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Purpose: Sclerostin, an inhibitor of Wnt/β-catenin signaling, exerts negative effects on 
bone formation and contributes to periodontitis-induced alveolar bone loss. Recent studies 
have demonstrated that serum sclerostin levels are increased in diabetic patients and that 
sclerostin expression in alveolar bone is enhanced in a diabetic periodontitis model. How-
ever, the molecular mechanism of how sclerostin expression is enhanced in diabetic pa-
tients remains elusive. Therefore, in this study, the effect of hyperglycemia on the expres-
sion of sclerostin in osteoblast lineage cells was examined.
Methods: C2C12 and MLO-Y4 cells were used in this study. In order to examine the effect 
of hyperglycemia, the glucose concentration in the culture medium was adjusted to a 
range of levels between 40 and 100 mM. Gene expression levels were examined by quanti-
tative reverse transcription-polymerase chain reaction and Western blot assays. Top-Flash 
reporter was used to examine the transcriptional activity of the β-catenin/lymphoid en-
hanced factor/T-cell factor complex. Tumor necrosis factor-alpha (TNFα) protein levels were 
examined with the enzyme-linked immunosorbent assay. The effect of reactive oxygen 
species on sclerostin expression was examined by treating cells with 1 mM H2O2 or 20 mM 
N-acetylcysteine.
Results: The high glucose treatment increased the mRNA and protein levels of sclerostin. 
High glucose suppressed Wnt3a-induced Top-Flash reporter activity and the expression 
levels of osteoblast marker genes. High glucose increased reactive oxygen species produc-
tion and TNFα expression levels. Treatment of cells with H2O2 also enhanced the expression 
levels of TNFα and sclerostin. In addition, N-acetylcysteine treatment or knockdown of 
TNFα attenuated high glucose-induced sclerostin expression.
Conclusions: These results suggest that hyperglycemia increases sclerostin expression via 
the enhanced production of reactive oxygen species and TNFα.
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INTRODUCTION

Diabetes mellitus (DM) is among the primary risk factors for periodontitis [1]. DM potenti-
ates the severity of periodontitis and further accelerates alveolar bone destruction. Type 2 
DM is the most common form of diabetes, characterized by hyperglycemia, insulin resis-
tance, and relative insulin deficiency. Recent studies have demonstrated that bone loss and 
osteoporotic fracture risk are increased in DM patients [2]. Several mechanisms have been 
suggested to explain the increased bone loss and fracture risk in DM patients. Abnormal cal-
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cium metabolism occurs in patients with DM. Increased urinary ex-
cretion of calcium and decreased intestinal calcium absorption can 
cause a negative calcium balance with secondary hyperparathyroid-
ism and increased bone remodeling, contributing to a lower bone 
mineral density in DM patients [3]. Diabetic animals produce suffi-
cient amounts of immature mesenchymal tissue but fail to ade-
quately express Runx2 and Dlx5, the transcription factors for osteo-
blast differentiation [4]. Advanced glycation end products (AGEs) 
also have been implicated in the development of DM-related osteo-
penia. In DM patients, a larger amount of AGEs is accumulated in 
bone tissue. AGEs inhibit the synthesis of bone matrix proteins such 
as type I collagen and osteocalcin, and decrease mineralized nodule 
formation in osteoblasts [5-7]. AGEs have also been suggested as a 
biomarker for the increased risk of fractures because AGEs have 
been shown to be associated with bone rigidity [8]. The receptor for 
AGEs is expressed in bone cells and its activation stimulates the 
production of reactive oxygen species (ROS), activating the NF-κB 
signaling pathway [9]. Intracellular ROS-mediated oxidative stress 
plays a crucial role in bone health. Increased ROS-mediated oxida-
tive stress in osteoblasts and osteocytes contributes to the cell 
death of osteocytes and mechanical unloading-induced bone loss 
[10,11]. Patients with type 2 DM have been found to show elevated 
levels of mitochondrial ROS, which contribute to elevated osteolysis 
and bone fractures in DM patients [12]. Multiple factors, including 
a negative calcium balance, microvascular damage, AGEs, and ROS, 
may contribute to the increased bone loss and fracture risk of DM 
patients, but further studies are necessary to clarify the mechanisms 
involved in DM-associated osteopenia and fracture risk.

The canonical Wnt signaling pathway controls cell proliferation 
and differentiation by regulating the degradation and localization 
of β-catenin. The binding of canonical Wnt ligands to Frizzled and 
low-density lipoprotein receptor-related protein (LRP5/6) inactivates 
β-catenin degradation complexes, resulting in the accumulation 
and nuclear translocation of β-catenin. In the nucleus, β-catenin 
induces the transcriptional activation of target genes by forming a 
complex with lymphoid-enhanced factor/T-cell factor (LEF/TCF). Ca-
nonical Wnt signaling promotes the differentiation of mesenchymal 
progenitor cells into osteoblasts. In osteoblasts, the Wnt pathway 
induces cell proliferation, differentiation, and matrix mineralization, 
playing a pivotal role in bone development and formation [13]. 
Sclerostin, a protein encoded by the Sost gene, acts as an antago-
nist to Wnt signaling by binding to LRP5/6 co-receptors and inhibit-
ing the binding of Wnt ligands [14]. Sclerostin is mainly produced 
by osteocytes [15]. Sclerostin-mediated inhibition of Wnt signaling 
affects osteoblast differentiation and bone formation [16]. Recent 
reports have demonstrated that removing or blocking the function 
of sclerostin ameliorated alveolar bone defects in an experimentally 
induced periodontitis model, suggesting that sclerostin plays an im-
portant role in periodontitis-associated bone destruction [17-19].

We have previously demonstrated that serum sclerostin levels 
were higher in mice fed with a high-fat diet than control mice, and 
that tumor necrosis factor α (TNFα) mediates the induction of 

sclerostin expression in mice fed with a high-fat diet [20]. High fat 
diet-fed mice were shown to exhibit higher serum glucose levels 
and glucose intolerance compared to their healthy littermates. 
Similarly, serum sclerostin levels have been found to be significant-
ly higher in both type 1 and type 2 DM patients independently of 
gender and age, compared to non-diabetic controls [21-23]. These 
reports suggest that increased sclerostin expression contributes to 
DM-associated osteopenia and accelerated alveolar bone loss in di-
abetic periodontitis patients. However, the molecular mechanisms 
involved in the DM-mediated induction of sclerostin expression re-
main elusive. In this study, we investigated how hyperglycemia 
regulates the expression of sclerostin in osteoblasts and osteocytes 
using cells from the murine cell lines C2C12 and MLO-Y4.

 

MATERIALS AND METHODS

Materials
The easy-BLUE™ and StarTaq™ reagents were ordered from iN-

tRON Biotechnology (Seongnam, Korea) and the AccuPower RT-Pre 
Mix was purchased from Bioneer (Daejeon, Korea). The SYBR Premix 
ExTaq™ was purchased from TaKaRa (Otsu, Japan). Tissue culture 
medium and serum were purchased from HyClone (Logan, UT, USA) 
and BioWhittaker (Walkersville, MD, USA). A Bright-Glo luciferase 
assay kit was obtained from Promega (Madison, WI, USA). Recom-
binant bone morphogenetic protein 2 (BMP2) and Wnt3a were 
purchased from R&D Systems (Minneapolis, MN, USA) and added to 
the culture medium at a concentration of 50 ng/mL. D-(+)-Glucose 
and H2O2 were ordered from Sigma (St. Louis, MO, USA).

Cell culture
C2C12 cells were cultured in Dulbecco's modified Eagle's medium 

(DMEM) with 10% fetal bovine serum (FBS), 100 U/mL penicillin 
and 100 μg/mL streptomycin. The cell culture medium contained 5 
mM glucose. In order to induce osteoblastic differentiation, the 
C2C12 cells were incubated in DMEM supplemented with 50 ng/mL 
BMP2, 5% FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin 
after two days of confluence. Osteocytic MLO-Y4 cells were cul-
tured in alpha modified Eagle’s medium (αMEM) supplemented 
with 5% calf serum and 5% FBS.

Reverse transcription-polymerase chain reaction
Quantitative reverse transcription-polymerase chain reaction (RT-

PCR) was performed to examine mRNA expression levels. Total RNA 
was isolated by using an easyBLUE reagent and cDNA was synthe-
sized from the total RNA using the AccuPower RT PreMix, and sub-
sequently used for quantitative real time-PCR amplification using 
SYBR Premix EX Taq. Each sample was analyzed in triplicate, and 
the target genes were normalized to the reference housekeeping 
gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The 
PCR primer sequences used for real-time PCR were as follows: Sost, 
(f) 5′-AGCCTTCAGGAATGATGCCAC-3′ and (r) 5′-CTTTGGCGT-
CATAGGGATGGT-3′; TNFα, (f) 5’-GACGACAGCAAGGGACTAGC-3’ 



Jiho Kang et al.

dx.doi.org/10.5051/jpis.2015.45.3.101

www.jpis.org 103

and (r) 5’-GCTTTCTGTGCTCATGGTGC-3’; Runx2, (f) 5'-TTCTC-
CAACCCACGAATGCAC-3' and (r) 5'-CAGGTACGTGTGGTAGTGAGT-3'; 
osterix, (f) 5'-CCCACCCTTCCCTCACTC-3' and (r) 5'-CCTTGTACCAC-
GAGCCAT-3'; alkaline phosphatase, (f) 5'-CCAACTCTTTTGTGCCAG-3' 
and (r) 5'-GGCTACATTGGTGTTGAGCTTTT-3'; osteocalcin, (f) 5'-CT-
GACAAAGCCTTCATGT-3' and (r) 5'-GCGCCGGAGTCTGTTCAC-3'; and 
GAPDH, (f) 5′-TCAATGACAACTTTGTCAAGC-3′ and (r) 5′-CCAGGGTTTCT-
TACTCCTTGG-3′.

Western blot analysis
In order to prepare the whole-cell lysate, cells were lysed in the 

PRO-PREP (iNtRON Biotechnology) protein extraction solution, 
which contains protease inhibitors, including PMSF (174 μg/mL), 
pepstatin A (0.7 μg/mL), leupeptin (2.0 μg/mL), and aprotinin (0.5 
μg/mL). The lysates were then sonicated briefly and centrifuged at 
16,000 × g for 10 minutes, and the supernatants were used for 
Western blot analysis. Each sample containing equal amounts of 
protein was subjected to sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis. The proteins separated in the gel were subse-
quently transferred onto a polyvinylidene fluoride membrane. The 
membrane was blocked with 5% nonfat dry milk in Tris-buffered 
saline containing 0.1% Tween20, incubated with sclerostin or actin 
antibodies, and subsequently incubated with horseradish peroxi-
dase-conjugated secondary antibody. Immune complexes were vi-
sualized using the Supex reagent and luminescence was detected 
with a LAS1000 machine (Fuji PhotoFilm; Tokyo, Japan).

Enzyme-linked immunosorbent assay
Cells were incubated for 48 hours in the medium supplemented 

with high glucose or H2O2. Whole cell lysates were prepared as de-
scribed above and the expression levels of TNFα protein in the cell 
lysates were determined using a commercial enzyme-linked immu-
nosorbent assay (ELISA) kit (Koma Biotech, Seoul, Korea) according 
to the manufacturer’s instructions.

Knockdown of TNFα
siGENOME ON-TARGETplus SMARTpool mouse TNFα siRNA and 

non-targeting control scrambled siRNA were purchased from Dhar-
macon (Lafayette, CO, USA). Cells were transfected with siRNA us-
ing Dharmafect (Dharmacon, Lafayette, CO, USA) according to the 
manufacturer’s instructions. The efficacy of the knockdown was as-
sessed by quantitative RT-PCR.

Luciferase reporter assays
The transcriptional activity of β-catenin was examined using a 

Top-Flash luciferase reporter. MLO-Y4 cells were plated into 96-well 
plates at a density of 2×104 cells/well. The cells were transiently 
transfected with 0.2 μg of Top-Flash plasmid using the Lipofectamine 
reagent (Invitrogen, Carlsbad, CA, USA). Cells were then incubated 
for 72 hours in the presence or absence of high glucose or Wnt3a (50 
ng/mL). Luciferase activity was measured using the Bright-Glo lucif-
erase assay kit according to the manufacturer’s instructions.

Dichlorofluorescein diacetate assay for measuring 
intracellular ROS production

Assays were performed as described previously [24], with some 
modifications. The cells were grown to 100% confluence and incu-
bated in the presence of 2 μM dichlorofluorescein diacetate (DCF-
DA) in the dark at room temperature for 10 minutes. The emitted 
fluorescence was then measured at 490 nm, and this value was 
used as a baseline for the following experiments. The cells were 
then incubated in the presence or absence of high glucose, TNFα, 
or H2O2 for the indicated periods.

Statistical analysis
The data were presented as the mean ± standard deviation. The 

statistical significance of the results was assessed by one-way or 
two-way analysis of variation using Prism6 (GraphPad Software 
Inc., La Jolla, CA, USA). Post-hoc analysis was performed using the 
Sidak or Tukey’s multiple comparisons test to explore the differ-
ences among individual means. P-values <0.05 were considered to 
indicate statistical significance.

 

RESULTS

High glucose increases sclerostin expression
C2C12 is a mouse myoblast cell line that can be differentiated 

into osteoblasts by treatment with BMP2 [25]. In order to examine 
the effect of high glucose on the expression levels of sclerostin, os-
teoblastic differentiation of C2C12 cells was induced by incubating 
confluent cells in the presence of 50 ng/mL BMP2. With the initia-
tion of osteogenic differentiation, the C2C12 cells were exposed to 
varying concentrations of high glucose (40–100 mM) for 48 hours. 
Quantitative RT-PCR results demonstrated that high glucose in-
creased mRNA levels of sclerostin at all of the concentrations exam-
ined, but statistical significance was observed at glucose concentra-
tions higher than 40 mM (Fig. 1A). The fold changes of sclerostin 
mRNA in the 5, 40, 60, 80, and 100 mM glucose samples were 
1.45±0.26, 2.14±0.15, 7.03±1.24, 6.90±0.13, and 15.85±1.71, re-
spectively. However, Western blot analysis showed that the increase 
in sclerostin protein levels was most significant at the 100 mM con-
centration (Fig. 1B). Therefore, subsequent experiments were per-
formed using a glucose concentration of 100 mM. High glucose (100 
mM)-induced sclerostin expression was also observed in the C2C12 
cells after incubation for 24 hours (Fig. 1C).

Since sclerostin is mainly expressed in osteocytes, the effect of 
high glucose on sclerostin expression was also examined using the 
MYO-Y4 osteocytic cell line. Similar to the results obtained from the 
C2C12 cells, 100 mM glucose significantly increased sclerostin ex-
pression as assessed by both mRNA and protein levels (Fig. 1D, E). 
The fold changes of sclerostin mRNA in the 5, 40, and 100 mM glu-
cose samples were 1.00±0.05, 1.38±0.18 and 5.82±0.37, respec-
tively. Interestingly, in MLO-Y4 cells, 40 mM glucose clearly in-
creased sclerostin expression as reflected in the protein levels, but 
not in the mRNA levels.
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High glucose inhibits Wnt/β-catenin signaling
Since high glucose increased the expression levels of sclerostin, 

we next examined whether high glucose suppresses Wnt/β-catenin 
signaling. C2C12 cells were incubated for 24 hours in the presence 
and absence of Wnt3a (50 ng/mL) or high glucose (100 mM), and 
the expression levels of osteogenic marker genes, including ALP, 
Runx2, osteocalcin, and osterix, were examined. Wnt3a significantly 
enhanced the expression levels of all the marker genes examined 
(Fig. 2A). In addition, high glucose significantly attenuated marker 
gene expression levels both in basal and in Wnt3a-treated cells (Fig. 
2A). The Wnt3a-induced gene expression levels in 5 mM glucose 
compared to 100 mM glucose were as follows: Runx2, 7.76±1.08 
vs. 4.55±0.14; osterix, 29.65±3.87 vs. 16.57±0.82; ALP 21.82±1.76 
vs. 9.05±0.14; and osteocalcin, 5.93±0.19 vs. 3.06±0.08.

Since MLO-Y4 cells are osteocytic cells, we directly examined the 
effect of high glucose on Wnt/β-catenin signaling using the Top-
Flash luciferase assay in MLO-Y4 cells, rather than examining the 
effects on osteogenic marker genes. Since 40 mM glucose increased 
the sclerostin protein levels in MLO-Y4 cells, we used this concen-
tration to further check the functional effect of high glucose on 

Wnt/β-catenin signaling. Wnt3a significantly increased Top-Flash 
activity, which was blocked by treatment for three days with 40 
mM glucose (Fig. 2B). The Wnt3a-induced Top-Flash activities in 5 
mM glucose compared to 100 mM glucose were 308.50±65.88 vs. 
141.50±19.49.

High glucose-induced ROS production contributes to 
enhanced sclerostin expression

We next examined whether high glucose enhances the produc-
tion of ROS. Intracellular ROS levels were determined using DCF-DA. 
H2O2 (1 mM) was used as a positive control. Compared to the con-
trol cells, the ROS production was significantly higher in high glu-
cose- and H2O2-treated cells (Fig. 3). The ROS levels in the control, 
100 mM glucose, and 1 mM H2O2 groups after two hours of incuba-
tion were 141,756±19,110, 257,520±14,679, and 443,844±16,675, 
respectively. In order to explore whether increased ROS levels con-
tribute to sclerostin expression, C2C12 cells were incubated with 
0.1–1 mM H2O2 for 48 hours and the expression levels of sclerostin 
were determined. Quantitative RT-PCR results demonstrated that 
H2O2 significantly increased sclerostin mRNA levels in a dose-depen-
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dent manner (Fig. 4A). The fold changes of sclerostin mRNA in 0, 0.1, 
0.3, and 1.0 mM H2O2 samples were 0.87±0.05, 1.50±0.16, 2.26± 
0.29, and 3.17±0.30, respectively. In order to further clarify the role 
of ROS production in high glucose-induced sclerostin expression, 
C2C12 and MLO-Y4 cells were cultured in the presence or absence 

of an antioxidant, N-acetylcysteine (20 mM). The addition of N-ace-
tylcysteine significantly suppressed high glucose- and H2O2–induced 
sclerostin expression as assessed by both mRNA and protein levels 
(Fig. 4B-E). High glucose-induced sclerostin mRNA levels in the ve-
hicle compared to N-acetylcysteine groups were 3.01±0.20 vs. 
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1.05±0.10 in C2C12 cells and 2.74±0.35 vs. 0.27±0.04 in MLO-Y4 
cells. H2O2-induced sclerostin mRNA levels in the vehicle compared 
to the N-acetylcysteine groups were 4.18±1.19 vs. 0.41±0.11 in the 
C2C12 cells and 2.70±0.10 compared to 0.79±0.04 in the MLO-Y4 
cells. These results suggest that high glucose-induced ROS produc-
tion contributes to the enhanced expression of sclerostin.

TNFα contributes to high glucose-induced sclerostin 
expression

Since a previous report has demonstrated that TNFα enhances 
sclerostin expression in MLO-Y4 cells [20], we examined whether 
high glucose stimulates TNFα expression. Both high glucose and 
H2O2 significantly increased the expression levels of the TNFα pro-
tein (Fig. 5A, B). Since H2O2 also exerted a stimulatory effect on 
TNFα expression, we examined whether antioxidant treatment at-
tenuates high glucose-induced TNFα expression. The addition of 
N-acetylcysteine significantly downregulated high glucose- and 
H2O2-induced TNFα expression (Fig. 5C, D). High glucose-induced 
TNFα mRNA levels in the vehicle compared to N-acetylcysteine 
groups were 18.61±0.62 vs. 7.13±0.68 in the C2C12 cells and 

3.25±0.12 vs. 0.32±0.02 in the MLO-Y4 cells. H2O2-induced TNFα 
mRNA levels in the vehicle compared to N-acetylcysteine groups 
were 7.74±0.93 vs. 2.54±0.06 in the C2C12 cells and 2.67±0.05 
vs. 0.29±0.02 in the MLO-Y4 cells. These results suggest that ROS 
are involved in high glucose-induced TNFα expression.

In order to further examine whether TNFα mediates high glu-
cose-induced sclerostin expression, the knockdown of TNFα was in-
duced using TNFα siRNA. Quantitative RT-PCR results showed that 
TNFα siRNA suppressed high glucose- and H2O2-induced TNFα ex-
pression (Fig. 6A-D). Compared to control siRNA-transfected cells, 
high glucose and H2O2-induced sclerostin expression was signifi-
cantly attenuated in TNFα siRNA-transfected cells (Fig. 6A-D). High 
glucose-induced sclerostin mRNA levels in the control siRNA com-
pared to TNFα siRNA groups were 2.38±0.35 vs. 1.10±0.41 in the 
C2C12 cells and 2.90±0.13 vs. 0.64±0.21 in the MLO-Y4 cells. The 
H2O2-induced sclerostin mRNA levels in the control siRNA com-
pared to TNFα siRNA groups were 9.39±0.92 vs. 1.03±0.07 in the 
C2C12 cells and 2.75±0.59 vs. 1.46±0.37 in the MLO-Y4 cells. 
These results suggest that high glucose-induced ROS increase TNFα 
expression, which subsequently enhances sclerostin expression.
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Figure 5. High glucose and reactive oxygen species increase TNFα expression. (A, C) C2C12 and (B, D) MLO-Y4 cells were incubated for 48 hours in the presence 
of the indicated reagents. (A, B) An ELISA assay for TNFα was then performed using cell lysates, and (C, D) RT-PCR for TNFα was performed. The graphs indicate 
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DISCUSSION

Sclerostin is an inhibitor of Wnt/β-catenin signaling and exerts 
negative effects on bone formation. Hyperglycemia is a representa-
tive symptom of DM. Recent studies demonstrated that the risk for 
osteoporotic fracture and serum sclerostin levels are increased in 
DM patients and that osteocytic expression of sclerostin is increased 
in diabetic rats with periodontitis [2,26]. However, the molecular 
mechanism of how sclerostin expression is enhanced in diabetic pa-
tients remains elusive. In this study, we demonstrated that the ex-
posure of osteoblast lineage cells to high glucose induces ROS and 
TNFα production, which subsequently upregulates the expression 
levels of sclerostin.

In this study, we examined the effect of high glucose by adding 
extra glucose to the culture medium and adjusting the glucose 
concentration up to 100 mM. In order to rule out the possibility 
that the high glucose-induced effect on sclerostin resulted from 
high osmolarity, we compared the effect of high glucose (100 mM) 
with that of high mannitol (100 mM). Compared to high glucose, 
the regulatory effect of mannitol on sclerostin and TNFα expression 
was insignificant, suggesting that the regulatory effect of high glu-
cose on sclerostin and TNFα expression is independent of osmolarity 
(data not shown). The stimulatory effect of high glucose on scleros-

tin expression in this study is consistent with the results from a re-
cently published report [27]. In this report, Tanaka et al. [27] dem-
onstrated that treating MLO-Y4-A2 cells with 22 mM glucose for 
48 hours significantly increased sclerostin expression, as measured 
by both mRNA and protein levels.

Chronic hyperglycemia can directly induce an inflammatory 
state, in which increased levels of cytokines can lead to the degra-
dation of the pancreatic beta cells in both type 1 and type 2 DM 
[28]. In DM patients, the serum levels of inflammatory cytokines, 
including IL-6, IL-18, IL-1, and TNFα, are significantly increased [29]. 
Similar to this in vivo phenomenon, the exposure of C2C12 and 
MLO-Y4 cells to high glucose significantly increased the expression 
levels of TNFα mRNA and protein. The induction of TNFα expression 
by high glucose was blocked by N-acetylcysteine, suggesting that 
ROS production is necessary for high glucose-induced TNFα expres-
sion. TNFα plays an important role in inflammatory bone loss, in-
cluding rheumatoid arthritis, periodontitis, and osteoporosis [30,31]. 
TNFα also inhibits osteogenic differentiation and bone formation 
[32,33]. Since TNFα also enhances sclerostin expression in a NF-κB-
dependent manner in osteocytes [20], it is suggested that enhanced 
TNFα production by high glucose contributes to increased alveolar 
bone loss in DM patients.

In DM patients, a greater amount of AGEs is accumulated. The 
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Figure 6. TNFα mediates high glucose-induced sclerostin expression. (A, B, E) C2C12 and (C, D, F) MLO-Y4 cells were transiently transfected with control siRNA 
or TNFα siRNA, followed by incubation for 48 hours in the presence or absence of the indicated reagents. (A–D) Quantitative RT-PCR for TNFα and sclerostin, 
and (E, F) Western blot analysis were then performed. The graphs indicate the mean±standard deviation of the triplicate samples (a)P<0.05, b)P<0.01, c)P<0.001, 
d)P<0.0001). TNFα, tumor necrosis factor-alpha; RT-PCR, reverse transcription-polymerase chain reaction; CON, control; HG, high glucose; GAPDH, glyceralde-
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activation of the RAGE receptor by AGEs stimulates the production 
of ROS and activates the NF-κB signaling pathway [9]. In the pres-
ent study, high glucose increased ROS production in both C2C12 
and MLO-Y4 cells, and the addition of an antioxidant prevented 
high glucose-induced TNFα and sclerostin expression. In addition, 
Tanaka et al. [27] demonstrated that AGEs enhance the expression 
levels of sclerostin in MLO-Y4-A2 cells. Therefore, it is suggested 
that both AGEs and hyperglycemia contribute to the increase in se-
rum sclerostin levels in DM patients by increasing ROS production.

In conclusion, in this study, it was demonstrated that exposing 
osteoblast lineage cells to high glucose enhanced ROS and TNFα 
production, which subsequently induced sclerostin expression. 
Considering that TNFα and oxidative stress are among the main 

mediators that enhance osteoclastic bone resorption but suppress 
osteoblastic bone formation in many inflammatory diseases, the 
data from in this study further support the hypothesis that the 
regulation of TNFα and oxidative stress levels in diabetic patients 
may be of therapeutic relevance for alveolar bone complications 
derived from chronic hyperglycemia.
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