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Abstract

Nonlinearity in finite-Reynolds-number flow results in particle migration transverse to fluid 

streamlines, producing the well-known “tubular pinch effect” in cylindrical pipes. Here we 

investigate these nonlinear effects in highly confined systems where the particle size approaches 

the channel dimensions. Experimental and numerical results reveal distinctive dynamics, including 

complex scaling of lift forces with channel and particle geometry. The unique behavior described 

in this Letter has broad implications for confined particulate flows.

Lateral migration of rigid spherical particles (radius a) across streamlines to specific 

equilibrium positions has been observed in macroscale pipe flows [1,2], with much recent 

interest in understanding these nonintuitive results theoretically and numerically [3–8]. 

Symmetry arguments based on the form of the linearized equations associated with 

viscosity-dominated low-Reynolds-number, i.e., Stokes, flow preclude cross-streamline 

migration. Thus inertial contributions to the Navier-Stokes equations must be significant in 

these flows for lateral migration to occur [9]. As this effect introduces significant 

complexity into analytical calculations, theoretical investigations have focused mainly on 

simplified model systems (e.g., parallel plates and circular tubes) of typical cross-sectional 

dimension H with minimal particle confinement (a/H ≪ 1). This restriction allowed 

theoretical developments based on “point-particle” or “point-force” approximations [3– 5] 

but could not account for the finite size of the suspended particles, which is shown to be 

significant here.

Recently, we described inertially driven lateral migration of particles in microfluidic 

systems, where fluid inertia is not usually significant [10,11]. We demonstrated practical 

applications for size-based particle filtration and focusing that exploited this nonlinear 

effect. The influence of fluid inertia on particle-laden flows in confined systems may also be 

of importance in exploring limits of operation for chromatographic separations [12] and 

particle-laden jets [13]. Numerical and theoretical results directly applicable to complex 
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confined systems are few [6] but may yield new insights into particle dynamics when basic 

point-particle assumptions become invalid. Here we take steps towards uncovering basic 

rules for these systems by reporting equilibrium states for confined particles in finite-inertia 

flows through rectangular cross-section microchannels. We compare these observations with 

numerical results for the same systems and find good agreement. This then allows us to use 

the numerical model for further generalizations and understanding concerning particle 

behavior in confined systems.

The systems we studied used square or nearly square cross-section channels populated by 

particles with diameters approaching that of the channel width. The experimental system 

was fabricated using soft-lithography processes [10,11] and consisted of microchannels with 

a length of 5 cm and widths and heights between 20 and 50 µm. Polystyrene particles (ρ = 

1.05 g/cm3, a = 5–20 µm) introduced into the channels were at dilutions of 0.1%–0.5% w/v 

such that particle-particle interactions were minimized. Particles, suspended in water, with 

0.01% Tween 20 to prevent aggregation, were flowed at controlled rates using a syringe 

pump. In a subset of experiments to determine the rotation rate of particles, we used 

emulsion polymerized polydimethylsiloxane (PDMS) particles [10] with small internal air 

defects.

For computational ease, the numerical model took the reference frame where the sphere, of 

diameter a, was stationary in a square duct, of height H = 2h, with sidewalls moving 

backwards at the presumptive particle velocity up [Fig. 1(a)]. Volumetric flow rate q was 

specified by setting inlet or outlet boundary conditions to fully developed laminar inflow or 

outflow in software (COMSOL Multiphysics). This ensured that the flow at the position of the 

sphere corresponded to that for one isolated particle (no periodic boundary conditions). 

Rotation was modeled by modifying the slip velocity at the surface of the sphere according 

to its rigid rotation. With these boundary conditions, and the fluid density ρ and viscosity μ, 

corresponding to that of water, we conducted three-dimensional, finite-element simulations 

solving the steady-state Navier-Stokes equations. Beginning with the initial condition of a 

stationary sphere (particle and walls at rest), we determined forces and torques by 

integrating force per area (F″) and torque density (r × F″) across the particle surface in 

software. We then iteratively updated the wall velocity (−up) and particle rotation until the 

sphere translated force-free in the axial (z) direction and rotated with zero net torque in all 

directions, to the limit in numerical precision. We then determined the smaller transverse lift 

forces on the sphere that would yield lateral migration. Varying the sphere position yielded 

the steady-state forces and rotations for a particle held to a particular x-y position in the 

channel cross section [Fig. 1(b)]. These results were plotted for a channel Reynolds number 

(Rc = ρUmH/μ) of 80, where Um is the maximum channel velocity. The resulting vector force 

field reveals four point attractors centered at the faces of the fourfold symmetric channel that 

agree with experimental results [Fig. 1(c)] [11] and that are similar to four of the eight 

focusing points identified in simulations reported by Chun and Ladd [6] using the lattice-

Boltzmann method.

Both experimental and numerical results indicated that the locations of the attractors within 

the cross section of the channel are strongly dependent on the ratio of particle to channel 

dimensions a/H. Results for particle equilibrium positions as a function of a/H are plotted in 
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Figs. 2(a) and 2(b). Experimentally and numerically, we observed a shift of the equilibrium 

position of the particle (xeq) towards the channel center as a/H increases. For a/H ≪ 1 we 

also observed that xeq/h approaches ~0.6 as in the original studies of Segre and Silberberg 

(for a circular pipe) [1]. Particles were observed off-center but displaced from the wall for 

the whole range of observed sizes (a/H = 0.1–0.9) even as the particle size approached the 

full width of the channel.

Particles confined to one of four cross-sectional-plane attractors translated at downstream 

velocities (up) which were observed to be largely independent of particle size. 

Experimentally measured velocities of particles (N = 20) at equilibrium for a/H in the range 

0.4–0.9 varied only slightly (1.6%) for a constant channel Reynolds number (Rc = 20). There 

was also no significant correlation of up with particle size (r2 = 0.03, linear regression). 

Numerical results reproduced this behavior and yielded a similar 1% deviation in particle 

velocity with no significant correlation between particle size and velocity (r2 = 0.16) for a/H 

between 0.1 and 0.9. For simulations with Um equal to 1.6 m/s, the ratio up/Um averaged 

0.67 ± 0.008.

However, particles at equilibrium positions were found to rotate at rates dependent on 

particle size. High-speed images allowed for the determination of particle rotation rates by 

observing the frequency with which air defects orbited about the center of each PDMS 

particle. As confinement increased, the nondimensional rotation rate ωh/up was observed to 

decrease experimentally and numerically [Fig. 2(c)]. It is interesting to note the consistency 

in measured rotation rates. For particles of the same size, the standard deviation (N = 6) for 

experimentally measured rotation rates was only 2%.

With good agreement between the experimental data and the numerical results for particle 

translation, rotation, and equilibrium position, we used the model to explore the more 

general behavior of particles in confined systems. Using our model, we inferred that lift 

forces follow a complex functional form that varies less strongly with a/H near the channel 

center line than in the near-boundary regions. To investigate this functional dependence, we 

computed the lateral forces along the midline of the channel cross section as a function of 

the dimensionless parameters x/h, a/H, and Rc (Fig. 3). Previous calculations using matched 

asymptotic expansions that assume particles do not cause a disturbance to the main channel 

flow have resulted in an inertial scaling for lift force , where fL is a 

nondimensional lift coefficient that is dependent on x/h and Rc [3–5]. However, when our 

data are normalized using this analytical scaling [Fig. 3(a)], a more complicated dependence 

on a/H can be observed. The force as a function of normalized distance (x/h) appears to 

collapse to a single curve far from the wall (x/h < 0.5) when the lift force FL is instead 

normalized as  [Fig. 3(b)]. A similar scaling was observed in 

circular cross-section channels (best fit of a3.28).

Furthermore, in the near-wall region, the dimensionless force appears to collapse to a single 

curve with  [Fig. 3(c)]. This divergent scaling across the channel cross 

section is clearly shown by plotting the best fit exponent (n) for FL = kan [Figs. 4(a) and 

4(b)]. This behavior contrasts with that predicted using point-particle assumptions, where 
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the lift force was found to scale identically throughout the channel [3–5]. The distinct 

scaling in our confined system was found to be valid at least to a/H = 0.1. Below a/H = 0.1, 

noise in the computed force leads to unreliable results. Although the physical basis for the 

difference in scaling compared to previous asymptotic theory is not known, future 

investigation is warranted to relax a key assumption of previous theory [3–5], that the 

particle motion does not disturb the main channel flow, as this assumption is not valid in our 

system.

Lift also varies with the channel Reynolds number in a complex fashion. Data in Figs. 3(a) 

and 3(d) show that near the wall, fL decreases in magnitude with increasing Rc while 

increasing in magnitude near the channel center line. This response is in sharp contrast to 

previous predictions when a/H ≪ 1, where fL is observed to decrease with increasing Rc 

over the whole domain [3,4]. Our results indicating opposing dependences on the channel 

Reynolds number in the two regions suggest that the positions of the attractors should shift 

towards the walls with increasing Rc in agreement with previous experimental results [7,8]. 

This and previous scaling differences support the idea that two separate physical processes 

account for particle behavior in the near-wall region and channel center line [4,14].

Numerical analysis allows for the decomposition of the flow into components to yield 

understanding of the underlying physical mechanisms. We found that a stationary sphere 

always experienced a force directed away from the wall [Fig. 5(a)]. However, when a sphere 

was allowed to translate force-free with the flow but was constrained from rotating, only 

small differences in lift force were observed when compared to a sphere allowed to both 

rotate and translate along with the flow. This suggests that rotational motion is not a key 

contributor to inertial lift. In separate simulations to decouple the shear gradient from wall-

induced effects, we calculated forces for flows through high-aspect ratio channels where the 

shear gradient and shear rate both approach zero near the channel center line [Fig. 5(b)]. 

This geometry yielded results that are dramatically different when compared to the finite 

shear-gradient case, where an extra reversal of sign for lift force is observed near the 

channel center line. Presumably, as the shear gradient approaches zero, wall-directed shear-

gradient-based lift is eliminated, which makes the small center-directed lift due to the wall 

effect observable. This may provide a partial explanation for the observed reduction from 

four focusing positions in square channels to two positions in high-aspect ratio channels 

[Fig. 5(c)] [15].

The observed and predicted behaviors also have important implications for development of 

practical applications for inertial migration in confined flows [10,11,16,17]. Given the novel 

apparent scaling of inertial lift forces for highly confined systems, previous “inertial 

focusing” theory [10,11] based on analytical models assuming small a/H should be revisited. 

Additionally, we have shown that particle equilibrium position is dependent on particle size, 

suggesting another mechanism for continuous separation. Unexpectedly, even at different 

equilibrium positions within the flow, particle velocity in the direction of flow appears 

constant and independent of particle size to within experimental and numerical precision. As 

a result, the general assumption that the particle velocity will equal the unperturbed stream 

velocity at its center point should be reexamined when a/H is large [12,18,19].
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FIG. 1. 
Inertial lift forces in a square cross-section channel. (a) Schematic of the channel and 

particle geometry used in this work. (b) Inertial lift forces are simulated for a quarter of the 

channel cross section and shown in this vector plot for a/H = 0.22 and Rc = 80. Equilibrium 

positions are marked with circles. (c) Averaged confocal cross section for 10 µm particles 

flowing in a 50 × 40 µm channel reveals similar attractors at the channel faces.
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FIG. 2. 
Numerical and experimental equilibrium positions and rotations. (a) The equilibrium 

positions are shown for different a/H. The scale bar is 10 µm. (b) Normalized equilibrium 

positions as a function of a/H are plotted at Rc = 20. The dashed line denotes positions 

where particles would be in contact with the wall. (c) The nondimensional rotation rate is 

plotted for particles focused to equilibrium positions at Rc = 20.
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FIG. 3. 
Parameters affecting the nondimensional inertial lift force. (a) The nondimensional force [fL 

= FL/(ρUm
2a4/H2)] is plotted as a function of the fractional distance from the channel center 

line for the controlling dimensionless parameters. (b) The dimensionless lift force is plotted 

using a new functional dependence on a/H that better collapses the data near the channel 

center line [fL • (a/H)]. (c) Normalization of the lift is modified such that one can observe 

collapse to a single curve in the nearwall region. (d) The lift force in the near-wall region 

(x/h > 0.52) appears to decrease with increasing Rc, but fL is seen to increase near the 

channel center line (x/h > 0.52) for Rc greater than 60.
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FIG. 4. 
Scaling of inertial lift with particle diameter. (a) Best fit exponents are plotted for fits of lift 

values at nine separate particle diameters from 5 to 19 µm. At large values of x/h, fewer 

points were used. (***) 6 and (****) 5 points. The near-wall region (light gray) and center 

region (dark gray) show stable fits at n = 3 and 6, respectively, while a transition region 

(white) where both effects contribute has divergent scaling. Error bars correspond to error in 

the fit. (b) Plots of best fits for n = 3 and 6 (solid black line) and fits based on previous 

asymptotic inertial lift theory of n = 4 (dotted gray line) at two cross-sectional positions.
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FIG. 5. 
(color online). Deconstructing inertial lift. (a) The nondimensional force is plotted for a/H = 

0.22 and Rc = 80. Filled triangles correspond to no constraints. Open triangles have a 

constraint that the sphere is not free to rotate. Squares show data when the sphere is 

constrained from translating and either constrained from rotation (open) or not (closed). (b) 

The nondimensional force is plotted along with a measure of the nondimensional shear 

gradient experienced by a particle for two different aspect ratio channels and a/H = 0.44 and 

Rc = 80. The gray region indicates a reversal of sign in lift for the 4.1 aspect ratio. (c) 

Images showing the top and side views of high-aspect ratio channels show two particle 

equilibrium positions. Dotted lines outline the channels. The scale bar is 50 µm.
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