.06
Transient 4.80 6 0.10 3.0 6 0.09 0.80 6 0.15

Nurse Ongoing 1.72 6 0.26 0.98 6 0.18 —

Transient 3.84 6 0.24 2.68 6 0.22 —

Parent Ongoing 3.92 6 0.33 2.04 6 0.25 0.12 6 0.05
Transient 5.56 6 0.26 3.49 6 0.22 0.37 6 0.07

Data are expressed mean 6 SE.

PEDIATRICS Volume 136, number 1, July 2015 e127

http://pediatrics.aappublications.org/lookup/suppl/doi:10.1542/peds.2015-0029/-/DCSupplemental
http://pediatrics.aappublications.org/lookup/suppl/doi:10.1542/peds.2015-0029/-/DCSupplemental


child self-ratings (z = 2.5, P = .01).
Comparing ongoing with transient
pain conditions, nurses’ correlations
with child ratings were statistically
significantly lower for ongoing than
transient pain (overall r = 0.53 vs
0.74, z = 3.6, P , .001), whereas pain-
intensity estimation model estimates
performed similarly for the 2
conditions (z = 0.2, P . .8), as did
parent ratings (z = 0.5, P . .6).

We also examined discrepancies
(differences) between child self-
ratings and the model, nurse, and
parent estimates, as listed in Table 4.
The pain-intensity estimation model
had the lowest mean discrepancy
(0.0) followed by parents with a mean
discrepancy of –0.3 for ongoing pain
and +0.3 for transient pain,
respectively. Nurses’ estimates
demonstrated the largest mean
discrepancy of –1.4 from child ratings
for ongoing pain (ie, on average,
nurses estimated pain 1.4 points
lower than children on the 11-point

NRS scale, t[149] = 95.3, P , .0001).
The mean nurse estimation
discrepancy for transient pain was
–0.7, which was also statistically
significantly below 0 (t[296] = 109.7,
P , .0001). Nurse estimation
discrepancy was larger for ongoing
than transient pain (t[443] = 43.7,
P , .0001).

DISCUSSION

Overall, CVML pain assessment
models derived from automated facial
expression measurements performed
well in detecting clinically significant
pain and in estimating pain severity
for both ongoing/endogenous and
transient/exogenous pain
experiences in the postoperative
setting. In addition, the CVML model
performed at least as well as
commonly used by-proxy pain
assessment methods within subjects,
suggesting efficacy in monitoring
pediatric pain trajectories after
surgery.

Computer-Based Detection of Pain
and Estimation of Pain Severity

Strong signal detection rates were
observed for assessment of the
presence or absence of clinically
significant pain. In addition, a positive
linear relationship was observed
between children’s self-reports of
pain severity and pain scores
generated by our pain-intensity
estimation models. Developed CVML
models also effectively reflected
recovery from surgery as measured
by elapsed time. Taken together,
CVML-based assessment of facial
expressions has excellent concurrent
criterion validity for pain detection
and assessment. Our findings support
the usefulness of automated facial
expression measurement as a source
for inferring the presence and
severity of children’s pain
experiences. The strong correlations
we observed between our models
based on facial AUs alone and
children’s self-reported pain levels for

TABLE 4 Performance of PIE Models, and Comparison With Nurses and Parents for Estimating Pain-Intensity Levels

Pain Condition PIE

Metric Machine Human

PIE PIE + Demographics PIE-Objective PIE-Objective + Demographics PIE + Time Nurse Parent

Ongoing r (within)a 0.72 6 0.07 0.71 6 0.07 0.86 6 0.03 0.86 6 0.03 0.90 6 0.02 0.69 6 0.06 0.88 6 0.02
r (overall) 0.47 0.45 0.55 0.55 0.68 0.53 0.75
Discrepancyb 0.0 6 0.18 — 20.01 6 0.18 — 0.0 6 0.15 21.4 6 0.18 20.3 6 0.14

Transient r (within)a 0.66 6 0.05 0.65 6 0.05 0.80 6 0.04 0.80 6 0.04 0.82 6 0.03 0.77 6 0.04 0.78 6 0.04
r (overall) 0.46 0.45 0.61 0.59 0.67 0.74 0.77
Discrepancyb 0.0 6 0.15 — 0.01 6 0.15 — 0.0 6 0.13 20.7 6 0.11 0.3 6 0.11

PIE, pain-intensity estimation; +Demographics, demographics included as input to model, with face vector; +Time, time included as input to model, with face vector; Objective, time since
surgery used as objective ground truth for pain; Ongoing, ongoing pain condition; Transient, transient pain stimulus condition; r (within), mean Pearson correlation coefficient for within-
subject correlations; r (overall), Pearson correlation coefficient over all test data.
a Data are expressed as mean 6 SE, computed over the 50 within-subject correlations.
b Data are expressed as mean 6 SE, computed over estimates.

TABLE 3 Performance of BPC Models, and Comparison With Nurses and Parents for Binary Presence/Absence of Clinically Significant Pain.

BPC

Pain Condition Metrica Machine Human

BPC BPC + Demographics BPC-Objective BPC-Objective + Demographics Nurse Parent

Ongoing AUC 0.84 6 0.05 0.84 6 0.06 0.91 6 0.03 0.93 6 0.03 0.86 6 0.04 0.96 6 0.02
Cohen’s k 0.36 6 0.10 0.34 6 0.11 0.61 6 0.07 0.70 6 0.06 0.15 6 0.06 0.50 6 0.09

Transient AUC 0.91 6 0.03 0.91 6 0.03 0.94 6 0.02 0.94 6 0.02 0.93 6 0.02 0.96 6 0.01
Cohen’s k 0.61 6 0.07 0.61 6 0.07 0.72 6 0.04 0.72 6 0.04 0.61 6 0.07 0.72 6 0.06

BPC, Binary Pain Classification; +Demographics, demographics included as input to model, with face vector; Objective, time since surgery used as objective ground truth for pain; Ongoing,
ongoing pain condition; Transient, transient pain stimulus condition.
a Data are expressed as mean 6 SE, computed over cross 10 validation partitions. See Supplemental Information.
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both ongoing and transient pain were
comparable to those previously
demonstrated in research evaluating
manual facial activity coding.44

Our models demonstrated efficacy for
estimating both ongoing clinical
endogenous pain and transient
exogenous pain: a distinction
recognized by many professionals as
important for understanding both
pain mechanisms and delivery of
clinical care.31,32,45,46 These forms of
pain respond differently to various
pain medications and should be
individually assessed and managed.47

Our models not only demonstrate
efficacy in estimating and assessing
pain levels in both case scenarios,
but also offer a potential method
to continuously monitor these
pain experiences accurately and
efficiently.

This study explored 2 forms of
ground truth for the developed CVML
pain models, a subjective ground
truth consisting of self-ratings of pain,
and an objective form of ground truth
consisting of time since surgery.
Overall, CVML models were better at
estimating the objective form of
ground truth. For pain scenarios
with well-studied and recognized
recovery trajectories, such as the
current model of laparoscopic
appendectomy,38,39 time is potentially
a very useful form of ground truth
for the study of pain and for
development of tools for estimating
pain. Future work will explore
combining both forms of ground truth
in the development of CVML models
for estimating pain from the face.

Comparison With Proxy Pain
Assessment by Nurses and Parents

The CVML automated assessment
method was at least as successful at
estimating children’s self-ratings of
pain severity as nurses for exogenous
(transient) pain. For endogenous
(ongoing) pain, the CVML scores
performed better than nurses, both
for detecting clinically significant pain
and for estimating children’s pain
severity ratings. These findings are

similar to those reported in the
literature demonstrating
a discrepancy between children’s pain
ratings and nurses’ perceptions of
pain severity in children.8–10,48 Our
findings demonstrated a tendency for
nurses to underestimate pain relative
to children’s self-ratings, and this
discrepancy was statistically
significantly larger for endogenous
(ongoing) pain than for the
exogenous (transient) pain. The
CVML approach presented here, on
the other hand, demonstrated no
discrepancy for both types of pain.

Automatic detection of clinical pain,
using a system developed and tested
in this study, could aid medical
professionals by providing efficient,
accurate, valid, and scalable patient
monitoring. Current pain-monitoring
systems rely heavily on self-report
and human observer-based
assessment, which require significant
human resources and time, and are
potentially biased. Major advantages
of automated detection systems
include the potential for continuous,
long-term monitoring; less reliance
on and need for human resources;
and reduced bias. Using CVML
systems to alert clinicians to
instances of pain at the time they
occur instead of during scheduled
assessments could further enhance
efficient, timely allocation of pain
interventions appropriate to need.
The system is capable of operating
in real time.

Effect of Demographics on CVML-
Based Pain Estimation

Inclusion of demographic data
(gender, age, race/ethnicity) as
independent variables did not alter
the accuracy of CVML pain estimation,
suggesting that facial pain
expressions do not vary over the
gender, ethnicities, or age range of
youth studied. Our findings stand in
contrast to research indicating that
human observers’ estimates of
pain tend to vary with certain
demographic characteristics, namely
a person’s gender, age, socioeconomic
status, and racial attributes.16–18

Further studies are needed in infants
and children younger than 5 years,
as well as in those with
developmental/cognitive delay.

Study Limitations and Opportunities
for Future Research

We present an initial investigation
of CVML-assisted measurement of
facial expressions as a measure of
children’s pain in the postoperative
setting. Although promising, the
approach still warrants additional
investigation with other forms of
clinical pain and across the broad
age range of children. CV analysis
of facial expression requires an
approximately frontal camera (Fig 2).
The specifications of the CERT system
tested here were 615° of frontal in
yaw, pitch, and roll. The newer
commercial version of the software
(Emotient Analytics, San Diego, CA)

FIGURE 2
Picture of the camera setup used for video recording at the hospital bed during study visits 1 and 2.

PEDIATRICS Volume 136, number 1, July 2015 e129



improves the head pose tolerance to
630°. In our study, children were
evaluated in an upright/semi-upright
position; however, cameras mounted
above hospital beds are becoming
more available and can provide
frontal views of supine patients.
CV also requires at least moderate
lighting. In the current study, lighting
consisted of standard ceiling lights
with window shades closed to avoid
strong side lighting. Moderate motion
is not a problem, but rapid motion
can blur at 30 frames per second;
higher frame rates would reduce blur.
Further work is needed to determine
whether such a tool can be easily
integrated into clinical workflow and
thus add benefit to current clinical

pain assessment methods and
ultimately treatment paradigms.

CONCLUSIONS

A novel ML-generated tool
measuring facial expressions
achieves concurrent validity for pain
assessment as demonstrated by
good-to-excellent accuracy in
binary pain classification, strong
correlations with patient self-
reported pain ratings, and parent-
equivalent estimation of children’s
pain levels.
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