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Taylor’s law (TL) states that the variance V of a nonnegative ran-
dom variable is a power function of its mean M; i.e., V =aMb. TL
has been verified extensively in ecology, where it applies to pop-
ulation abundance, physics, and other natural sciences. Its ubiquitous
empirical verification suggests a context-independent mechanism.
Sample exponents b measured empirically via the scaling of sam-
ple mean and variance typically cluster around the value b= 2.
Some theoretical models of population growth, however, predict
a broad range of values for the population exponent b pertaining
to the mean and variance of population density, depending on
details of the growth process. Is the widely reported sample ex-
ponent b≃ 2 the result of ecological processes or could it be a
statistical artifact? Here, we apply large deviations theory and
finite-sample arguments to show exactly that in a broad class of
growth models the sample exponent is b≃2 regardless of the
underlying population exponent. We derive a generalized TL in
terms of sample and population exponents bjk for the scaling of
the kth vs. the jth cumulants. The sample exponent bjk depends
predictably on the number of samples and for finite samples we
obtain bjk ≃k=j asymptotically in time, a prediction that we verify
in two empirical examples. Thus, the sample exponent b≃ 2 may
indeed be a statistical artifact and not dependent on population
dynamics under conditions that we specify exactly. Given the broad
class of models investigated, our results apply to many fields where
TL is used although inadequately understood.

fluctuation scaling | multiplicative growth | power law |
environmental stochasticity | Markovian environment

Taylor’s law (TL) (1), also known as fluctuation scaling in
physics, is one of the most verified patterns in both the bio-

logical (2–6) and physical (7–12) sciences. TL states that the
variance of a nonnegative random variable V =Var½X � is ap-
proximately related to its mean M =E½X � by a power law; that is,
Var½X �= aE½X �b, with a> 0 and b∈R. In ecology, the random
variable of interest is generally the size or density N of a cen-
sused population and TL can arise in time (i.e., the statistics of
N are computed over time) or in space (i.e., the statistics are
computed over space). The widespread verification of TL has led
many authors to suggest the existence of a universal mechanism
for its emergence, although there is currently no consensus on
what such a mechanism would be. Various approaches have been
used in the attempt, ranging from the study of probability dis-
tributions compatible with the law (13–15) to phenomenological
and mechanistic models (16–20). Although most empirical studies
on spatial TL report an observed sample exponent b in the range
1–2 (1, 21), mostly around b ’ 2 (21) [figure 10(g) in ref. 22],
population growth models (5, 23–26) can generate TL with any
real value of the exponent. Moreover, theoretical investigations
of multiplicative growth models in correlated Markovian envi-
ronments (24, 25) have shown that the exponent b can undergo
abrupt transitions following smooth changes in the environ-
mental autocorrelation.

Here, we distinguish between values of b derived from em-
pirical fitting (sample exponents) and values obtained via theo-
retical models that pertain to the probability distribution of the
random variable N (population exponents). We show that in a
broad class of multiplicative growth models, the sample and
population exponents coincide only if the number of observed
samples or replicates is greater than an exponential function of
the duration of observation. Among the relevant consequences,
we demonstrate that the sample TL exponent robustly settles on
b ’ 2 for any Markovian environment observed for a duration
that is larger than a logarithmic function of the number of rep-
licates. Accordingly, when the number of observations is limited,
abrupt transitions in the sample TL exponent can be observed
only within relatively short time windows.

Results
Let us consider multiplicative growth models in Markovian en-
vironments (24, 25). Let NðtÞ be the density of a population at
time t and assume that the initial density is N0 > 0. NðtÞ is as-
sumed to undergo a multiplicative growth process such that

NðtÞ=N0  
Yt
n=1

An. [1]

The values of the multiplicative growth factors Ai are determined
via a two-state homogeneous Markov chain with state space
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χ = fr, sg (we assume, without loss of generality, r> s and N0 = 1)
and transition matrix Π with Πði, jÞ> 0 for all i, j∈ χ (Methods). In
our notation, Πði, jÞ is the one-step probability to go from state i
to state j; i.e., Πði, jÞ=ProbðAn+1 = jjAn = iÞ. For the sake of clar-
ity, we restrict our discussion to symmetric transition matrices,
with Πði, jÞ= λ for i≠ j. We derive (Methods) exact results on both
sample and population TL exponents for a broad class of multi-
plicative processes, including state spaces with size higher than 2
and nonsymmetric transition matrices (SI Methods).
By adopting large deviation theory techniques (27, 28) and

finite sample size arguments (29), we show (Methods) that for any
choice of Π and χ, the sample mean and variance in a finite set of
R independent realizations of the process obey TL asymptotically
as t→∞ with an exponent that may differ from the corresponding
population exponent. More precisely, our analysis reveals two re-
gimes (t � logR and 1 � t � logR, respectively—all logarithms
here are to the base e) where the sample TL holds with different
exponents. In the former regime, sample exponents inevitably tend
to b ’ 2 independently of model specifications. In the latter,
sample exponents accurately approximate population ones, which
can be computed analytically and may differ from b= 2. Fig. 1
shows that simulation results and theoretical predictions in the two
regimes are in excellent agreement. Fig. 2 shows the temporal
evolution of the sample TL exponent, which crosses over from the
approximate value of the population exponent (Eq. 9) at small
times to the asymptotic prediction b ’ 2 at larger times (Eq. 13).
We derive a generalized TL that involves the scaling of the kth

moment vs. the jth moment of the distribution of NðtÞ. Exact
results (Methods) show that the generalized TL,

E
�
NkðtÞ�= ajkE

�
NjðtÞ�bjk , [2]

holds asymptotically in t for any choice of j and k (including
noninteger values), both for population and for sample moments

(the positivity of Π ensures that the same scaling relationship
holds between the kth and jth cumulants) (SI Methods). In ac-
cordance with the above results on the conventional TL (recov-
ered in this framework with the choice j= 1, k= 2), two regimes
exist: If 1 � t � logR, sample moments and cumulants accu-
rately approximate population ones (and the value of bjk can
be computed analytically); if t � logR, the generalized TL expo-
nent approximates bjk ’ k=j (Fig. S1 C and D).
In ecological contexts, the number of realizations R that de-

termine the possible convergence of sample and population TL
exponents could refer, for instance, to independent patches ex-
periencing different realizations of the same climate (24). In an
established ecosystem, species have been present for several
generations, and one might assume that the system is in the as-
ymptotic regime t � logR. Within this perspective, we tested the
prediction that for large t sample exponents satisfy the relation
bjk = k=j (including the conventional TL) on two datasets.
A first example is drawn from a long-term census of plots

within the Black Rock Forest (BRF) (5). It was shown that the
Lewontin–Cohen model (a particular case of the multiplicative
model studied here) describes the population dynamics of trees
in BRF and provides an interpretation of the TL exponent (5).
The interpretation of the six plots as distinct and independent

Fig. 1. TL exponent b for different values of the transition probability λ. The
sample exponents computed in R simulations of a two-state multiplicative pro-
cess with symmetric transition matrix in the two regimes 1 � t � logR (black
solid circles, R= 106 up to time t = 10) and t � logR (red open squares, R= 104

up to time t = 400) are in good agreement with predictions for the asymptotic
population (black solid line, Eq. 9) and sample (red dashed line, b= 2) exponents.
In the simulations, the sample exponent bwas computed by least-squares fitting
of logVar½NðtÞ� as a function of logE½NðtÞ� for the last 6 (black circles) and 200
(red squares) time steps. In A, which has the plotted theoretical result from ref.
24, χ = fr, sg= f2, 1=4g (b displays a discontinuity); in B, χ = fr, sg= f4, 1=2g (in
such a case, b displays no discontinuity). Fig. S1 shows the generalized TL ex-
ponent b23 in the same simulations.
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Fig. 2. Time evolution of the sample TL exponent. The sample exponent
{computed as the slope of the curve logE½NðtÞ2� vs. logE½NðtÞ�} crosses over
from the approximate population exponent (Eq. 9, dashed upper horizontal
line) at small times to b ’ 2 (dotted lower horizontal line) at larger times.
The number of simulations R= 10n increases exponentially from 102 (blue
dashed lines) to 106 (red solid lines), whereas the crossover time increases
approximately linearly. Here, χ = fr, sg= f2, 1=4g and the transition proba-
bility (with Π symmetric) is λ=0.55. (A) Theoretical prediction computed via
Eq. 15. (B) Simulation results. Curves are averaged over 108=R simulations
(except for the blue curve, averaged over 105 simulations). Mismatches be-
tween A and B are due to the necessity to have t and R not too large to keep
simulations feasible, whereas Eqs. 8 and 13 hold true asymptotically in t.
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replicates of the Lewontin–Cohen model is supported by statis-
tical analysis (5) and allowed relating the model predictions to
the spatial TL. Here, we computed, for each year t, the spatial
sample moments hNkiðtÞ of tree abundance across plots and we
found that the least-squares slopes bjk of loghNkðtÞi vs. loghNjðtÞi
(Table 1) are compatible with the asymptotic model prediction
bjk = k=j (Methods).
A second example uses the data collected by P. den Boer (30),

who measured abundances of carabid beetles in various sites
across The Netherlands within a 200-km2 area for 8 consecutive
years. The dataset was shown to support the conventional spatial
TL (16). We computed the sample moments of carabid beetles
abundance, hNkðtÞi, across similar sites (either woodland or heath),
for each species separately and year t. In the intraspecific anal-
ysis (Fig. 3), linear regressions of loghNkðtÞi vs. loghNjðtÞi for
t= 1, . . . ,Y (Y is the total number of years) gave the estimate of
the sample exponent bjk for each species separately (different
species are identified by different colors in Fig. 3). Frequency
histograms of empirical exponents bjk are shown in Fig. S2 (also
the box-whisker plots in Fig. 3, Insets); for every integer choice of
j and k (here, up to k= 4), the histogram is centered in k=j, as the
asymptotic model predicted. A one-sample t test does not reject
the null hypothesis that the sample mean of the values of bjk does
not differ significantly from the theoretically predicted mean k=j
(Fig. S2). In the interspecific analysis (Fig. 4), we calculated the
least-squares slope bjk (for j= 1) of loghNki vs. loghNi across all
species at a given year and site type (Tables S1 and S2). Each
data point in Fig. 4 refers to a single species. The empirical
exponents bjk for all years are compatible with the asymptotic
model prediction bjk = k=j, as are the mean (across years and site
type) exponents bjk (Table 2).
The empirical confirmation and the finding that other demo-

graphic models predict the generalized TL with bjk = k=j (SI Text)
indicate that these predictions are probably insensitive to the details
of the dynamics, just as the original TL is quite robust (3, 15, 31).

Discussion
Understanding to what extent widely reported macroecological
patterns are the result of statistical instead of ecological pro-
cesses is one of the main challenges in ecology (32). Here, we
have uncovered a general mechanism that yields TL with the
widely observed sample exponent b ’ 2, which may be attribut-
able to the finite size of both ecosystems and sampling efforts.
For a broad range of parameters within the class of multiplicative
models, and other demographic processes, the generalized TL
describes the scaling of moments and cumulants with the sample
exponent bjk asymptotically equal to k=j. Our theoretical pre-
dictions are supported by two empirical examples and invite
further testing, also outside the field of ecology. When the
number of samples is limited, TL may not reflect (or depend
on) the underlying population dynamics and the empirically
measured sample exponent may be a statistical artifact that is

not representative of the population distribution of abun-
dances. Our investigation provides a tool to discern whether
the observed patterns of population abundance depend on the
underlying population dynamics.
Limited sampling efforts might hinder the observation of abrupt

transitions in population exponents that were recently discovered
for theoretical multiplicative growth processes. Because fluctuations
in population abundances strongly affect ecological dynamics, in
particular extinction risk, comparable real-world transitions may
harm fish populations, forests, and public health. Our calculation of
the minimum number of samples required to observe such transi-
tions may help to identify early signals of abrupt biotic change
following smooth changes in the environment.

Methods
Theoretical Analysis. Let Π be a 2× 2 symmetric matrix. The stationary
distribution π of the chain is unique and in the symmetric case satisfies
πðiÞ= 1=2, i∈ χ, for all λ∈ ð0,1Þ. We assume that the chain starts at equilib-
rium. We introduce the empirical mean LtðzÞ : χ→ ½0,1�, defined as

LtðzÞ= 1
t

Xt

n=1

δAn ,z, [3]

where δ is Kronecker’s delta. The random measure LtðrÞ gives the fraction of
times that r appears in a realization of the Markov chain up to time t. Lt
satisfies a large deviation principle (LDP) (27) with rate function

IΠðxÞ= sup
u>0

�
x log

�
u1

ðΠuÞ1

�
+ ð1− xÞlog

�
u2

ðΠuÞ2

��
, [4]

where x (x ∈ ½0,1�) is the proportion of r in a realization of the Markov chain
up to time t (correspondingly, the proportion of s is 1− x) and u is a strictly
positive vector in R2 (i.e., u1,u2 > 0). Stating that Lt satisfies a LDP means that
limt→∞ð1=tÞlogPðLtðrÞ∈ ½x, x +dx�Þ=−IΠðxÞ. The rate function IΠðxÞ is convex
(d2IΠ=dx2 > 0), attains its minimum at xmin = 1=2 with IΠðxminÞ= 0, and is
symmetric around xmin (lemma IV.10 of ref. 27, theorems 3.1.2 and 3.1.6 of

Fig. 3. Generalized TL for intraspecific patterns of carabid beetles abun-
dance. Shown is a double logarithmic plot of hNki vs. hNi for different species
(identified by different colors and symbols), for consecutive years (each
symbol refers to a single year t). For visual clarity, only five species are
shown. Dashed black lines of slopes b1k = k (asymptotic model prediction) are
shown. Vertical offsets are introduced to aid comparison of slopes. (Insets)
Box and whisker plots for the empirical distribution of intraspecific gener-
alized TL exponents bjk, showing the median (white horizontal line) and the
25% and 75% quantiles.

Table 1. Sample exponents for the generalized TL in the Black
Rock Forest dataset, data from ref. 5

j, k k=j bjk ±SE R2

1, 2 2 2.14± 0.12 0.991
1, 3 3 3.33± 0.32 0.973
1, 4 4 4.54± 0.58 0.954
2, 4 2 2.15± 0.16 0.984
2, 3 1.5 1.57± 0.07 0.995
3, 4 1.333 1.37± 0.04 0.997
1, 1/2 0.5 0.48± 0.02 0.997
1, 1/4 0.25 0.23± 0.01 0.993
1, 2/3 0.667 0.65± 0.01 0.999
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ref. 33, and section 4.3 of ref. 28). The subscript Π is used to indicate that the
rate function depends on the transition matrix. Additionally, Eq. 4 depends
on u1 and u2 only through u≡u2=u1; thus, by standard one-variable calculus,
a long but explicit form of IΠðxÞ can be computed,

IΠðxÞ= ðx − 1Þlog
�
1− λ

�
2ðλ− 1Þx
SλðxÞ−2λx

+ 1
�	

−  x log
�
1−

λðSλðxÞ− 2xÞ
2ðλ− 1Þx

�
,

[5]

where

SλðxÞ= λ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 + 8λðx − 1Þx − 4ðx − 1Þx

q
. [6]

The rate function does not depend on the values of the multiplicative factors
r and s. As in ref. 25, we consider the ratio between t−1 logVar½NðtÞ� and
t−1 log E½NðtÞ�, but here we exploit the LDP, adopting Varadhan’s lemma
(theorem III.13 of ref. 27), to perform such computation. First, because Π is
positive and r ≠ s, it holds true that

lim
t→∞

t−1 logVar½NðtÞ�= lim
t→∞

t−1 log E
h
NðtÞ2

i
. [7]

See the appendix in ref. 25 for a proof. Then, for the population moments of
the population density NðtÞ, applying Varadhan’s lemma, we have

lim
t→∞

t−1 logE
h
NðtÞk

i
= sup

x∈½0,1�
½kGðxÞ− IΠðxÞ�, [8]

where GðxÞ= x log r + ð1− xÞlog s. The population TL exponent b (which de-
pends on λ) can thus be computed as

bðλÞ= supx∈½0,1� ½2GðxÞ− IΠðxÞ�
supx∈½0,1� ½GðxÞ− IΠðxÞ� . [9]

For certain values of r and s, bðλÞ can show a discontinuity at a critical value
of the transition probability λ (black line in Fig. 1A). The existence of such
discontinuity was discovered and discussed in ref. 24. An analysis of the
critical transition probability is available in SI Methods (Figs. S3 and S4). A
generalized TL can be derived by adapting Eq. 8 to compute the scaling
exponent for any pair of population moments as

bjkðλÞ=
limt→∞t−1 logE

h
NðtÞk

i

limt→∞t−1 logE
h
NðtÞj

i = supx∈½0,1� ½kGðxÞ− IΠðxÞ�
supx∈½0,1� ½jGðxÞ− IΠðxÞ� . [10]

Discontinuities can also arise for these population exponents (SI Methods).
Eqs. 9 and 10 hold true when one considers an infinite number of re-

alizations of the multiplicative process, which ensures visiting the whole
region x ∈ ½0,1�. We now estimate the sample exponent b that is based on
the sample mean and variance calculated over a finite set of R realizations of
the multiplicative process. We present here a heuristic derivation of the
sample exponent. A more rigorous calculation is given in SI Methods. We
define x+ as the value in ½0,1� such that the probability of a larger frequency
x of r in R runs of the Markov chain up to time t is 1=R:

PðLtðrÞ∈ ðx+, 1�Þ= 1
R
. [11]

With this definition, x+ can be interpreted (29) as the typical maximum
frequency of r in R realizations of the chain. Analogously, we define x− as
the value such that smaller values of the frequency of r are observed with
probability 1=R, namely PðLtðrÞ∈ ½0, x−ÞÞ= 1=R. For large t, one can adapt
Varadhan’s lemma (or Laplace’s method of integration) to obtain, as a
function of t, the approximate number of replicas R needed to explore rare
events [i.e., to compute PðLtðrÞ∈ ðx+, 1�Þ=R−1]. Approximately

R ’ exp½tIΠðx±Þ�. [12]

Inversion of this formula (by taking the logarithm on both sides and expanding
IΠ in Taylor series around x = xmin) gives x± ’ 1=2±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðð1− λÞ=2λÞððlogRÞ=tÞp
.

Consequently, the sample TL exponent in an ensemble of R realizations of the
process can be approximated as

bðλ, tÞ ’ supx∈½x− , x+� ½2GðxÞ− IΠðxÞ�
supx∈½x− , x+� ½GðxÞ− IΠðxÞ� , [13]

where the dependence on t is through x+ and x−. The zero of the rate
function, xmin = 1=2, corresponds to the most probable value of the product
in Eq. 1. Because x± ’ 1=2±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðð1− λÞ=2λÞððlogRÞ=tÞp
, for fixed R the suprema

in Eq. 13 are computed over an increasingly narrower set around xmin [with
IΠðxminÞ= 0] as t increases (Fig. 5). Thus, for any finite number of realizations

Fig. 4. Generalized TL for interspecific patterns of abundance of carabid
beetles. (A) Double logarithmic plot of hNki vs. hNi for all species, years, and
site types. Each data point refers to a single species in 1 y and site type. The
color and symbol code identifies data relative to the same year: 1961 (black
open circles), 1962 (purple solid circles), 1963 (blue open squares), 1964
(green solid squares), 1965 (orange solid diamonds), and 1966 (red open
diamonds). Dashed black lines of slope b1k = k (asymptotic model prediction)
are plotted next to the corresponding data series. Vertical offsets are in-
troduced to aid comparison of slopes. (B and C) Examples of interspecific
moments scaling (each data point refers to a single species) for a single year
and site type (B, woodland 1964; C, heath 1964) used for the statistical
analysis (SI Methods, Table 2, Tables S1 and S2, and Fig. S5). The red lines are
the least-squares regressions of loghNki vs. loghNi across species.

Table 2. Statistics of estimated sample exponents in the
interspecific generalized TL on carabid beetles abundances

j,k k=j bjk 2.5% percentile 97.5% percentile

1, 2 2 2.005 1.984 2.025
1, 3 3 3.005 2.961 3.042
1, 4 4 3.994 3.936 4.057

The column k=j gives the asymptotic model prediction for the exponent
bjk. The point estimate bjk is computed as the average bjk across years and
site type, not by pooling all of the data from different years and site types to
calculate means and variances. The confidence intervals are obtained via
bootstrapping with 106 bootstrap samples from the set of bjk.
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R, the sample exponent will approximate limt→∞bðλ, tÞ ’ 2 after a time t*
that increases only logarithmically with R (Eq. 12 and Fig. 2), for any choice
of λ, r, and s. For example, with λ= 0.5, when t = 100, to access the extreme
event x+ = 0.9 (and x− = 0.1) one needs about R ’ 1013 replicates of the
process. More precisely, the sample exponent is close to the population
exponent if the arguments of the two suprema in Eq. 9 are included in
½x−, x+�. Using x± ’ 1=2±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðð1− λÞ=2λÞððlogRÞ=tÞp
, if the largest argument of

the suprema in Eq. 9 is ~x >1=2, the sample exponent approximates accu-
rately the population exponent for t < ðð1− λÞ=λÞð~x − 1=2Þ−2 logR and tends
to k=j for t > ðð1− λÞ=λÞð~x − 1=2Þ−2 logR (Figs. 1 and 2). If r and s are such that
the population TL exponent b displays a discontinuity at λ= λc [in which case
λc = ð1− r − s+ rsÞ=ð−r − s+ 2rsÞ] (SI Methods), then the above results give the
minimum number of replicates required to observe such discontinuity also in
the sample TL exponent.

Analogous considerations hold for the asymptotic sample exponent de-
scribing the scaling of the sample moments E½NðtÞk � with E½NðtÞj �, which can
be approximated as

bjkðλ, tÞ ’
supx∈½x− , x+� ½kGðxÞ− IΠðxÞ�
supx∈½x− , x+� ½jGðxÞ− IΠðxÞ� , [14]

which is the analog of Eq. 13 for any pair of sample moments. Fig. S1 C and D
shows that simulation results and theoretical predictions for bjk show ex-
cellent agreement in the two regimes t � logR and 1 � t � logR.

A standard saddle-point calculation suggests that the limiting growth
rate of the variance is equal to the limiting growth rate of the second
moment also for ergodic transition matrices, apart from peculiar cases
(see ref. 25 for a discussion of a counterexample). The same argument
suggests that the limiting growth rate of the kth cumulant equals that of
the kth moment (t−1 logE½NðtÞk �) for large t. The suggested equivalence
between the scaling exponents of cumulants and moments for ergodic Π
would allow extending the result on the sample TL (b= 2) and general-
ized TL (b= k=j) to the scaling of cumulants in m-step Markov chains,
whose transition matrix is ergodic but not twofold irreducible. However,
pathological counterexamples may exist.

Eq. 13 gives the estimated sample exponent of TL asymptotically, ignor-
ing the constant term in the scaling of the variance V vs. the mean M as
logV =b logM+ log a. For small t, loga can be of the same order of mag-
nitude as logV. Fig. 2 shows the crossover of the sample exponent (for fixed
R, λ, r, and s) from the population exponent b=bðλÞ as in Eq. 9 (observed
when t � logR) to b ’ 2 (when t � logR), where the sample exponent is
calculated as the slope of the curve logE½NðtÞ2� vs. logE½NðtÞ� at time t (thus not
neglecting the constant term loga). The sample moments are computed as

t−1 logE
h
NðtÞk

i
’ sup

x∈½x− , x+ �
½kGðxÞ− IΠðxÞ� [15]

(compare Eq. 8) in Fig. 2A and as the sample moments in simulations in
Fig. 2B.

See SI Methods for further details and generalizations.

Empirical Analysis. We used the BRF dataset to show that the generalized TL
holds with sample exponent bjk = k=j. We computed the moment ratios
Æ½NðtÞ=N0�kæ, where the symbol Æ · æ identifies the sample mean across the six
plots of BRF and N0 is the number of trees at the start of the census in 1931.
Following ref. 5, we tested whether the moments of the spatial density ratio
NðtÞ=N0 in the five most recent censuses satisfied TL and the generalized
TL with bjk = k=j. Table 1 reports the slopes of the least-squares linear re-
gressions of Æ½NðtÞ=N0�kæ vs. Æ½NðtÞ=N0�jæ, which are all compatible with the
model prediction bjk = k=j. The BRF dataset thus provides an empirical ex-
ample where the multiplicative model satisfactorily describes the underlying
dynamics and the generalized TL holds asymptotically as the model predicts.

The intraspecific form of TL and the generalized scaling relationship be-
tween higher moments (Eq. 2) were tested using abundance data from 26
species of carabid beetles. We have limited the analysis of the intraspecific
TL to the set of species that were present in all sites in each given year. We
have followed the researchers who collected the carabid beetles abundance
data (30) in excluding species with year samples with zero individuals in at
least one of the sites from the statistical analysis. The authors of ref. 30
declared that they were unable to differentiate sites where a species was not
present from sites where the density of such species was so low that no
catches were realized. For each species, we selected data from a minimum of
three to a maximum of six sites (all either woodland or heath) (30) and from
a minimum of 4 to a maximum of 6 consecutive years. The precise number of
sites and years varied for each species, depending on the number of sites
and years in which at least one individual of such species was found in each
site. The moments of species abundance were calculated separately for each
species and for each available year. Linear regressions of logÆNkðtÞæ vs.
logÆNjðtÞæ for y = 1,2, . . . ,Y [where Y is the total number of available years
for the selected species and ÆNkðtÞæ is the kth spatial sample moment in year t]
gave the estimate of the sample exponent bjk for the selected species (Fig. 3).

The interspecific form of TL and the generalized scaling relationship for
statistical moments (Eq. 2) were investigated following ref. 16, using the
carabid beetles dataset, computing spatial sample moments across similar
sites. Data from sites labeled B, C, X, and AE in ref. 30, collected between
1961 and 1966, were used to calculate spatial moments across woodland
sites. Data from sites labeled AT, N, Z, and AG in ref. 30, collected between
1963 and 1966, were used to calculate spatial moments across heath sites. As
for the intraspecific TL analysis, we have limited the analysis of the in-
terspecific TL to the set of species that were present in all sites in each given
year. Spatial moments of carabid beetles abundance were computed for
each species individually and separately for each year and site type (wood-
land or heath). For each year, we calculated the least-squares slope of
logÆNkæ vs. logÆNæ across all species at a given year and site type. Tables S1
and S2 show the summary statistics for all years and site types. Fig. 4A and
Fig. S5 M and N show the scaling of the kth sample moment ÆNkæ with ÆNæ
when data for all years and site types are plotted together; each data point
in Fig. 4 and in Fig. S5 refers to the spatial moments of a single species in one
year and site type. Fig. S5 A–L shows the scaling of the kth sample moment
ÆNkæ with ÆNæ for each year and site type separately. The least-squares ex-
ponents bjk computed in the linear regression of logÆNkæ vs. logÆNjæ are
compatible with the asymptotic model prediction bjk = k=j (Tables S1 and S2),
as are the mean exponents bjk (Table 2).

See SI Methods and Tables S3 and S4 for further details.
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