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Our understanding of physiology and disease is hampered by the
difficulty of measuring the circuitry and plasticity of signaling
networks that regulate cell biology, and how these relate to
phenotypes. Here, using mass spectrometry-based phosphopro-
teomics, we systematically characterized the topology of a
network comprising the PI3K/Akt/mTOR and MEK/ERK signaling
axes and confirmed its biological relevance by assessing its
dynamics upon EGF and IGF1 stimulation. Measuring the activity
of this network in models of acquired drug resistance revealed
that cells chronically treated with PI3K or mTORC1/2 inhibitors
differed in the way their networks were remodeled. Unexpect-
edly, we also observed a degree of heterogeneity in the network
state between cells resistant to the same inhibitor, indicating that
even identical and carefully controlled experimental conditions
can give rise to the evolution of distinct kinase network statuses.
These data suggest that the initial conditions of the system do not
necessarily determine the mechanism by which cancer cells
become resistant to PI3K/mTOR targeted therapies. The patterns
of signaling network activity observed in the resistant cells
mirrored the patterns of response to several drug combination
treatments, suggesting that the activity of the defined signaling
network truly reflected the evolved phenotypic diversity.
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Cell signaling pathways form complex networks of biochemical
reactions that integrate and decode extracellular signals into

appropriate responses (1). The reconstruction of these networks,
and systematic analyses of their properties, is important in the
advancement of our molecular understanding of disease at the
systems level (2). The topology and plasticity of cell signaling
networks play major roles in fundamental (3–5) and disease
physiology (6, 7). Attempts to characterize such molecular or-
ganization have relied on inference algorithms that obtain
information on protein interactions and posttranslational modi-
fication (PTMs) from the literature (8–10). The accuracy of
network reconstruction using such models is limited by the avail-
ability of data (10) and by the fact that signaling events are often
cell-type specific. As a result, although they can provide insightful
data, models that derive network topologies from studies that have
used different cell types and organisms result in composite or
averaged networks, which, critically, do not always reflect network
structure in specific cell types, at specific stages of cell develop-
ment, or under defined physiological conditions (10).
Reconstruction of signaling networks through the use of a

single set of well-defined experimental data is appealing, because
this approach does not commit to a preconception of how such
networks may be wired in a given cell type under defined con-
ditions (3). The maturation of phosphoproteomics techniques
based on mass spectrometry (MS) is now allowing the simulta-
neous quantification of several thousands of phosphorylation
sites per experiment, and approaches to derive kinase activity
from these large-scale phosphoproteomics datasets have been
reported (11–14). One such approach, named kinase substrate
enrichment analysis (KSEA), is based on the premise that, be-
cause each phosphorylation site is the result of a kinase’s

catalytic activity, phosphoproteomic profiling provides a means
by which to capture and measure the activities of all kinases
expressed in the system under investigation (14).
Here, we first used MS-based phosphoproteomics to define

a kinase signaling network by systematically identifying phos-
phorylation sites downstream of kinases targeted by small-mol-
ecule kinase inhibitors of the PI3K/Akt/mTOR and MEK-ERK
signaling axes. These two ubiquitous pathways form a network
that regulates growth factor, antigen, and insulin signaling while
also being deregulated in most cancers (15–17). We then mea-
sured the activity and plasticity of different routes within this
experimentally defined kinase signaling network in cells chronically
treated with small-molecule inhibitors of PI3K and mTORC1/2.
We found that remodeling of kinase networks in resistant cells
produced patterns of signaling activity linked to their evolved
phenotypes.

Results
We set out to classify phosphorylation sites into groups defined
by their patterns of modulation in response to inhibitors of cell
signaling. We treated MCF7 cells with single small-molecule
inhibitors against a panel of kinases and measured the resulting
changes in phosphorylation through the use of MS-based phos-
phoproteomics (Fig. 1A). Twenty structurally distinct kinase in-
hibitors, two phosphatase inhibitors, or DMSO vehicle control
(Fig. 1B) were the conditions used for the experiments. The
kinases targeted in the experiments, alongside the inhibitors
used, were chosen on the basis of their known involvement in
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growth factor and metabolic signaling, and their current
therapeutic potential (SI Appendix, Table S1).
The MS experiments resulted in the identification of a total

of 13,405 unique phosphopeptide ions across the six analytical
replicates per condition (three technical and two biological). A
quality control summary of these data is shown in SI Appendix,
Fig. S1. Each phosphopeptide was quantified across all of the
experimental conditions by using a previously described label-
free methodology (18, 19), generating 1,930,320 data points
(Dataset S1).

Phosphoproteomics Data Allow the Classification of Kinase Inhibitors
Based on the Targets They Inhibit. We observed 4,651 phosphory-
lation sites significantly reduced in abundance by at least one
kinase inhibitor (adjusted P ≤ 0.05). To assess the global effects
of inhibitors on these sites, we used principal component anal-
ysis (PCA). This multivariate statistical analysis method allows
the separation of experimental conditions based on the overall
structure of the underlying data. PCA of the inhibitor-treated
phosphoproteomes demonstrated that inhibitors directed against
the same kinase were closer to each other in principal compo-
nent space than to the rest of the inhibitors (Fig. 1C), indicating
that inhibitors against the same kinase produced similar effects

on global phosphorylation. The only exception to this observa-
tion was the ERK inhibitors; these being close in the PC1 but not
PC2 dimension, suggesting that these compounds had slightly
different quantitative effects on the phosphoproteome. Whereas
inhibitors against kinases related to the MAPK signaling cascade
(EGFR, MEK, and ERK) separated from those related to the
PI3K/mTOR signaling axis (PI3K, mTOR, p70S6K), inhibitors
of Akt associated more closely with EGFR and CAMK2 in-
hibitors than to inhibitors of its well-known upstream activator,
PI3K. As would be expected, inhibitors targeting PP2A (a pro-
tein phosphatase) separated well from the kinase inhibitors.
Analysis using a correlation matrix reinforced the relationships
observed among mTOR, Akt, and PI3K inhibitors and among
EGRF, ERK, and MEK inhibitor pairs (Fig. 1D). Statistical
significance of each correlation is shown in SI Appendix, Fig. S2.
Motif analysis (14) further revealed that the inhibitor pairs
exhibited strongly correlated impacts on specific phosphorylation
motifs while mirroring the relationships seen in Fig. 1 C and D
(Fig. 1E). Together, these data show that inhibitors against the
same kinases produced more similar changes in the phospho-
proteomes than to the rest of inhibitors and, with the exception
of Akt, those against the same canonical pathways also affected a
common set of phosphorylation sites.

Deriving Activity Markers of Inhibitor Targets from Phospho-
proteomics Data. To provide an additional level of classification
to the dataset, we further grouped the phosphorylation sites
based on their behavior under treatment with inhibitors against
the same kinase. The number of phosphorylation sites selected at
this stage depended on the stringency of the thresholds used for
selection (SI Appendix, Fig. S3). Most importantly however, we
selected only those phosphorylation sites that reached the re-
quired statistical thresholds in both inhibitor treatments target-
ing the same kinase. The selection of phosphorylation sites
inhibited by structurally distinct compounds targeting the same
kinase should result in datasets enriched in phosphorylation sites
specific to the intended kinase. This concept is illustrated in Fig.
2A for the phosphorylation sites modulated by the two different
Akt inhibitors (MK-2206 and Akt Inhibitor VIII), which shows
phosphorylation sites inhibited by both inhibitors (red data points
in Fig. 2A) and sites specifically inhibited by one compound but
not the other (blue and green data points in Fig. 2A). We hy-
pothesized that sites inhibited by the Akt inhibitor MK-2206 but
not by Akt inhibitor VIII, and vice versa, were off-target effects,
whereas those inhibited by both compounds were more likely to be
truly downstream of Akt. This analysis was performed for each of
the 10 kinases targeted in the study (Fig. 1A) and revealed 610
phosphorylation sites reduced in abundance by at least one in-
hibitor pair (i.e., by both inhibitors against the same kinase). These
sites, although not necessarily directly phosphorylated by the
intended target kinase—as they could be phosphorylated
by kinases acting downstream or by closely related kinases—
are readouts of the actual kinases affected by the inhibitor/
compound, and, thus, we referred to them as compound-target
activity markers (CTAMs).

Inferring Signaling Network Topology from Phosphoproteomics Data.
Visualizing the 610 identified CTAM phosphorylation sites si-
multaneously revealed that a large number of them were iden-
tified as markers of more than one compound-target pair (Fig.
2B). Therefore, to investigate the relationships between inhibitor
pairs further, and to allow inference of signaling network to-
pology from the data, the 610 CTAM phosphorylation sites were
further classified based on whether these were inhibited by one
or more inhibitor pairs. A number of known patterns of kinase
signaling topology emerged from this analysis (Fig. 2C). For
example, we identified 41 phosphorylation sites that were inhibited
by the inhibitor pairs against Akt, mTOR, p70S6K, and PI3K
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Fig. 1. Phosphoproteomics data elucidate the relationships between
kinase inhibitors. (A) Experimental design. Inh, inhibitor. (B) Kinase in-
hibitors used in the study. (C) PCA of the 4,651 phosphorylation sites
whose abundance was reduced significantly (adjusted P < 0.05) by at least
one inhibitor treatment. PC, principal component. (D) Lower triangle, Pearson
correlation coefficients between each of the inhibitor treatments. Known
kinase–kinase relationships are highlighted with white, dashed boxes. Up-
per triangle, pair-wise alignments of the 4,651 phosphorylation site log2

fold ratios for each inhibitor combination. Red lines indicate the linear
model formed between the two variables; gray ellipses represent one SD
from the mean in both dimensions. (E ) Unsupervised, hierarchical cluster-
ing (Pearson correlation distance metric) of the mean log2 ratios for peptides
containing common phosphorylation motifs represented in the filtered 4,651
phosphorylation sites.
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(Fig. 2C). Consistent with previous knowledge, these sites in-
cluded those on BAD, Ser427 on KS6B1 (p70S6K1), and Thr1135

on RICTOR (Fig. 2C) (20–22). Alongside these known modifi-
cations, sites that have not yet been functionally annotated were
also present in this group, and together these 41 sites were
classified as members of the Akt-mTOR-PI3K-p70S6K CTAM
group. Similarly, sites modulated by Akt, mTOR, and PI3K in-
hibitor pairs, but not by the p70S6K inhibitor pair, included
GSK3β at Ser9, Myc at Ser62, and AKTS1 (also known as
PRAS40) at Ser183 (SI Appendix, Fig. S4); a total of 55 phos-
phorylation sites were found to have this pattern of inhibition
and defined an Akt-mTOR-PI3K group that was independent of
p70S6K. In addition to these well-known kinase cascades, we
also found evidence for the existence of as yet uncharacterized
relationships between the kinases targeted by the inhibitors and/
or the inhibitors themselves; examples included sites modulated
by mTOR and PI3K inhibitor pairs without the involvement of
Akt or p70S6K (37 substrates; Fig. 2 B and C). As Fig. 2 B and C
illustrate, we also found evidence of sites inhibited by both Akt
inhibitors but unaffected by PI3K and other inhibitors (284
substrates), and PI3K sites independent of Akt and mTOR (33
substrates). Overall, the 610 phosphorylation site activity mark-
ers found in this study (SI Appendix, Table S2) were grouped into
55 CTAM groups.

Visualizing the data as a bipartite, undirected network graph
(Fig. 2D) further revealed the way in which the investigated ki-
nase inhibitors related to each other in the signaling network. As
expected and in concordance with published data and their ca-
nonical associations, Akt, PI3K, p70S6K, and mTOR inhibitor
pairs affected a large number of common phosphorylation sites
and, hence, were grouped together. Similarly, inhibitor pairs
targeting the MAPK pathway (EGFR, MEK, and ERK) also
grouped together and with CAMK2 (Fig. 2D). Randomization of
the network’s topology revealed that these associations were not
likely to have occurred by chance (SI Appendix, Fig. S5). These
data therefore show that, although canonical associations be-
tween kinases were well represented in our dataset (e.g., EGFR-
MEK-ERK and PI3K-Akt-mTOR-p70S6K), the existence of
unexpected signaling routes also emerged from these data, in-
cluding the existence of PI3K-mTOR signaling independent of
Akt. Moreover, this analysis demonstrated the high degree of
connectivity between these kinases.

Characterization of the Identified CTAM Groups’ Behavior and Probing
of Network Plasticity. We next sought to confirm whether the
CTAM groups could be used to measure the biochemical activa-
tion of pathways within the network and, thus, provide a snapshot
of the network’s activation status at any given time, under any
given condition. We hypothesized that, should these groups pro-
vide reliable readouts of network branch activity, each CTAM
group should show the expected behavioral changes when the
network is perturbed or stimulated under well-characterized ex-
perimental conditions. In addition, we reasoned that individual
members within each group should demonstrate similar quanti-
tative behavior to one another. We thus monitored the dynamics
of phosphorylation of the CTAM groups across cells treated with
either EGF or IGF1 at five independent time-points (Dataset S2).
A quality control summary for this dataset is shown in SI Appendix,
Fig. S6.
We observed that the temporal phosphorylation dynamics of

CTAM groups commonly associated with EGFR and IGF-1R
signaling (relative to the 0 min control in each case) were in-line
with the previously reported effects of EGF and IGF1 on kinase
signaling (Fig. 3A) (23, 24). For example, consistent with the
known temporal dynamics of MAPK pathway activation, the
EGFR-MEK group underwent significant, acute up-regulation
upon stimulation with both growth factors for 5 min, before
beginning to decline to a lower level at 60 min (Fig. 3 A and B).
These data were in agreement with individual MS and Western blot
data for the canonical EGFR-responsive MAPK (Thr202/Tyr204)
and Akt sites (Ser473) (SI Appendix, Fig. S7). The median relative
SDs (i.e., coefficient of variations) of individual phosphorylation
sites within CTAM groups were 0.454 and 0.518 for EGF and
IGF1 respectively (Fig. 3C), thus reflecting that these behaved
similarly upon cell stimulation with the two growth factors.
Taken together, the data shown in Fig. 3 provide evidence to
support the notion that CTAM groups were readouts of the
functional activation of branches within the network.

Analysis of Network Plasticity in Models of Acquired Resistance to
Kinase Inhibitors. To further investigate kinase signaling plasticity
in our CTAM-defined signaling network, we measured the
phosphorylation sites that define the network in cancer cell-line
models of acquired resistance to two kinase inhibitors in clinical
development; namely, GDC-0941 (a pan class I PI3K inhibitor)
and KU-0063794 (an mTORC1/2 inhibitor) (25, 26). We
obtained six independent cell cultures resistant to each of the
inhibitors compared with the parental cells from which they
were derived (three per drug: MCF7-G and MCF7-K resistant
to GDC-041 and KU-0063794, respectively). To achieve this
aim, we chronically exposed the cells to an increasing concen-
tration of the relevant inhibitor up to a maximum of 1 μM. The
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Fig. 2. Inference of a kinase signaling network topology from phosphopro-
teomics data. (A) Phosphorylation site log2 fold ratios (versus DMSO control)
for the two Akt inhibitors: MK-2206 and Akt inhibitor VIII. Dotted lines rep-
resent the thresholds for CTAM identification. The phosphorylation sites col-
ored in the negative quadrant of the graph (bottom left) represent the CTAMs
identified for Akt. Red, Log2 fold-ratio (FR) ≤ −1.0, adjusted (adj.) P ≤ 0.1
for both inhibitors; blue, FR ≤ −0.75, adj. P ≤ 0.05 for both inhibitors; green,
mixed thresholds between inhibitors. (B) Six hundred ten phosphorylation sites
identified as being markers of compound-target activity for at least one kinase.
(C) Illustrative examples of phosphorylation sites arranged into CTAM groups.
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cells were initially challenged with a low concentration of each
drug (100 nM) so as not to bias the resistance selection for in-
trinsically resistant cells. The resultant cell lines were able to
proliferate in the presence of 1 μM of inhibitor, whereas parental
cells were unable to do so under the same conditions (Fig. 4 A
and B). We quantified the phosphoproteomes of these cells and
normalized these measurements to total protein by simultaneously
analyzing the total proteome (Dataset S3). A summary of the
quantitative and qualitative data are shown in SI Appendix, Fig. S8.
Analysis of the kinase network in the presence of inhibitor

revealed that the large majority of the CTAM groups containing
mTOR were down-regulated in all of the mTOR inhibitor re-
sistant (MCF7-K) cell lines (green and orange arrows in Fig. 4C).
Similarly, CTAM groups containing PI3K were down-regulated
in all of the PI3K inhibitor-resistant (MCF7-G) cell lines (green
arrows in Fig. 4C). We confirmed these data by measuring well-
known markers of pathway activities, which showed that our
results were consistent with the levels of key regulatory phos-
phorylation sites governing these pathways on Akt (Ser473) and
p70S6K (Thr389), as determined by Western blot (SI Appendix,
Fig. S9). These data suggested that the pathways targeted by the
inhibitors remained inhibited in resistant cells in the presence of
the drug. We therefore reasoned that resistance was not the
result of differences in how resistant cells metabolized the in-
hibitors and that instead, consistent with other studies (27), re-
sistance more likely arose as a consequence of a rewiring of

kinase signaling. Of interest, this rewiring was markedly dissimilar
between the MCF7-K and MCF7-G cell lines (Fig. 4C), sug-
gesting that the resistance mechanisms that had evolved against
the mTOR inhibitor were distinct to those evolved in response to
the PI3K inhibitor. This hypothesis was reinforced through the
use of an unbiased multivariate analysis of the normalized
phosphoproteomics data, which highlighted the differences be-
tween the parental and resistant cells, and the differences be-
tween the rewiring of MCF7-K and MCF7-G cells, because these
separated clearly in principal component space (Fig. 4D). Un-
expectedly, however, cells resistant to the same inhibitor also
separated in PC space, suggesting that the activation state of the
signaling network was heterogeneous between individual re-
sistant lines (Fig. 4 C and D) despite these being derived from
the same parental culture, at the same passage number, and
being exposed to identical experimental conditions for the same
amount of time.
Because the resistant cell lines seemed to differ in the way in

which they had rewired their signaling network compared with
parental cells and to each other (Fig. 4 C and D), we hypothe-
sized that each cell line should respond differently to a panel of
small-molecule kinase inhibitors alone and in combination, be-
cause their response would be a function of their signaling net-
work’s activity. To test this prediction, we treated each of the cell
lines with a panel of small-molecule inhibitors (targeting PI3K,
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Fig. 4. Evolution of signaling network activity in cells resistant to mTORC1/2
and PI3K inhibitors. Growth of parental and drug-resistant MCF7 cell cul-
tures in the presence of GDC-0941 (A) or KU-0063794 (B). Data points rep-
resent the mean ± SD. (C) CTAM group (with m ≥ 2) profiles for each of the
resistant (res.) cell-lines compared with the parental (par.) cell-line. Dot sizes
represent the mean log2 fold ratio of each CTAM group relative to parental
cell line, normalized to the unmodified protein abundance. Colors represent
the significance of enrichment. Hierarchical clustering of the CTAM groups
was based on the Euclidean distance metric. (D) PCA of the phosphopro-
teomic data shown in C. (E) PCA of cell viability data (measured by MTS) as a
function of treatment with a panel of kinase inhibitors (shown in SI Ap-
pendix, Fig. S10A). (F) As in E, however, cell viability was measured by crystal
violet staining (shown in SI Appendix, Fig. S10B).
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mTOR, CAMK2, Akt, MEK, and EGFR) and measured their
relative cell viability through the use of the MTS and crystal vi-
olet assays (SI Appendix, Fig. S10 A and B, respectively). These
inhibitors were chosen because the CTAMs of their associated
kinases were increased in abundance in some of the resistant
cells relative to parental (Fig. 4C), thus suggesting that these ki-
nases may be involved in the resistance phenotype. An unbiased,
multivariate analysis of the resulting data revealed that the re-
sistant and parental cells responded differently to the inhibitors, as
they separated in PC space. Moreover, this analysis separated the
MCF7-G and MCF7-K cells and the individual resistant cell lines
from one another in a manner reflecting that observed in the PCA
of the phosphoproteomics data (Fig. 4 E and F). Taken together,
these data indicate that the heterogeneous rewiring of the sig-
naling network in resistant cells observed by CTAM analysis (Fig.
4C) resulted in functional differences in how cells responded to
perturbations to the network (Fig. 4 E and F).

Discussion
In this study, we first performed a thorough analysis of the
connections that exist between the nodes of the PI3K-MEK ki-
nase network (Figs. 1 and 2). This initial study revealed both
expected and unexpected links among kinases, signaling path-
ways and the pharmacological agents targeting them. For ex-
ample, the known PI3K-Akt-mTOR-p70S6K, PI3K-Akt-mTOR,
and MEK-ERK relationships were well represented in our data;
however, we also found evidence for as yet uncharacterized
connections between kinase inhibitor targets, such as those de-
fined by mTOR-PI3K associations without the involvement of Akt
and Akt inhibitor-dependent but PI3K inhibitor-independent sites.
Overall, our data exemplify the complex relationship between ki-
nases in signaling networks and illustrate that our knowledge of this
complexity is still limited.
An advantage of defining signaling routes using a set of ex-

perimental data derived from a defined system—in contrast
to approaches that compile information from the literature
(28, 29)—is that cell signaling events are often cell-type and cell-
context dependent (30). Therefore, “averaged” signaling networks,
derived from disparate cell types and organisms, as shown in ca-
nonical signaling pathway schematics, are not always representa-
tive of how signaling networks are in fact wired in specific cellular
systems. Although efforts have been made to overlay empirical
transcriptional data onto these averaged networks (31), a key as-
pect of our study is that we not only provide evidence of as yet
uncharacterized signaling routes but also identified phosphoryla-
tion sites markers of such routes’ activities specific to our cell-line
model, which could then be used to measure the dynamics and
circuitry of the kinase network in a systematic manner. The
CTAM approach to define signaling network branches, which can
then be measured in subsequent experiments, has conceptual
similarities to approaches that derive cell biological information
from gene expression patterns by examining how such patterns
correlate with compendia of profiles obtained from systematic
gene inactivation experiments (32). The observation that CTAM
groups were modulated by growth factors with the expected
kinetics (refs. 23 and 24; Fig. 3) and that these changes were
similar for members of such groups (Fig. 3) provided evidence
to suggest that these CTAM groups are biochemical readouts
of signaling activity.
Signaling networks are not static, but rather highly dynamic

structures that are extremely plastic in response to external
stimuli. A comparison of the network between parental and cells
resistant to either a PI3K or mTORC1/2 inhibitor revealed
widespread differences in CTAM group abundances in three
separate resistant cell cultures per inhibitor (Fig. 4C). Our data
are therefore consistent with published studies showing that kinase
signaling is remodeled in response to chronic kinase inhibition
(27, 33). Because of the depth of our analyses, however, our data

emphasize the extent to which signaling networks are modulated
as a whole to overcome chronic inhibition of single nodes.
Concurrent with these observations, comparison of the data on
network status (phosphoproteomics) and phenotypes (responses
to inhibitors) for each cell line using multivariate analyses in-
dicated that the activity of the signaling network was a reflection
of the cells’ newly acquired phenotypes. This phenomenon was
evidenced in the PCAs of all these disparate sets of data, which
separated the resistant from parental cells, and the MCF7-K
from the MCF7-G cells in a similar manner (Fig. 4 D–F). Our
data therefore accentuate the complex relationship between
PI3K and mTORC1/2, as the cells treated with the two inhibitors
changed their signaling differently, thus suggesting different
mechanisms of resistance in response to the two inhibitors (Fig. 4
D–F). This result was unexpected because PI3K and mTOR are
often placed in the same canonical signaling pathway. However,
these data are consistent with the observation that phosphory-
lation sites modulated by mTORC1/2 or PI3K inhibitors only
partially overlapped (Fig. 2E), and with a recent study high-
lighting mTOR’s independence from PI3K in some systems (34).
The simple maintenance of cells in culture could have contrib-
uted to the evolution of cell networks shown in Fig. 4; however,
the observation that chronic exposure to mTORC1/2 or PI3K
inhibitors produced marked differences in network remodeling
argues that drug exposure had a greater effect on how signaling
evolved than that which would be observed as a result of long-
term culture without the application of such a selective pressure.
Recent publications indicate that, rather than there being a

single mechanism of acquired resistance for a given therapy,
there is a plethora of ways in which signaling networks can be
rewired in cancer cells as these become resistant to targeted
therapies (35, 36). It is not known, however, whether the way in
which cancer cells develop resistance is predetermined by the
molecular imprinting of cancer cells at presentation (i.e., before
the resistance phenotype ensues). This understanding has po-
tential implications for cancer therapeutics because, if the evo-
lutionary pathways that lead to the acquisition of resistance were
reliant on genomic or other molecular factors present in tumor
cells at presentation, then analyzing the initial conditions of
cancer cells could, at least in principle, be used to predict the
resistance mechanism more likely to occur in such a tumor.
Contrary to this idea, our data suggest that it may not be

possible to predict the particular mechanism of resistance of a
given tumor by analyzing it at the molecular level at pre-
sentation. Indeed, in our study, the same cell line was split into
six identical populations, which were then maintained in the same
concentrations of inhibitors by the same operator for the same
amount of time and passage numbers. Unexpectedly, the CTAM
network profiles were highly heterogeneous across cells resistant
to the same compound (Fig. 4 C and D). This heterogeneity in
network status had a functional consequence in that cells re-
sistant to the same compound responded differently to inhibitors
of signaling at the level of cell proliferation (Fig. 4 E and F).
Intratumoral heterogeneity and evolutionary divergence of ini-
tially clonal systems has been documented at the genetic level in
both mammalian and bacterial systems (37, 38). Although we
cannot entirely exclude the impact of long-term cell culture, our
study suggests that chronic treatment with targeted kinase in-
hibitors profoundly influences the divergence of kinase network
signaling. Thus, because identical experimental conditions can
result in the evolution of distinct signaling networks (Fig. 4 C and
D) and drug-resistance phenotypes (Fig. 4 E and F), perhaps due
to stochastic effects, the initial conditions of the system may not
be accurate predictors of the evolutionary route that may lead
to resistance. Therefore, if the acquisition of resistance is truly
indeterministic and cannot be predicted at disease onset, iden-
tification of the resistance mechanisms relevant to each in-
dividual patient will most likely require the ability to measure the
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signaling network in individual tumors after resistance has en-
sued with depth and without a preconception of how signaling
may have been rewired as a result of therapy.

Methods
Cell Lines. The parental MCF7 cell line and MCF7-G1, MCF7-G2, MCF7-G3,
MCF7-K1, MCF7-K2, and MCF7-K3 resistant cells were cultured in DMEM
(supplemented with 10% (vol/vol) fetal-bovine serum and 100 U·mL−1 pen-
icillin/streptomycin) at 37 °C in a humidified atmosphere at 5% CO2. After
treatment, as indicated in the text, cells were lysed in urea lysis buffer and
proteins digested with trypsin.

Mass Spectrometry-Based Phosphoproteomics. Phosphorylated peptides
were enriched through the use of TiO2 beads (GL Sciences) in a similar
manner to that previously described (14, 19) with some modifications, and
analyzed by LC-MS/MS using a LTQ-Orbitrap mass spectrometer. Peptides
were identified by means of Mascot searches against the SwissProt human

protein database. Peptide quantification was achieved by using Pescal as
previously described (14).

Statistical Analysis. Following quantile normalization of the data (39), the
magnitude and statistical significance of differences between conditions
were computed by means of empirical Bayes shrinkage of SDs (40) using the
limma package within the R computing environment (41, 42). The abun-
dance of CTAMs was monitored systematically by using KSEA (14, 18, 19, 30).

More detailed description of these methods is provided in SI Appendix,
SI Materials and Methods.
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