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The sample frequency spectrum (SFS) of DNA sequences from a
collection of individuals is a summary statistic that is commonly used
for parametric inference in population genetics. Despite the popu-
larity of SFS-based inference methods, little is currently known about
the information theoretic limit on the estimation accuracy as a
function of sample size. Here, we show that using the SFS to
estimate the size history of a population has a minimax error of at
least O(1/log s), where s is the number of independent segregating
sites used in the analysis. This rate is exponentially worse than
known convergence rates for many classical estimation problems
in statistics. Another surprising aspect of our theoretical bound is
that it does not depend on the dimension of the SFS, which is related
to the number of sampled individuals. This means that, for a fixed
number s of segregating sites considered, using more individuals
does not help to reduce the minimax error bound. Our result pertains
to populations that have experienced a bottleneck, and we argue
that it can be expected to apply to many populations in nature.
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The past decade has seen a revolution in our ability to interrogate
the genome at the molecular level. Fueled by technological ad-

vances in DNA sequencing, studies now routinely query thousands
or tens of thousands of individuals [refs. 1–4 and UK10K Project
(www.uk10k.org) and Exome Aggregation Consortium (exac.
broadinstitute.org)] to better understand disease susceptibility,
heritability, population history, and other phenomena. In most cases,
the conclusions of these studies come in the form of statistical esti-
mates obtained from models that relate the effect of interest to
mutation patterns arising in sampled DNA sequences. As genetic
sample sizes explode, it is natural to wonder how additional data
improve the quality of these estimates. While this general question
has received intense focus in theoretical statistics, certain aspects of
the genetics setting (for example, non-Gaussianity and lack of in-
dependence among samples) complicate efforts to study such models
using classical techniques. New methods are needed to theoretically
characterize some common models in statistical genetics.
Here, we address this need for a specific estimation problem in

population genetics known as demographic inference. As we
explain in further detail below, the aim of this problem is to
reconstruct the sequence of historical events—including pop-
ulation size changes, migration, and admixture—that gave rise to
present-day populations, using DNA samples obtained from
those populations. We focus on the simplest problem of esti-
mating the size history of a single population backward in time.
A summary statistic known as the (SFS; defined below) is often

used in empirical studies (2, 5–11), but there have been fewer at-
tempts to understand SFS-based estimation from a theoretical
perspective. The main result of this paper is to show that, for a
common class of estimators that analyze the SFS, there is a fun-
damental limit on their accuracy as a function of the sample size.
More precisely, we show that, under a standard statistical error
metric known as minimax error, the rate at which these estimators
converge to the truth for certain populations is at best inversely
logarithmic in the number of independent segregating sites ana-
lyzed, and does not depend at all on the number of individuals
sampled. Compared with other types of statistical estimation

problems (for example, linear regression), this is an extremely slow
rate of convergence. Our proof is information theoretic in nature
and applies to any estimator that operates solely on the SFS. This
is the first result we are aware of that characterizes the con-
vergence rate of demographic history estimates as a function of
sample size.
The remainder of this paper is organized as follows. In Pre-

liminaries, we formally define our notation and model. In Main
Results, we state our main theoretical results, followed by a
discussion of their practical implications in Discussion. To
streamline our exposition, all mathematical proofs are deferred
until Proofs.

Preliminaries
The stochastic process underlying the inference procedure we
consider is Kingman’s coalescent (12–14), which evolves back-
ward in time and describes the genealogy of a collection of
chromosomes randomly sampled from a population. The pop-
ulation size is assumed to change deterministically over time and
is described by a function η : ½0,∞Þ→ ð0,∞Þ, with ηðtÞ being the
population size at time t in the past. The instantaneous rate of
coalescence between any pair of lineages at time t is 1=ηðtÞ.
As in the standard infinite sites model of mutation (15), we

assume that every dimorphic site (i.e., a site with exactly two
observed allelic types) has experienced mutation exactly once in
the evolutionary history of the sample. Further, for each such
site, we assume that it is known which allele is the ancestral type
versus the mutant type. In what follows, we use the terms “di-
morphic” and “segregating” interchangeably.
A population size function ηðtÞ induces a probability distri-

bution on the number of derived alleles found at a particular
segregating site. Specifically, for a sample of n≥ 2 randomly
sampled individuals, let ξðηÞn,b, for 1≤ b≤ n− 1, denote the proba-
bility that a segregating site contains b mutant alleles in a sample
of n individuals under model η. The vector ξðηÞn =

defðξðηÞn,1, . . . , ξ
ðηÞ
n,n−1Þ

Significance

Numerous empirical studies in population genetics have used a
summary statistic called the sample frequency spectrum (SFS),
which summarizes the information in a sample of DNA se-
quences. Despite their popularity, the accuracy of inference
methods based on the SFS is difficult to characterize theoreti-
cally, and it is currently unknown how the estimation accuracy
improves as more sites in the genome are used. Here, we es-
tablish information theoretic limits on the accuracy of all esti-
mators that use the SFS to infer population size histories. We
study the rate of convergence to the true answer as the
amount of data increases, and obtain the surprising result that
it is exponentially worse than known convergence rates for
many classical estimation problems in statistics.

Author contributions: J.T. and Y.S.S. designed research, performed research, and wrote
the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: yss@berkeley.edu.

www.pnas.org/cgi/doi/10.1073/pnas.1503717112 PNAS | June 23, 2015 | vol. 112 | no. 25 | 7677–7682

ST
A
TI
ST

IC
S

EV
O
LU

TI
O
N

http://www.uk10k.org/
http://exac.broadinstitute.org
http://exac.broadinstitute.org
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1503717112&domain=pdf
mailto:yss@berkeley.edu
www.pnas.org/cgi/doi/10.1073/pnas.1503717112


is called the expected SFS. In the coalescent setting, a general
expression for ξðηÞn,b is given by (16)

ξðηÞn,b ∝
Xn−b+1
k=2

�
n− b− 1
k− 2

�
�
n− 1
k− 1

� · k ·ETðηÞ
n,k ,

where ETðηÞ
n,k denotes the amount of time (in coalescent units)

during which the genealogy of the sample contained k lineages
under model η. The expected waiting time ETðηÞ

m,m to the first co-
alescence in a sample of m individuals is given by

cðηÞm =defETðηÞ
m,m =

Z∞
0

t
am
ηðtÞ exp

�
−amRηðtÞ

�
dt, [1]

where am=
def
�

m

2

�
and RηðtÞ=def

R t
0

1
ηðsÞ ds is the cumulative rate of

coalescence up to time t. It turns out (17) that there is an invert-
ible linear transformation that relates ðETðηÞ

n,2 ,ET
ðηÞ
n,3 , . . . ,ET

ðηÞ
n,nÞ to

cðηÞ=defðcðηÞ2 , cðηÞ3 , . . . , cðηÞn Þ. Using this relation, the quantity ξðηÞn,b can
be written as (18)

ξðηÞn,b =
hcðηÞ,Wn,bi�
cðηÞ,Vn

	 , [2]

where Wn,b = ðWn,b,2, . . . ,Wn,b,nÞ and Vn = ðVn,2, . . . ,Vn,nÞ are
vectors of universal constants that do not depend on the popu-
lation size function η, and h · , · i denotes the l2 inner product.
Under model η, the quantity hcðηÞ,Wn,bi is the total expected
length of edges subtending b out of n individuals sampled at time
0, while the quantity hcðηÞ,Vni is the total expected tree length for
a sample of size n. Both quantities are positive for all population
size functions η. For an arbitrary population size function η, we
have

Pn−1
b=1Wn,b,m =Vn,m for all 2≤m≤ n, which implies

Xn−1
b=1

D
cðηÞ,Wn,b

E
=
D
cðηÞ,Vn

E
. [3]

For a constant function ηðtÞ≡N,

cðηÞm =
N
am

,

D
cðηÞ,Wn,b

E
=
2
b
N, [4]

D
cðηÞ,Vn

E
= 2N  Hn−1, [5]

where Hn−1 =
defPn−1

b=1
1
b.

To formulate the problem, we use the following notation. We
suppose that a sample of n≥ 2 randomly sampled individuals has
been typed at s independent segregating sites. These data are
used to form the empirical sample frequency spectrum, which is
an ðn− 1Þ-tuple ðξ̂n,1, . . . , ξ̂n,n−1Þ, where ξ̂n,b denotes the pro-
portion of segregating sites with b copies of the mutant allele and
n− b copies of the ancestral allele. A frequency-based estimator
is any statistic η̂ that maps an empirical SFS to a population
size history.

Main Results
Here, we establish a minimax lower bound on the ability of any
estimator η̂ to accurately reconstruct population size functions.

A General Bound on the Kullback−Leibler Divergence Between Two
SFS Distributions.Abusing notation, we use Dðηkη′Þ to denote the
Kullback−Leibler (KL) divergence between the probability
distributions ξðηÞn and ξðη′Þn . In Proofs, we prove the following
general upper bound on the KL divergence between two
SFS distributions:

Theorem 1. Let M denote a general space of population size func-
tions and suppose η, η′∈M satisfy ηðtÞ= η′ðtÞ for all 0≤ t≤ tc and
maxt>tcηðtÞ≤mint>tcη′ðtÞ. Then,

D


ηkη′�≤

D
cðη′Þ − cðηÞ,Vn

E
hcðηÞ,Vni . [6]

Bounds for a Family of Piecewise Constant Models.We now focus on
a particular class of population size functions that are easier to
analyze and are popular in the literature (11, 19, 20). For a fixed
positive integer K > 1, letMK ⊂M denote the space of piecewise
constant size functions with exactly K pieces. A population size
function η is a member of MK if and only if there exist positive
real numbers t1 < . . . < tK−1 and N1,N2, . . . ,NK such that

ηðtÞ=
XK
k=1

Nk1ftk−1 ≤ t< tkg, [7]

where, by convention, we define t0 = 0 and tK =∞. For such an
η, define

SðηÞk =
def Xk

j=1

tj − tj−1
Nj

. [8]

For η∈MK, the expected waiting time cðηÞm defined in Eq. 1 is
given by

cðηÞm =
1
am

XK
k=1

Nk

�
e−amS

ðηÞ
k−1 − e−amS

ðηÞ
k

�
. [9]

Note that since tK =∞,

e−amS
ðηÞ
K ≡ 0,   for  all  η∈MK . [10]

To formulate our result, we let I, J denote positive integers
that satisfy I + J =K, and introduce a subfamily F I,J ⊂MK of
piecewise constant functions defined as follows. See Fig. 1 for
illustration. We assume that all change points t1 < . . . < tI+J−1
are fixed and that the sizes N1, . . . ,NI of the first I epochs are
also fixed, with NI being the smallest size. So, all functions in
F I,J are identical to each other for the first I epochs, and there
is a population bottleneck in the last epoch. Then, for t≥ tI,
every function η∈F I,J undergoes jumps according to the fol-
lowing rules:

1. For the interval tI ≤ t< tI+1, ηðtÞ takes a constant value of
either h or h+ δ, where h>NI and δ> 0.

2. At later change points ftI+1, . . . , tI+J−1g, η either stays the
same or jumps upward by δ.

Hence, F I,J consists of 2J distinct piecewise constant functions
that are nondecreasing functions of t for t≥ tI. Note that
mintηðtÞ=NI for all η∈F I,J. For ease of notation, we use «=defNI
to denote the bottleneck size and τB =

deftI − tI−1 to denote the
bottleneck duration. To facilitate analysis later, we fix tI+j − tI+j−1
to some positive constant τA for all j= 1, . . . , J − 1.
For any two models in F I,J, we obtain the following bound on

the difference of their waiting times to the first coalescence:
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Lemma 2. For all η, η′∈F I,J,����cðηÞm − c
ðη′Þ
m

����≤ J
δ

am
e−amτB=«. [11]

Together with Theorem 1, this lemma can be used to show

Theorem 3. Let η, η′∈F I,J that satisfymaxt≥tI ηðtÞ≤mint≥tI η′ðtÞ. Then,

D


ηkη′�≤ J

δ

«
e−τB=«. [12]

Proofs of these results are deferred to Proofs. It is interesting
that the above bound does not depend on the number n of
sampled individuals.

Minimax Lower Bounds. Before using the above results to obtain a
minimax lower bound, we first note a subtle fact. Given any
population size function η, consider a function ζ that satisfies
ζðtÞ= κ · ηðt=κÞ for all t∈ ½0,∞Þ, where κ is some positive constant.
Such functions are equivalent, as it turns out that ξðζÞn,b = ξðηÞn,b for all
n≥ 2 and 1≤ b≤ n− 1. To mod out by this equivalence, we as-
sume that every η∈M satisfies ηð0Þ=N  fix, where N  fix is some
fixed positive constant.
Let k · k

*
denote a generic norm (specific examples will be

given later) and let Eηð · Þ denote expectation with respect to the
SFS distribution ξðηÞn = ðξðηÞn,1, . . . , ξ

ðηÞ
n,n−1Þ induced by population

size function η. Then, note that

inf
η̂

sup
η∈M

Eηjjη̂− ηjj
*
≥ inf

η̂
sup
η∈MK

Eηjjη̂− ηjj
*
≥ inf

η̂
sup
η∈F I,J

Eηjjη̂− ηjj
*
.

In what follows, we will put a lower bound on the last quantity. We
first fix a sensible distance metric onM. An intuitive way to measure
distance between two population size functions is their L1 distance,
jjηa−ηbjj1 =

R∞
0 jηaðtÞ− ηbðtÞjdt, but this is unreasonably stringent in

that jjηa−ηbjj1 =∞ if ηa and ηb do not agree infinitely far back into
the past. Instead we will focus on the following truncated L1 dis-
tance: jjηa−ηbjj1,T =

def R T
0 jηaðtÞ− ηbðtÞjdt, which measures the discrep-

ancy between ηa and ηb back to some fixed time T in the past.
Henceforth, let η̂ be any estimator of the population size

function that operates on a sample of s independent segregating
sites obtained from a sample of n randomly sampled individuals.
In Proofs, we prove the following main results of our paper:

Theorem 4. Consider the subfamily F I,J of models described above,
and suppose J > 8 and T ≥ tI+J−1 + τA. Then,

inf
η̂

sup
η∈F I,J

Eηjjη̂− ηjj1,T ≥CτA
ðJ − 8Þ2

J
«

s
eτB=«, [13]

where C is a positive constant.

The above theorem applies to all models in F I, J. We now
consider the subset FM

I, J ={η∈F I, J : kηk∞<M}, which is the set
of all models in F I,J that are bounded by some constant M. For
this family of bounded population size functions, a sharper as-
ymptotic lower bound can be obtained as follows.

Theorem 5. Suppose J > 8 and T ≥ tI+J−1 + τA. Then,

inf
η̂

sup
η∈FM

I,J

Eηjjη̂− ηjj1,T ≥C′
ðJ − 8Þ2

J
τBτA
log s

, [14]

where C′ is a positive constant.
By specializing FM

I,J, a simplified version of Theorem 5 can
be obtained:

Corollary 6. Suppose T ≥ tI+J−1 + τA and let FM
I,⋆ =∪J≥1FM

I,J. Then,

inf
η̂

sup
η∈FM

I,⋆

Eηjjη̂− ηjj1,T ≥C″ðT − tIÞ τB
log s

, [15]

where C″ is a positive constant.
Note that the above lower bounds do not depend on the di-

mension of the SFS (which is equal to n− 1). Hence, for a fixed
number s of segregating sites considered, using more individuals
does not diminish the error bounds.

Bottleneck Followed by Exponential Growth. In the results presented
above, we dropped smaller terms to obtain the dominant contribu-
tion to our lower bound. Here, we provide a more detailed analysis to
study how the model in the recent past (i.e., the period 0≤ t≤ tI−1)
affects the lower bound. A slight modification of the above results
permits us to analyze the following model class, which is of interest
in, for example, human genetics (2, 3, 7): Let GJ be the family of
models illustrated in Fig. 2 with exponential growth in the recent
past. Specifically, ηðtÞ= η0e

−βðη0Þt for the period 0≤ t≤ t1. The rate of
growth βðη0Þ= logðη0=γ«Þ=t1 is defined so that ηðt1Þ= γ« for all
η∈GJ, where γ ≥ 1. The part for t> t1 is the same as that for t> tI−1
in F I,J (Fig. 1). We obtain the following result for the subfamily GJ:

Theorem 7. Consider the subfamily GJ of models described above,
and suppose J > 8 and T ≥ tJ + τA. Then,

inf
η̂
sup
η∈GJ

Eηjjη̂− ηjj1,T ≥CτA
ðJ − 8Þ2

J
«

s
exp

2
664τB« + t1

1
γ«

−
1
η0

logðη0Þ− logðγ«Þ

3
775.

[16]

Theorem 4 is a measure of how (a lower bound on) estimation
error depends on growth following a bottleneck. The two extremes

Fig. 1. A family F I,J of piecewise-constant population size models with
K = I+ J epochs.

Fig. 2. A family GJ of population size models with exponential growth in
the recent past. This family consists of size histories that are piecewise
constant before the bottleneck, and then jump to some level γ« and undergo
(identical) exponential growth from time t1 to present.
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η0 →∞ and η0 → γ« have intuitive interpretations. For large η0, the
bound in Eq. 16 tends to the corresponding bound given by The-
orem 4, as expected since coalescences become increasingly less
likely in the first time period. Small η0 has the effect of ‘‘pro-
longing’’ the bottleneck, thus increasing the minimax lower bound.
In particular, if γ = 1 then t1½ð1=γ«Þ− ð1=η0Þ�=½logðη0Þ− logðγ«Þ�→
ðt1=«Þ as η0 → γ«, so that the effect of low population growth on the
minimax lower bound is to simply prolong the bottleneck effect by
an additional t1 time periods.

Discussion
In this paper, we have theoretically characterized fundamental
limits on the accuracy of demographic inference from data. We
have shown that the minimax error rate for estimating the
piecewise-constant demography of a single population is at
least Oð1=log sÞ, where s is the number of independent segre-
gating sites analyzed. In contrast, the minimax error for many
classical estimation problems in statistics (for example, non-
parametric regression or density estimation) decays inverse
polynomially in the sample size (21). Compared with these prob-
lems, exponentially more samples would be required to estimate
a population size history function to within a similar magnitude
of error. The paper that most closely relates to the present work is
by Kim et al. (22), who obtain lower bounds on the amount of exact
coalescence time data necessary to distinguish between size histories
in a hypothesis testing framework. Since coalescence times are never
observed and must be estimated from data, these bounds place a
limit on the accuracy with which a population size function can
be inferred. The authors also describe an estimator that uses
coalescence times (again observed without noise) to accurately
recover the underlying population size function with high
probability, at a rate that roughly matches the lower bound.
Another line of work centers around the identifiability of the

parameter ηðtÞ using the SFS. Roughly speaking, a family of
statistical models fPθgθ∈Θ defined over a parameter space Θ is
identifiable if, for any θ1, θ2 ∈Θ with θ1 ≠ θ2, the sampling dis-
tributions induced by Pθ1 and Pθ2 are different. In our context,
this simply says that, for all n, ξðη1Þn ≠ ξðη2Þn unless η1 = η2 almost
everywhere. Standard desiderata for statistical estimators (e.g.,
consistency or unbiasedness) are impossible without identifi-
ability, so it is the weakest possible regularity condition one can
impose on a useful family of models.
Perhaps surprisingly, it turns out that, in general, a population

size function is not identifiable from the SFS (23). Indeed, for
any given ηðtÞ, it has been shown that an infinite number of
smooth functions FðtÞ exist such that ξðηÞn = ξðη+FÞn . Moreover,
explicit examples can be constructed that demonstrate this
phenomenon (23). On the other hand, these counterexamples
consist of functions that exhibit an unbounded frequency of os-
cillatory behavior near the present time, which is perhaps un-
realistic when modeling naturally occurring populations. More
recently, it has been shown (19) that identifiability holds
for many classes of population size functions used by practi-
tioners (including piecewise constant, piecewise exponential, and
piecewise generalized exponential). Furthermore, the number
n of sampled individuals sufficient for identifiability can be
explicitly given and is a function of the complexity of the un-
derlying class of models being studied (19).
Identifiability asserts that, given an infinite amount of data

(specifically, taking the number of segregating sites s→∞), the
model parameter ηðtÞ can be uniquely recovered. In practice, s is
finite, and only a perturbed version of the expected frequency
spectrum, say ξ̂ðηÞn , is observed. From a practical standpoint, it is
important to understand how these perturbations ultimately af-
fect the parameter estimate η̂ðtÞ. It is this question that forms the
starting point for the present work.
A single population evolving under a piecewise-constant de-

mography is a special case of many richer classes of demographic
models. For example, it is a (limiting) member of the family of
exponential growth models, seen by taking each exponential
growth parameter to zero. In the multispecies coalescent setting

(10, 24), multiple population size histories must be estimated,
and the error of that estimate must necessarily be lower bounded
by that of estimating a single such history. Thus, our result can be
expected to apply to a broader class of models than the one we
have studied here.
As detailed in Proofs, the result in Theorem 5 follows from

setting «= τB=log s and δ∝ «
s expðτB=«Þ in the subfamily FM

I,J. The
size τB=log s is in coalescent units. In terms of the number of
individuals, it is proportional to gB=log s, where gB is the number
of generations corresponding to duration τB in the coalescent
limit. Intuitively, as the severity of the bottleneck increases, the
population is increasingly likely to find its most recent common
ancestor (MRCA) during that time; farther back in time than the
MRCA, no information is conveyed concerning the demographic
events experienced by the population.
One might object to considering models with a bottleneck size

that scales inversely with the number s of segregating sites in the
data, and it is indeed possible that a better convergence rate may
be achievable for populations that are known not to contain a
bottleneck. On the other hand, we note that 1=log s decreases
sufficiently slowly with s that our result can be expected to apply
to many real-world examples. For example, for s≈ 108, which is a
conservative upper bound for most organisms, gB=log s≈ 0.054gB.
This implies that for populations that have experienced
roughly an order-of-magnitude increase in effective population size
during their history, accurate estimation of demographic events
that occurred before this expansion is difficult using SFS-based
methods. Additionally, an interesting aspect of our work is that our
minimax lower bounds do not depend on the number n of sampled
individuals; increasing n is not enough to overcome the in-
formation barrier imposed by the presence of a bottleneck. This is
intuitively plausible since, as n increases, the ðn+ 1Þ th sampled
lineage becomes more likely to coalesce early on.
An interesting question that we have not attempted to analyze

is whether the Oð1=log sÞ rate is optimal, i.e., whether there exists
some estimator η̂ðtÞ that achieves the minimax lower bound
established here. In practice, from Eqs. 2, 8, and 9, it can be seen
that naively maximizing the likelihood of the observed SFS with
respect to ηðtÞ requires solving a nonconvex optimization prob-
lem, so that convergence to the global maximum is not even
guaranteed. Computational issues aside, finding such an esti-
mator remains an open theoretical challenge.
In closing, we stress that our result is specific to SFS-based

estimators, which analyze only independent sites. The main al-
lure of these estimators is their mathematical tractability, rather
than their realism. In fact, a rich source of additional information
exists in the correlation structure found among linked sites in the
genome. Methods that seek to exploit this structure by modeling
the action of recombination pose greater mathematical and
computational difficulties, but there has been recent progress in
this area (20, 25–29). Our result serves to underscore the im-
portance of pursuing more realistic models of genomic evolution,
challenging though they may be.

Proofs
Proof of Theorem 1. To simplify the notation, we write c= cðηÞ and
c′= cðη′Þ. Then, using Eq. 2, we can write

D


ηkη′�= Xn−1

b=1

ξðηÞn,blog
ξðηÞn,b

ξðη′Þn,b

=
Xn−1
b=1

ξðηÞn,b

"
log

 �
c,Wn,b

	�
c′,Wn,b

	
!
+ log

 �
c′,Vn

	
hc,Vni

!#
.

The assumption mint>tcη′ðtÞ≥maxt>tcηðtÞ implies that, for all
times t, t′> tc, the instantaneous rate of coalescence at time t in
model η is greater than or equal to ≥ the instantaneous rate of
coalescence at time t′ in model η′. Hence, this assumption to-
gether with ηðtÞ= η′ðtÞ for all 0≤ t≤ tc implies hc− c′,Wn,bi≤ 0 for
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all 1≤ b≤ n− 1; equivalently, logðhc,Wn,bi=hc′,Wn,biÞ< 0. Addi-
tionally, ðhc′− c,Vni=hc,VniÞ> − 1 and logð1+ xÞ≤ x for all
x≥ − 1. Combining these facts, we obtain

D


ηkη′�≤ Xn−1

b=1

ξðηÞn,blog

 �
c′,Vn

	
hc,Vni

!
≤
Xn−1
b=1

ξðηÞn,b

�
c′− c,Vn

	
hc,Vni

=

�
c′− c,Vn

	
hc,Vni ,

where we have used
Pn−1

b=1ξ
ðηÞ
n,b = 1 in the final equality.

Proof of Lemma 2. We distinguish two particular models,
ηℓ, ηu ∈F I,J, which are the lower and the upper envelopes of F I,J.
The function ηℓ stays constant at h for all t≥ tI, while ηu jumps
upward by δ at every change point tI , . . . , tI+J−1. Hence, ηℓ ≤ η≤ ηu
pointwise for all η∈F I,J. The two enveloping functions will form
the basis of subsequent analysis.
Fix η, η′∈F I,J and note that, by the definition of F I,J, one of

these functions must pointwise dominate the other. Therefore,
assume without loss of generality that ηðtÞ≤ η′ðtÞ for all t. Then,
for all t,

ηℓðtÞ≤ ηðtÞ≤ η′ðtÞ≤ ηuðtÞ,

which implies

cðηℓÞm ≤ cðηÞm ≤ c
ðη′Þ
m ≤ cðηuÞm ,

for all m= 2, . . . , n. Using these inequalities, we conclude

c
ðη′Þ
m − cðηÞm ≤ cðηuÞm − cðηℓÞm ,

so it suffices to demonstrate Eq. 11 for cðηuÞm − cðηℓÞm . Now, by Eq. 9
and the definition of ηℓ,

amcðηℓÞm =
XI
i=1

Ni


e−amS

ðηℓÞ
i−1 − e−amS

ðηℓÞ
i

�
+
XJ
j=1

h

e−amS

ðηℓÞ
I+j−1 − e−amS

ðηℓÞ
I+j

�

=
XI
i=1

Ni


e−amS

ðηℓÞ
i−1 − e−amS

ðηℓÞ
i

�
+ he−amS

ðηℓÞ
I ,

where we have used Eq. 10. Similarly,

amcðηuÞm =
XI
i=1

Ni

h
e−amS

ðηu Þ
i−1 − e−amS

ðηuÞ
i

i

+
XJ
j=1

ðh+ jδÞ
h
e−amS

ðηuÞ
I+j−1 − e−amS

ðηu Þ
I+j

i

=
XI
i=1

Ni

h
e−amS

ðηuÞ
i−1 − e−amS

ðηu Þ
i

i
+ he−amS

ðηu Þ
I

+
XJ
j=1

jδ
h
e−amS

ðηu Þ
I+j−1 − e−amS

ðηuÞ
I+j

i
.

Now, using the fact that ηℓ and ηu agree on the first I epochs, we obtain

am
h
cðηuÞm − cðηℓÞm

i
=
XJ
j=1

jδ
h
e−amS

ðηuÞ
I+j−1 − e−amS

ðηu Þ
I+j

i

= δ
XJ
j=1

e−amS
ðηu Þ
I+j−1

≤ Jδe−amτB=«,

[17]

where the second line follows from telescoping and the fact that
SðηuÞI + J =∞, while the last line follows from the fact that τB

« ≤ SðηuÞI + j−1
for all j= 1, . . . , J.
Proof of Theorem 3. For ease of notation, define c= cðηÞ and

c′= cðη′Þ. By Lemma 2,
�
c′− c,Vn

	
=
Xn
m=2

ðcm′ − cmÞVn,m ≤ Jδ
Xn
m=2

Vn,m

am
e−amτB=«

≤ Jδe−τB=«
Xn
m=2

Vn,m

am
,

where the second inequality follows from e−amτB=« ≤ e−τB=« for all
m= 2, . . . , n. Now, noting that

Pn
m=2ðVn,m=amÞ corresponds to

the total tree length for the constant population size function
η≡ 1 and using Eq. 5, we obtain�

c′− c,Vn
	
≤ Jδe−τB=«2Hn−1. [18]

To finish the proof, recall that hc,Vni is the total expected branch
length of the coalescent tree under model η. Since mint ηðtÞ= «, we
have that hc,Vni is at least as large as the corresponding quantity
under a model with constant population size «. By Eq. 5, the total
expected tree length under the latter model equals 2«Hn−1. Thus,
hc,Vni≥ 2«Hn−1, and combining this result with Eq. 18 gives�

c′− c,Vn
	

hc,Vni ≤ J
δ

«
e−τB=«.

Finally, Eq. 12 follows from this inequality and Theorem 1.
Proof of Theorem 4. Our proof uses a generalized form of

Fano’s inequality (30). Adapted to our setting and notation, the
method reads as follows.
Theorem 8 (Fano’s method). Consider a space M of population

size models. Let r≥ 2 be an integer, and let Srn = fη1, η2, . . . , ηrg⊂M
contain r population size functions such that for all a≠ b,
jjηa−ηbjj* ≥ αr and DðξðηaÞn

��ξðηbÞn Þ≤ βr. Let η̂
ðn, sÞ = η̂ðn, sÞðX1, . . . ,XsÞ

be an estimator of η based on the SFS data X1, . . . ,Xs sampled
independently from ξðηÞn ; i.e., X1, . . . ,Xs are SFS data for n in-
dividuals at s independent segregating sites. Then,

inf
η̂

sup
η∈M

Eη

����η̂ðn, sÞ − η
����
*
≥
αr
2

�
1−

s · βr + log 2
log r

�
. [19]

This theorem places a lower bound on the minimax rate of
convergence of a population size history estimator based on the SFS.
For η∈F I,J, let wj denote the variable ∈f0,1g indicating whether

η jumps by δ at change point tI+j. Let Y = fw=ðw0, . . . ,wJ−1Þj
wi ∈ f0,1gg, where J ≥ 8. By the Varshamov−Gilbert lemma (see
ref. 31, Lemma 4.7), there exist X = fw0, . . . ,wMg⊂Y such
that (i) w0 = ð0, . . . , 0Þ, (ii) M ≥ 2J=8, and (iii) Hðwi,wjÞ≥ J=8,
where Hð · , · Þ denotes the Hamming distance.
Let FX

I,J denote the subset of 2J=8 + 1 functions in F I,J with the
indicator variable for δ jumps at tI , . . . , tI+J−1 given by w∈X.
Then, for any two ηa ≠ ηb ∈FX

I,J, we have

jjηa − ηbjj1,T ≥
J
8
· τA · δ. [20]

Using Theorem 8 via Eq. 20 and Theorem 3, we obtain

inf
η̂

sup
η∈F I,J

Eη

����η̂ðn, sÞ − η
����
1,T ≥

J · τA · δ
16

2
641− sJ

δ

«
e−τB=« + log 2

logð2J=8 + 1Þ

3
75

≥
J · τA · δ

16

2
641− sJ

δ

«
e−τB=« + log 2

J
8
log 2

3
75. [21]
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We now optimize the bound with respect to δ. A straightforward
calculation shows that the maximum is attained at

δ* =
ðJ − 8Þlog 2

16J

�«
s

�
eτB=«, [22]

and setting δ= δ* in Eq. 21 yields the result.
Proof of Theorem 5. The result is obtained by scaling « with the

number of segregating sites s. Denote this scaling by «ðsÞ; we will
determine «ðsÞ that produces the largest possible lower bound.
Starting from Eq. 22 in the proof of Theorem 4, note that δ*
scales as ð«=sÞeτB=« =: f ð«Þ. To satisfy the constraint that jjηjj∞ <M
for all η∈FM

I,J and s, the condition

lim  sup
s→∞

max
�
«ðsÞ
s
eτB=«ðsÞ, «ðsÞ

�
<∞ [23]

must therefore hold. This implies that «ðsÞsp →∞ as s→∞ for all
p> 0. Suppose that q=deflim  infs→∞½ð«ðsÞlog sÞ=τB�< 1; note that
«ðsÞ> 0 implies q> 0. Then there exists a diverging sequence
s1, s2, . . . →∞with logðsiÞ< ½ð1+ qÞ=2�½τB=ð«ðsiÞÞ� for all i, whence

lim  sup
s→∞

«ðsÞ
s
eτB=«ðsÞ ≥ lim  sup

i→∞

«ðsiÞ
si

e
2

1+q logðsiÞ

= lim  sup
i→∞

«ðsiÞs
1−q
1+q
i =∞.

From this, it follows that «ðsÞ≥ τB=log s for sufficiently large
s. Now, on the interval ð0,∞Þ, the function f ð«Þ is convex
with a unique minimum at «= τB. Let «′ be a point where
f ð«′Þ> f ðτB=log sÞ= τB=log s. Then «′∉ ½τB=log s, τB�. If «′> τB,
then f ð«′Þ< ð«′=sÞe1. Since τB

log s< f ð«′Þ, we then conclude «′> sτB=
ðe1 log sÞ, which is not bounded as s→∞.
In summary, we see that the largest possible lower bound that

obeys Eq. 23 must have f ð«Þ asymptotically ≤ τB=log s, and that
this bound is achieved by setting «ðsÞ= τB=log s. Plugging this in
to Eq. 19 yields the claim.
Proof of Corollary 6. For c∈ ð0,   1Þ, choose J large enough

so that ðJ − 8Þ=J > c, and fix τA so that T = tI + JτA. Then

ðJ − 8ÞτA ≥ cJτA = cðT − tIÞ. Substituting the above inequalities
into Eq. 14 and letting C″=C′c2 yields the desired result.
Proof of Theorem 7. The theorem is obtained by suitably modi-

fying the preceding results to account for the effect of exponential
growth in the first period. Let ηu, ηℓ be the analogously defined
upper and lower envelope functions for GJ. Then

Ztj+1
0

ds
ηuðsÞ

=
eβðη0Þt1 − 1
η0βðη0Þ

+
τB
«
+
Xj+1
i=3

ti − ti−1
Ni

= t1

1
γ«

−
1
η0

logðη0Þ− logðγ«Þ+
τB
«
+
Xj+1
i=3

ti − ti−1
Ni

,

where we have used the definition of βðη0Þ in the second equality.
Since all size histories in GJ are equal up to period t2, the steps of
Lemma 2 all go through unchanged. Starting from Eq. 17, we
obtain the modified bound

am
h
cðηuÞm − cðηℓÞm

i
≤ Jδ exp

8>><
>>:−amt1

1
γ«

−
1
η0

logðη0Þ− logðγ«Þ

9>>=
>>;e−amτB=«.

[24]

Propagating the modified bound (Eq. 24) through Theorems 3
and 4 ultimately yields the claim.
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