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We describe the problem of “selective inference.” This addresses
the following challenge: Having mined a set of data to find poten-
tial associations, how do we properly assess the strength of these
associations? The fact that we have “cherry-picked”—searched for
the strongest associations—means that we must set a higher bar
for declaring significant the associations that we see. This chal-
lenge becomes more important in the era of big data and complex
statistical modeling. The cherry tree (dataset) can be very large
and the tools for cherry picking (statistical learning methods) are
now very sophisticated. We describe some recent new develop-
ments in selective inference and illustrate their use in forward
stepwise regression, the lasso, and principal components analysis.
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Statistical science has changed a great deal in the past 10–20
years, and is continuing to change, in response to techno-

logical advances in science and industry. The world is awash with
big and complicated data, and researchers are trying to make
sense out of it. Leading examples include data from “omic” as-
says in the biomedical sciences, financial forecasting from eco-
nomic and business indicators, and the analysis of user click
patterns to optimize ad placement on websites. This has led to an
explosion of interest in the fields of statistics and machine
learning and spawned a new field some call “data science.”
In the words of Yoav Benjamini, statistical methods have be-

come “industrialized” in response to these changes. Whereas tra-
ditionally scientists fit a few statistical models by hand, now they
use sophisticated computational tools to search through a large
number of models, looking for meaningful patterns. Having done
this search, the challenge is then to judge the strength of the
apparent associations that have been found. For example, a cor-
relation of 0.9 between two measurements A and B is probably
noteworthy. However, suppose that I had arrived at A and B as
follows: I actually started with 1,000 measurements and I searched
among all pairs of measurements for the most correlated pair;
these turn out to be A and B, with correlation 0.9. With this
backstory, the finding is not nearly as impressive and could well
have happened by chance, even if all 1,000 measurements were
uncorrelated. Now, if I just reported to you that these two measures
A and B have correlation 0.9, and did not tell which of these two
routes I used to obtain them, you would not have enough in-
formation to judge the strength of the apparent relationship. This
statistical problem has become known as “selective inference,” the
assessment of significance and effect sizes from a dataset after
mining the same data to find these associations.
As another example, suppose that we have a quantitative value

y, a measurement of the survival time of a patient after receiving
either a standard treatment or a new experimental treatment. I
give the old drug (1) or new drug (2) at random to a set of patients
and compute the mean difference in the outcome z= ðy2 − y1Þ=s,
where s is an estimate of SD of the raw difference. Then I could
approximate the distribution of z by a standard normal distribu-
tion, and hence if I reported to you a value of, say, z= 2.5 you
would be impressed because a value that large is unlikely to occur
by chance if the new treatment had the same effectiveness as the
old one (the P value is about 1%). However, what if instead I tried

out many new treatments and reported to you only ones for
which jzj> 2? Then a value of 2.5 is not nearly as surprising.
Indeed, if the two treatments were equivalent, the conditional
probability that jzj exceeds 2.5, given that it is larger than 2, is
about 27%. Armed with knowledge of the process that led to the
value z= 2.5, the correct selective inference would assign a P
value of 0.27 to the finding, rather than 0.01.
If not taken into account, the effects of selection can greatly

exaggerate the apparent strengths of relationships. We feel that this
is one of the causes of the current crisis in reproducibility in science
(e.g., ref. 1). With increased competiveness and pressure to publish,
it is natural for researchers to exaggerate their claims, intentionally
or otherwise. Journals are much more likely to publish studies with
low P values, and we (the readers) never hear about the great
number of studies that showed no effect and were filed away (the
“file-drawer effect”). This makes it difficult to assess the strength of
a reported P value of, say, 0.04.
The challenge of correcting for the effects of selection is a complex

one, because the selective decisions can occur atmany different stages
in the analysis process. However, some exciting progress has recently
been made in more limited problems, such as that of adaptive re-
gression techniques for supervised learning. Here the selections are
made in a well-defined way, so that we can exactly measure their
effects on subsequent inferences. We describe these new techniques
here, as applied to two widely used statistical methods: classic su-
pervised learning, via forward stepwise regression, andmodern sparse
learning, via the “lasso.” Later, we indicate the broader scope of their
potential applications, including principal components analysis.

Forward Stepwise Regression
Supposed that we have a dataset with N observations ðxi, yiÞ,
i= 1,2, . . .N, yi being the outcome measurement and each xi
a vector of p predictors (or features). We wish to build a model for
predicting yi from xi. This is known as the supervised learning
problem, because the outcome y supervises (or guides) the pre-
diction process.† The standard linear regression model has the form
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suring the strength of the resulting associations is a challenging
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yi = β0 +
X
j

xijβj + ei, [1]

with the errors ei being independent and distributed as Nð0, σ2Þ,
where β is a vector of p unknown coefficients (weights) to
be estimated.
With a moderate or large number of predictors, it is common to

use forward stepwise regression to select a good subset of pre-
dictors. This procedure enters predictors one at a time, choosing
the predictor that most decreases the residual sum of squares
RSS=

Pðyi − ŷÞ2 at each stage (̂yi being the predicted value for
observation i). Classic statistical theory for assessing the strength
each predictor would go as follows. Defining RSSk to be the re-
sidual sum of squares for the model containing k predictors, we
use the change in residual sum of squares to form a test statistic

Rk =
1
σ2

ðRSSk−1 −RSSkÞ [2]

(with σ assumed known here), and compare it to a χ2 distribution
with one degree of freedom. There is a big problem with this ap-
proach, however. This classic theory assumes that the models being
compared were prespecified before seeing the data. However, this is
clearly not the case here: We have “cherry-picked” the best pre-
dictor at each stage to maximize Rk. Hence, we would expect that
even if the new predictor had no effect in the population, the
distribution of values of Rk will be larger than a χ21 distribution.
Fig. 1 quantifies this. With a sample size of N = 100, we sim-

ulated Gaussian datasets from two scenarios: one with p= 10
predictors and the other with p= 50. There is no signal in the
underlying population. We are examining just the first step of
forward stepwise regression. The horizontal axis shows the
nominal (desired) P value (set by the statistician) and the vertical
axis is the actual P value from this process, which properly ac-
counts for the selection of the best predictor among the p. For
p= 10, we see that, for example, a test at nominal type I error of
5% would actually have a type I error of 20%. For p= 50, things
become worse: The actual type I error is about 70%.

The correct P values in Fig. 1 were estimated by simulating
from the Gaussian distribution and recording the maximal value
for Rk achieved each time. However, we would like to obtain a
correct P value not just for the first step of forward stepwise
regression, but for all steps.
As an example, Rhee et al. (2) studied six nucleoside reverse

transcriptase inhibitors that are used to treat HIV-1. The target of
these drugs can become resistant through mutation, and Rhee
et al. (2) compared a collection of models for predicting the log
susceptibility, a measure of drug resistance based on the location
of mutations. We chose one of the inhibitors, with a total of
n= 1,073 samples and p= 240 mutation sites. To make the prob-
lem more manageable computationally, we randomly selected 100
of the samples and chose the 30 sites with highest variation in
mutation status across all samples. Forward stepwise regression
entered the predictors in the order ð5,9,25,8,16,21,⋯Þ. Fig. 2 gives
a summary of the P values.
The naive P values suggest that there are six strong predictors

(P value less than 0.05), but the more realistic selection-adjusted
P values yield only two or three significant predictors.
How were these adjusted P values obtained? Trying to obtain

them by naive Monte Carlo sampling would be tedious, and
perhaps infeasible for a large number of predictors, because we
would have to generate many samples and keep only those for
which the sequence of selected variables is the same as that
obtained in our original data. Fortunately, there is a simple
mathematical construction that gives us these selection-adjusted
P values in closed form.
Recall that our data vector y is normally distributed with mean

μ= β0 +
P
j
xijβj and variance σ2. Consider again the HIV data

and suppose that we have taken two steps of forward stepwise
regression, entering the variables x5 and x9. Assume that we are
interested, for example, in the true partial regression coefficient
of x9 in this model. Then, our estimate β̂ would be the least
squares coefficient of x9 in the fitted model. Standard statistical
theory would tell us that β̂ has a normal distribution with mean β
and some variance τ2:
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Fig. 1. A simulation example with N= 100 observations and p= 10 or 50
predictors and null effects (β= 0). Shown are the nominal and actual P values
for entering the strongest predictor at the first step; the 45° dashed line is
included for reference.

Fig. 2. P values for HIV data, as predictors are entered successively into the
model by forward stepwise regression .The black points are the naive P values
that do not correct of the selection effects, and the green points are selection-
adjusted.
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β̂∼N
�
β, τ2

�
. [3]

However, this theory assumes that we had only these two predictors
available to us at the onset. This is not the case here, because we
have actually selected the strongest two predictors from among the
30 predictors available. This selection should change how we view
the strength of the apparent association between x9 and y. In par-
ticular, the number of predictors from which we chose these two
should affect how we assess the apparent association. If we had
started with 300 rather than 30 predictors, we should have set a
higher bar for calling x9 significant in our model.
How do we adjust for the effects of selection? It turns out that

for forward stepwise regression and many other procedures the
selection events can be written in the “polyhedral” form Ay≤ b
for some matrix A and vector b (3, 4). We can understand this
statement as follows. Suppose that we consider any new vector of
outcomes, say y*, in place of our actual data y. We run our
forward stepwise procedure and keep track of the predictors
entered at each stage. These will not likely be the same as our
original list because the data have changed. However, the poly-
hedral form says that the set of new data vectors y* that would
yield the same list of predictors (up to some step, such as step 2)
can be described by the set Ay*≤ b. The quantities A and b de-
pend on the data and the selected variables. Roughly speaking,

each stage of forward stepwise regression represents a competition
among all p variables, and A and b simply reconstruct this compe-
tition and check whether y* yields the same result. What does this
polyhedral selection give us? It turns out that under the selection
Ay≤ b the naive expression (Eq. 3) is replaced by a truncated
normal distribution:

β̂∼TNc,d�β, τ2�. [4]

This is just a normal distribution truncated to lie in the interval
ðc, dÞ, The limits ðc, dÞ depend on the data and the selection
events that led to the model in question. The formulae for these
limits are somewhat complicated but are easily computable. De-
tails can be found in refs. 3 and 4. All of this has given us the key
result (Eq. 4), which exactly accounts for the selection process
through the truncation limits ðc, dÞ. We used this result to get the
selection-adjusted P values in Fig. 1.
Let’s dig more deeply to understand how this works. The limits

ðc, dÞ express the fact that the selection events in forward step-
wise regression restrict the possible range of values of β̂ that we
might obtain after the selection has been made. For example,
consider again the second step of forward stepwise regression
and let β̂ be the regression coefficient for x9. To simplify matters,
suppose that all of the predictors were uncorrelated and stan-
dardized to have mean 0 and variance 1. Then, having selected x5
at the first step, we know that the regression coefficient for x9
must be larger than the coefficients of all of the other 28 pre-
dictors not yet chosen (because it won the competition and was
entered at step 2) and can be no larger than the coefficient of x5
(because the latter won the competition at the first stage). These
two facts define the limits c and d, respectively. With correlated
predictors—as in our data—the definitions of c and d are more
complicated, but the idea is the same.
Fig. 3 depicts this situation, showing a truncated normal dis-

tribution, with truncation limits ðc, dÞ.
Ignoring the selection effects, under the null hypothesis that the

true coefficient for x9 was actually 0, and the error variance was 1,
then β̂ would have a standard normal distribution. Hence we
would expect β̂ to fall between, say, −2 and +2 and would consider
it to be evidence against the null hypothesis if it fell outside this
range. Indeed, the observed value of 5.1 would be considered
extremely unlikely under the null hypothesis. However, accounting
properly for the fact that x9 has been selected at the second stage
of forward stepwise regression changes the way in which we judge
the observed value of β̂. The selection events imply that the esti-
mate must lie between c and d (4.3 and 6.3 in the Fig. 3, re-
spectively.) Hence, the value of 5.1 represents moderate but not
overwhelming evidence that the coefficient is nonzero.

False Discovery Rates and a Sequential Stopping Rule
Looking at the sequence of adjusted P values (green points) in
Fig. 1, a natural question arises: When should we stop adding
variables? Should we stop at, say, two or three predictors, beyond
which the P values are above 0.05? If we do stop there, what can
we say about the resulting model? The notion of false discovery
rate (FDR) is useful for this purpose. This concept has been an
important one for large-scale testing, especially in the biomedical
sciences (see ref. 5).

Table 1. Possible outcomes from m hypothesis tests

Called not significant Called significant Total

H0 true U V m0

H0 false T S m1

Total m−R R m
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Fig. 3. HIV data: truncated normal distribution for the coefficient of x9, the
ninth feature measuring mutation status at a given site. The standardized
coefficient for x9 equals 5.1 and is indicated by the vertical blue line in each
plot. The truncation limits implied by the selection are c=4.3,d = 6.3. The
lower panel zooms in on the area of interest in the tail of the distribution.
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Let’s review this concept and other related, more traditional
ones. Table 1 summarizes the theoretical outcomes of m hy-
pothesis tests.
The quantity V counts false-positive calls, and much of statistical

testing focuses on ProbðV ≥ 1Þ, the probability of at least one false
positive. This is called the familywise error rate (FWER), and
many statistical methods try to ensure that FWER is less than
some level (such as 0.05). This is a useful approach when the
number of tests m is not too large (say, <50). However, with a
larger number of tests, common in today’s big data problems, we
expect that V will be much great than 1 and this approach is too
stringent. Instead we shift our focus to the FDR:

FDR=EðV=RÞ. [5]

This is the average proportion of false-positive calls that we
make, among the R tests that we reject, that is, effects that we
call significant. (V/R is defined to be zero when R = 0.)
Now, it turns out that there is a simple stopping rule for se-

quences of P values as in Fig. 1 that gives us automatic control of
the FDR of the resulting model (Eq. 6). Choosing a target FDR
level of α, and denoting the successive P values by pv1, pv2, . . .,
the ForwardStop rule (ref. 6) is defined by

k̂=max

(
k :−

1
k

Xk
i=1

logð1− pviÞ≤ α

)
. [6]

Essentially, we stop at the last time that the average P value up to
that point is below some target FDR level α. This average, how-
ever, is taken on the (complementary) log scale. Using the For-
wardStop rule, the final model contains the predictors entered at
the first k̂ steps and has FDR at most α.
In the HIV example, for α= 0.05 we get k̂= 3, meaning that we

should stop after three steps. If we do so, the expected number of
false positives is 0.05 · 3= 0.15. Alternatively, if we set α= 0.10, we
obtain k̂= 5; there will be 0.10 · 5= 0.5 false positives on average.

The Lasso
We now broaden our discussion to a more modern approach to
supervised learning, one that can be applied to large datasets. We
give a brief description of the method and then show how selective
inference can be applied in this more general framework.
The lasso, or ℓ1 penalization, recasts the regression problem as

a convex optimization.‡ The lasso solves the problem

minimizeβ0,β

2
41
2

XN
i=1

 
yi − β0 −

X
j

xijβj

!2

+ λ
Xp
j=1

��βj��
3
5. [7]

The tuning parameter λ effectively balances the tradeoff between
two objectives: the goodness of fit to the data (sum squares in the
first term) with the complexity of model (second term). It turns
out that this is equivalent to minimizing the sum of squares with
a “budget” constraint

P��βj��≤ s. The value of s depends on λ:
Larger values of λ imply a smaller budget s. The best value for
λ or s depends on the data and is usually chosen by cross-valida-
tion (described below).
Because of the absolute value function appearing in the pen-

alty, over a range of λ values the solution to this problem is
sparse, that is, many of the weights βj are set to 0. Hence, like
forward stepwise regression, the lasso selects the most informa-
tive predictors among the p available predictors. However, be-
cause the problem has been cast as a convex optimization, the
search throughout the possible models can be carried out much
more effectively. Lasso and ℓ1 penalization methods are now
widely used in statistics, engineering, and other sciences, for ex-
ample in signal processing and compressed sensing (7–9).
For a fixed choice of the tuning parameter λ, the solution to

Eq. 7 has nonzero values β̂j on a subset of the predictors, what we
call the active set. These are the most informative predictors, as
judged by the lasso. Fig. 4 shows the profiles of the solutions to
the lasso problem for the HIV data.
Each profile corresponds to one predictor (mutation site). The

different points on each profile correspond to different values of
the penalty parameter λ, with this value decreasing as we move
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Fig. 4. Paths of estimated coefficients from the lasso applied to the HIV
data. Each coefficient path corresponds to the estimated β for a mutation
number, with some of mutation site numbers with larger coefficients on the
right. The estimated optimal budget is indicated by the vertical green line.
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Fig. 5. Selection intervals for the HIV data, from the fitted lasso model.

‡A convex optimization is a standard and attractive form for a numerical problem, in-
volving minimization or maximization of a convex function over a convex domain.
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from left to right. For interpretability, we have not plotted
against λ on the horizontal axis, but the “parameter budget”P��β̂j�� implied by each value of λ. On the left, λ is very large and
the effective budget is zero, so that all parameter estimates are
zero. As we move to the right, λ decreases and the effective
budget increases, so that more parameters become nonzero. The
vertical dotted lines mark the places where a coefficient becomes
nonzero, as we move from left to right. On the right, the value of λ
is zero so that there is no budget constraint on the parameters.
Hence, the values at the right end of the plot are the usual least
squares estimates.
Also shown on the plot is the optimal value of λ (green line)

estimated using cross-validation. Cross-validation works as follows.
(i) We divide the samples into roughly 10 equal-sized parts at
random. (ii) For each part K, leave out this part, fit the lasso to the
other nine parts over a range of λ values, and then record the
prediction error over the left-out part. (iii) Repeat step ii for
K = 1,2, . . . 10, and for each value of λ, compute the average
prediction error over the 10 parts. Finally our estimate λ̂ is the
value yielding the smallest average prediction error. The cross-
validated choice of λ yielded a model with nine predictors (Fig. 4).
It turns out that this selection of predictors can again be de-

scribed as a polyhedral region of the form Ay≤ b. That is, for fixed
predictors and value λ, the vector of response values y* that would
yield the same active set after applying the lasso can be written in
the form Ay*≤ b. Here A and b depend on the predictors, the active
set and λ, but not y. This fact gives us what we need to construct
selection-adjusted intervals for the parameters of the fitted model,
using the same arguments as above for forward stepwise regression.
Fig. 5 shows naive least squares confidence intervals and the

selection-adjusted intervals for the nine underlying parameters.
We see that some of the selection-adjusted intervals are much
wider than their naive counterparts.

Principal Components and Beyond
Principal components analysis (PCA) is a classic statistical method
developed in the early 1900s but now used more widely used than
ever. For example, PCA was a core method used by most leading
competitors in the Netflix movie prediction competition (10). PCA
is a method for unsupervised learning that seeks to discover the
important correlation patterns among a set of features. It works by
computing the sets of linear combinations of features that are
maximally correlated. It can be thought as a method for deter-
mining the K leading eigenvectors and eigenvalues of the sample
correlation matrix of the features.
In PCA analysis one computes the leading eigenvectors and

eigenvalues (one for each component) and then must decide on
the number of components K that are “significant.” Traditionally,
this is done through the so-called scree plot, which is simply a plot
of the eigenvalues in order from smallest to largest. Fig. 6, Left

shows an example from some simulated data with nine features.
The underlying correlation matrix, from which the data were
simulated, has two strong components.
The scree plot shows a nice “elbow” and would lead us to

choose the correct number of components (two). In Fig. 6, Right,
we have reduced the signal-to-noise ratio, so that the population
eigenvalues of the first two eigenvectors are only moderately
larger than the others. Now the scree plot shows no elbow, and
we would be hard pressed to guess the number of components.
However, selective inference can come to our rescue. Choos-

ing the leading eigenvectors of a covariance matrix is similar in
spirit to forward stepwise regression, and with somewhat more
complicated mathematics one can derive selection-adjusted P
values for each successive increase in the rank (11). For the
example in Fig. 6, Right, the adjusted P values are (0.030, 0.064,
0.222, 0.286, 0.197, 0.831, 0.510, 0.185, and 0.1260), and hence
this gives a moderately strong indication of the correct rank.
Although this may seem too good to true based on the scree plot,
one must remember that the P value estimation procedure uses
more information in the correlation matrix than just the eigen-
values shown here.

Discussion
Many, or most, modern statistical methods, in this era of big
data, use some form of selection to choose a best-fitting model
among a plethora of choices. We have seen two examples above:
forward stepwise regression and the lasso. There are many more
examples, including methods for time and spatial analysis, in-
terpretation of images, and network analysis. For all of these
methods, work is underway to develop tools for selective in-
ference, so that the analyst can properly calibrate the strength of
the observed patterns.
The methods described here are “closed form,” that is, the P

values are derived from (complicated) formulae. There are also
sampling based methods under development, using Markov-chain
Monte Carlo and bootstrapping, that can provide improvements in
power (12). We would be remiss if we did not mention a simpler,
attractive approach to selective inference, namely sample splitting
(see, e.g., ref. 13). Here we randomly divide the observations into,
say, two parts: We do the model fitting and selection on one part,
and then estimate P values and confidence intervals on the second
part. This is a valid method but can suffer from a loss of power and
difficulty in interpretation, because the model and results will
change with a different random split. However, sample splitting
may be more robust to assumptions about the form of the noise
distribution of the data.
The work here adjusts for the actual selection procedure that

was applied to the dataset. An alternative approach (14) adjusts
for any possible selection procedure.
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Fig. 6. Eigenvalue (scree) plots for two simulated data matrices, each with nine features. (Left) There are two strong leading components in the underlying
population. (Right) The two leading components are only moderate in strength.
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This is an exciting time for statisticians, and judging by the
burgeoning interest in statistical and machine learning courses
this excitement is being shared by other scientists and analysts
who use statistics and data science. We expect that many
software packages will soon offer implementation of these
new tools.
The work discussed here represents a joint collaboration with

our colleagues, students, and former students. References in-
clude 3, 11, 12, and 15–20. Interested readers who want to learn
more about sparse methods in general and may consult the
forthcoming book (9) in which chapter 6 covers most of the

material here in some detail and also discusses the covariance
test of ref. 13, a simple asymptotic version of a test presented
here, based on the exponential distribution. This latter paper
contains interesting general discussion of the selective inference
problem by a number of researchers.
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