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Guiding surface electromagnetic waves around disorder without
disturbing the wave amplitude or phase is in great demand for
modern photonic and plasmonic devices, but is fundamentally dif-
ficult to realize because light momentum must be conserved in a
scattering event. A partial realization has been achieved by
exploiting topological electromagnetic surface states, but this ap-
proach is limited to narrow-band light transmission and subject to
phase disturbances in the presence of disorder. Recent advances
in transformation optics apply principles of general relativity to
curve the space for light, allowing one to match the momentum
and phase of light around any disorder as if that disorder were not
there. This feature has been exploited in the development of in-
visibility cloaks. An ideal invisibility cloak, however, would require
the phase velocity of light being guided around the cloaked object
to exceed the vacuum speed of light—a feat potentially achievable
only over an extremely narrow band. In this work, we theoreti-
cally and experimentally show that the bottlenecks encountered in
previous studies can be overcome. We introduce a class of cloaks
capable of remarkable broadband surface electromagnetic waves
guidance around ultrasharp corners and bumps with no percepti-
ble changes in amplitude and phase. These cloaks consist of spe-
cifically designed nonmagnetic metamaterials and achieve nearly
ideal transmission efficiency over a broadband frequency range
from 0+ to 6 GHz. This work provides strong support for the ap-
plication of transformation optics to plasmonic circuits and could
pave the way toward high-performance, large-scale integrated
photonic circuits.
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One of the main limitations in plasmonic circuitry and devices
(1, 2) that use surface electromagnetic waves (surface plas-

mons at optical frequencies) as information and energy carriers is
the inability to perfectly guide surface electromagnetic waves
around unavoidable disorders, such as sharp corners. Although
near-perfect transmission around sharp corners in electronic cir-
cuits is routine, it is fundamentally difficult to realize with surface
waves, because surface waves suffer from scattering loss when
encountering sharp corners or other irregular disorders.
Scattering-free guidance of surface waves around sharp corners

has been shown only in topological electromagnetic surface states
(3–7). It has been developed in analogy with electronic chiral edge
states in quantum Hall systems (8) and topological insulators (9,
10). To force the waves to circumvent disorders, the studies cited
above typically require the use of photonic crystals with substantial
magnetic responses (11). The use of magnetic metamaterials limits
these realizations to a narrow-microwave frequency band. The use
of conventional nonmagnetic photonic materials, however, could
allow for scalability to the optical regime with broad bandwidth.
The difficulty in sharp bending is the dramatic momentum mis-

match of surface electromagnetic waves before and after passing the
sharp corner in an extremely compact space. Transformation optics
(12, 13) allow for the design of inhomogeneous metamaterials that
control light by effectively warping the electromagnetic space

analogously to the way that gravity curves space in general relativity.
Because the concept of momentum stems essentially from space
homogeneity (14), an effectively curved electromagnetic space
provides a method to match wave momenta by compensating for
the asymmetry of spatial translation around sharp corners. Surface
electromagnetic waves can be, thereby, deceived that they are still
propagating along a flat surface without any corners.
In the past few years, transformation optics has been used to

develop invisibility cloaks to hide objects from free-space propa-
gating electromagnetic waves (15–23). An ideal invisibility cloak is a
fundamentally narrow band, because it would require the phase
velocity of light being guided around the “cloaked object” to exceed
the vacuum speed of light (13, 15, 24). However, surface elec-
tromagnetic waves are essentially slow waves, with bending that
will not cause superluminal propagation in the majority of situa-
tions, but all of the potential applications of transformation optics
in surface electromagnetic waves (25–29) so far are still theoreti-
cal. Most theoretical designs only deal with objects with relatively
smooth surfaces or finite bending radii (25, 26). Refs. 28 and 29
proposed alternative surface wave-bending approaches; however,
in general, scattering will occur when an ultrasharp bending with
zero radius is desired. Therefore, if a similar approach of sharp
bending could be realized for surface waves, many unique con-
ceivable applications would become feasible: not only waveguides
for sharp right-angle corners (3) but also, carpet cloaks that can
hide irregular bumps on the metal–dielectric interface (26), super
plasmonic resonators with extremely high Q values (30), etc.
Here, we present experimental demonstration of broadband

sharp bending of surface electromagnetic waves with almost
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ideal transmission, which allows “invisibility cloaking” of disor-
ders, such as ultrasharp corners and bumps for surface electro-
magnetic waves. The remarkable broadband guidance, lacking
in previous scattering-free topological electromagnetic surface
states and free-space invisibility cloaks, is because of two reasons.
First, the slow-wave property of surface electromagnetic waves
can overcome the bottleneck of free-space invisibility cloaks,
because its phase velocity does not need to exceed the vacuum
speed of light. Second, we adopt a fully nonmagnetic design with
naturally accessible dielectric parameters, whereas magnetic re-
sponses were necessary to open the topological band gap for
topological electromagnetic surface states.
We start with the demonstration of bending a surface elec-

tromagnetic wave across sharp right-angle corners at microwave
frequencies—similar to the previous demonstration of bending a
guided topological surface electromagnetic wave in a photonic
crystal (3). We call the bending adaptor a “corner cloak,” because
it effectively hides a corner to the wave as if the corner did not
exist. Because metals at microwave frequencies are perfect electric
conductors that generally do not support surface electromagnetic
waves, here we adopt the approach of geometrically induced or
spoof surface plasmons (31) [i.e., we use a grooved metallic surface
(referred to as a patterned metal in Figs. 1–3) to support surface
electromagnetic waves in the microwave regime]. Fig. 1A shows the
experimental setup: a U-shaped surface-wave waveguide (a metal
base with periodic grooves on its surfaces; i.e., the patterned metal)
with two right-angle zero-radius corners. Given the sizes of the
cloaks, the more confined the surface waves on the dielectric–metal
interface, the better the cloaking performance. To enhance the
confinement, we load the grooves with ceramic material with
permittivity «ceramic = 21. We use glass with permittivity «b = 4.6 as
the surrounding background that is to be impedance-matched with
the cloaks. More details can be found in Fig. S1 and SI Methods.
The two identical corner cloaks locate at the two corners. This

structure that consists of the U-shaped waveguide and two cor-
ner cloaks can be thought of as if it were transformed from a
straight waveguide without any corner. A corner cloak, when
transformed back, corresponds to a triangular space on top of
the dielectric–metal interface, which has an area that is pur-
posely chosen to be the same as the corner cloak. This area
preservation guarantees nonmagnetism in the cloak design for
surface electromagnetic waves (more details are in Fig. S2 and SI
Methods). The two identical corner cloaks require anisotropic
constitutive parameters. For each cloak, the required principal
permittivities in two orthogonal directions, «1 and «2, after the
procedure of diagonalization, where only components in the xy
plane are relevant, are «1 = 10.7 and «2 = 2.0. These cloaks
were implemented with a metamaterial consisting of a stack
of the following two materials with subwavelength thicknesses:
a microwave dielectric ceramic with permittivity «ceramic = 21
(Wuxichaoying K-21; loss tangent:   1× 10−4; 1-mm thickness)
and a polymer foam with permittivity «foam = 1.1 (Rohacell
71HF; loss tangent:  16× 10−4; 1.06-mm thickness). According to
the standard formulas of effective medium theory, one can get

8<
:

«1 = r«ceramic + ð1− rÞ«foam
«2 = «ceramic«foam�ð1− rÞ«ceramic + r«foam

� ,

where the filling factor is given by r= 0.485. Fig. 1B shows the
simulation of the transmission of surface electromagnetic waves
when the corners are not cloaked by the corner cloaks; a dra-
matic scattering loss is evident. However, the transmission of
surface electromagnetic waves across a sharp corner is perfect
when both corners are cloaked by corner cloaks (Fig. 1C).
A fabricated model with two corner cloaks is shown in Fig. 1D.

For comparison, we also fabricated a straight waveguide with

similar grooves and the same total propagation distance. The
transmission data measured on the U-shaped surface-wave wave-
guide from 0+ (100 MHz) to 6 GHz without/with corner cloaks are
normalized to the transmission data measured on the straight
waveguide (Fig. 1E). Without corner cloaks, the transmission
measured at the output of the U-shaped waveguide is close to zero,
but when both sharp corners are hidden by the corner cloaks, the
transmission is almost unity. The experimental result shows near-
perfect cloaking of two right-angle zero-radius corners for surface
electromagnetic waves in a broad bandwidth from 0+ to 6 GHz
(i.e., with a fractional bandwidth of 200%).
Next, we show a surface-wave carpet cloak used to cover an

ultrasharp bump on a flat metal–dielectric interface. Fig. 2A shows
our experimental setup. Like in the realization of the corner
cloaks, we used a metal base with grooves to support surface
electromagnetic waves. A sharp bump on the flat surface acts as an
obstacle able to block the propagation of surface electromagnetic
waves. The carpet cloak that can hide this sharp bump was
designed with a similar transformation optics approach (more
details can be found in Fig. S3 and SI Methods). The numerical
simulation for the real structure in the presence of a sharp bump is
shown in Fig. 2 B and C: without a carpet cloak, most of the wave
energy is scattered into the background medium near the apex of
the bump; when the carpet cloak is put on top of the bump,
however, the electromagnetic surface waves can be smoothly guided
around the bump and returned to their original path as if the bump
was not there. A fabricated model with a carpet cloak implemented
with the same metamaterial used in the corner cloaks is shown
in Fig. 2D. The measured transmissions, normalized to the

Fig. 1. Surface-wave bending around sharp corners. (A) A U-shaped sur-
face-wave waveguide with grooves on its surface covered by glass is illu-
minated by a dipole antenna. The two sharp corners are covered by two
corner cloaks (i.e., layered structures with subwavelength foam and ceramic
materials). A second dipole antenna located at the output of the waveguide
measures the transmission. (B) Simulation of a surface wave when it en-
counters a sharp corner that is not covered by a cloak. (C) Simulation of a
surface wave when the sharp corner is cloaked by a corner cloak. (D) Photo
of a fabricated model. The transmitter is shielded by the microwave ab-
sorber material. (E) Measured normalized transmission of surface waves
through the waveguide. Exp., experimental data; Sim., simulation data.
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transmission through a straight waveguide without the bump,
are shown in Fig. 2E. For the setup without a cloak, the nor-
malized transmission is close to zero, indicating that the propa-
gation of surface electromagnetic waves has been blocked by the
bump. For the case with a carpet cloak, the normalized trans-
mission approaches unity, showing near-perfect cloaking of a
sharp bump for surface electromagnetic waves in a broad band-
width from 0+ to 6 GHz.

A striking feature, absent in topological electromagnetic
surface states, is that, when the surface waves are perfectly
guided by the cloaks, the phase is preserved. We used a pulsed
signal to show this behavior. Fig. 3 shows the dynamic prop-
agation of a pulse through the cloaks, which was obtained with
the commercial software COMSOL Multiphysics. A point
source at port 1 excites a Gaussian-shaped pulse (bandwidth:
0+–6 GHz; center frequency: 3 GHz) at 0 ns. The magnetic

Fig. 2. Surface-wave carpet cloaking. (A) A straight surface-wave waveguide with a sharp bump is illuminated by a dipole antenna. The surface of the metal
base is grooved similarly as that in Fig. 1A. The sharp bump is covered by a carpet cloak (i.e., a layered structure with subwavelength foam and ceramic
materials). A second dipole antenna located at the output of the waveguide measures the transmission. (B) Simulation of a surface wave when it encounters
the sharp bump without a carpet cloak. (C) Simulation of a surface wave when the sharp bump is cloaked by the carpet cloak. (D) Photo of a fabricated model.
The transmitter is shielded by the microwave absorber material. (E) Measured normalized transmission of surface waves through the waveguide. Exp., ex-
perimental data; Sim., simulation data.

Fig. 3. A Gaussian-shaped pulse propagates on the patterned metal. A point source (port 1) generates the pulse at 0 ns. The bandwidth of the pulse is 6 GHz,
and the center frequency is 3 GHz. The magnetic field distributions for three cases [(A) the corner cloaks, (B) the carpet cloak, and (C) the straight waveguide
reference] are plotted to show the propagation of the pulse at five equivalent temporal sampling points.
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field distributions are plotted to show the propagation of the
pulse on the patterned metal for the setup with the corner
cloaks (Fig. 3A), the carpet cloak (Fig. 3B), and a straight
waveguide as a reference (Fig. 3C). For the realization with
corner cloaks, the signal reaches the first and second sharp
corners at 1.88 and 3.56 ns, respectively. At both sharp corners,
the pulse signal is perfectly guided by the corner cloak, and at
last, it leaves the patterned metal from port 2. In the case of
the carpet cloak, the pulse reaches the bump at 2.68 ns, and it
is guided smoothly across the bump by the carpet cloak without
any loss. The pulse reaches the same positions as in the straight
waveguide, with no relative delay, indicating that the phase is
well-preserved in a broad bandwidth by the cloaks. Movies S1
and S2 show more details of the propagating pulse. Fig. 4
shows the measured phase for the corner cloak (Fig. 4A) and
carpet cloak (Fig. 4B). The curves almost coincide with their
references over the frequency band from 0+ to 6 GHz, con-
firming that the phase of the surface wave is well-preserved by
the cloaks.
The above results show scattering-free guidance of surface

electromagnetic waves around large disorders, with both wave
energy and phase undisturbed in a 200% broad-frequency band.

Switching from free-space electromagnetic waves to surface
electromagnetic waves, transformation cloaks can find im-
mediate applications without any fundamental limitations. The
fully nonmagnetic design makes it feasible to further extend to
higher frequencies and/or conventional surface waves. Our work,
thereby, paves the way for the next generation of photonic and
plasmonic devices, allowing for flexible design without concern
in disorders.
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