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It has become evident that tumor-induced immuno-
suppressive factors in the tumor microenvironment play
a major role in suppressing normal functions of effector
T cells. These factors serve as hurdles that limit the
therapeutic potential of cancer immunotherapies. This
review focuses on illustrating the molecular mechanisms of
immunosuppression in the tumor microenvironment,
including evasion of T-cell recognition, interference with
T-cell trafficking, metabolism, and functions, induction of
resistance to T-cell killing, and apoptosis of T cells. A better
understanding of these mechanisms may help in the
development of strategies to enhance the effectiveness of
cancer immunotherapies.

Introduction

Significance of studying the tumor microenvironment
Cancer represents a challenging disease for which the develop-

ment of innovative treatments is desperately needed to improve
the quality of life and survival of patients. Immunotherapy, par-
ticularly T cell-mediated therapy, has emerged as a promising
cancer therapeutic strategy based on its ability to specifically rec-
ognize and destroy tumor cells without harming the surrounding
normal cells. However, a current limitation of cancer immuno-
therapy is the presence of various immunosuppressive factors in
the tumor microenvironment that pose a formidable barrier to
T-cell infiltration and function. The tumor microenvironment

contains a network of immunosuppressive factors that are capable
of inhibiting T-cell function despite the activated immune
response against the tumor achieved through immunotherapy.
Tumor cells have the ability to reprogram the tumor microenvi-
ronment and form a strong immunosuppressive network to limit
the ability of T cells to eradicate tumor cells. Thus, to improve
cancer immunotherapy a better understanding of the tumor
microenvironment and tumor-induced immunosuppressive
mechanisms is essential for the development of molecular inter-
ventions that can be used in conjunction with various cancer
immunotherapies to enhance therapeutic effects and specificities.

Overview of immune-related aspects of the tumor
microenvironment

The tumor microenvironment consists of cellular components
of the tumor, the surrounding extracellular matrix, and intersti-
tial fluid. These factors interact with each other, contributing to
the hallmarks of cancer,1 and have a significant influence on
immune responses against the tumor. The cellular components
in the tumor include tumor cells themselves, associated stromal
cells such as fibroblasts, endothelial cells, and infiltrating immune
cells. The infiltrating immune cells play an essential role in
immune responses against cancer. For example, particular subsets
of immune cells such as cytotoxic T lymphocytes and natural
killer (NK) cells inhibit tumor growth. Other infiltrating
immune cells may either assist in tumor growth (e.g., tumor-
associated macrophages, neutrophils, and mast cells) or inhibit
immune reactions against tumor cells (e.g., regulatory T cells and
myeloid-derived suppressor cells [MDSCs]). These tumor and
non-tumor cells express molecules on their cell surfaces and
secrete extracellular matrix components, growth factors, cyto-
kines, chemokines, proteases, other enzymes, and metabolites
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that may affect the effectiveness of tumor immunotherapy.2

Other characteristics of the tumor microenvironment may signif-
icantly influence T-cell immune responses against cancers. For
example, hypoxia has been shown to inhibit T-cell receptor
(TCR) and CD28-mediated activation of T lymphocytes, in
addition to indirectly recruiting regulatory T cells,3 which may
suppress T-cell immune responses. In addition, low extracellular
pH,4 low glucose concentration,5 and aberrant vasculature may
affect T-cell trafficking, infiltration, and function.5 This is a
dynamic relationship in which the tumor shapes its microenvi-
ronment, influencing T-cell activity, while a balance between
pro- and anti-malignancy factors in the microenvironment regu-
late the growth of the tumor.

Focus on tumor escape of T-cell attack
Increasing evidence suggests that despite our ability to effec-

tively generate potent tumor-specific effector T cells through
active immunization or adoptive T-cell transfer, cancer cells may
possess, or develop over time, several strategies to successfully
evade immune attack mediated by T cells. For instance, tumor
cells can activate antiapoptotic pathways or inhibit proapoptosis
signaling to resist killing mediated by tumor-specific CD8C T
cells.6,7 Alternatively, tumor cells and other cell types involved or
recruited in the tumor microenvironment can inhibit T-cell pro-
liferation, cause dysfunction of T cells, and induce apoptosis of T
cells.6,8-10 This review will focus on the different mechanisms by
which tumor cells manipulate the microenvironment to hinder
effector T cell infiltration and function. More specifically, we will

summarize several key factors present in the tumor microenviron-
ment that contribute to tumor evasion of T-cell attack (as sum-
marized in Fig. 1) and discuss strategies to block these molecular
targets, which will allow for better efficacy of immunotherapeutic
treatment for the control of cancer.

Molecular Mechanisms of Immune Evasion
by Tumors

Evading recognition by T cells
MHC class I: antigen complex
Although tumor antigen-specific T cells can access tumors,

they are unable to target them for destruction if they cannot
recognize the tumor cells as their target. Tumors can evade
detection by the immunosurveillance system through alter-
ation of their major histocompatibility complex (MHC) Class
I/tumor antigenic peptide complexes and antigen presentation
machinery (for review, see ref. 1111). It has been shown that
epigenetic silencing and subsequent transcriptional repression
of MHC class I genes lead to loss of function of MHC class I
molecules or loss of the MHC class I molecules themselves
(for review, see ref. 1212). Genetic alterations of human leuko-
cyte antigen (HLA), including mutations leading to HLA total
losses, haplotype losses, allelic losses, and downregulation of
specific loci, may result in reduced or complete loss of MHC
class I molecules on the tumor cell surfaces (for review, see
ref. 1313). A variety of altered human MHC class I genes have

been identified in human
tumors, including ovarian,
cervical, breast, skin, esoph-
ageal, and colorectal cancers
(for review, see ref 12,
1412,14). Studies have
shown that mutations at the
b-2 microglobulin locus
contribute to loss of func-
tion of MHC class I mole-
cules on the cell surface.15-
18 Tumors may also alter
their antigen processing and
presentation machinery,19

thus preventing tumor anti-
gens from being presented
on surface MHC I mole-
cules. These alterations
occur in the transporter
associated with antigen
processing (TAP20), subu-
nits of the immunoproteo-
some (LMP-2, LMP-7,20

PA2821), tapasin, calreticu-
lin, and calnexin,22 which
have been found in many
human cancers (for review,
see ref. 1111). Mutations in

Figure 1. Factors contributing to tumor immune evasion in the tumor microenvironment. Tumor cells can influ-
ence T-cell trafficking by upregulating adhesion molecules that prevent T cells from infiltrating the tumor.45 In
addition, tumors can evade T-cell recognition through alteration of their MHC Class I/ tumor antigenic peptide
complexes and antigen presentation machinery.11 Tumor cells utilize a number of altered metabolic pathways to
contribute to an unfavorable environment for T-cell expansion.55,79 Another mechanism used by tumors to dysre-
gulate T-cell function98,118,146,167, 175 or induce T-cell apoptosis10,201,204,209 is the production and secretion of immu-
nosuppressive factors into the microenvironment. Finally, tumors can prolong their survival by overexpressing
various antiapoptotic proteins.177
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tumor antigenic peptides may also result in a change in avidity
of peptides to their MHC Class I molecules, rendering T cells
unable to recognize tumor antigens. For instance, mutations
in antigenic epitopes, or antigenic drift, enable the tumor to
evade host immunity.23 These antigen presentation machinery
deficiencies may be reversed by treatment with interferon
gamma (IFN-g).24

Soluble and exosomal NKG2D ligands
Another way that tumors can evade immune recognition is

through the shedding of NKG2D ligands, including major his-
tocompatibility complex class I-related molecules A and B
(MICA and MICB) and UL16-binding proteins. NKG2D
ligands are glycoproteins that share a common MHC class I-
related a1a2 superdomain and bind to the membrane through
either transmembrane domains or glycosylphosphatidylinositol
(GPI) anchors.25 In their membrane-bound form, NKG2D
ligands are upregulated in tumors in response to infection,
malignant transformation, or other cellular stresses through vari-
ous pathways, resulting in enhanced activation of NK cells and
CD8C T cells as well as subsequent cytotoxic effects against
NKG2D-ligand expressing cells (for review, see ref. 25-2725-27).
However, tumors can shed NKG2D ligand into the tumor
microenvironment through tumor cell death, secretion of exo-
somes, or proteolysis by matrix metalloproteinases.26,28-35 These
soluble or exosomal NKG2D ligands can bind to NKG2D
receptors on T cells and induce the internalization and degrada-
tion of NKG2D in CD8C T cells infiltrating the tumor.26,33, 36

The degradation of NKG2D in T cells ultimately results in
decreased activation of CD8C T cells upon contact with tumor
cells, contributing to tumor immune evasion.34,37 In some
human cancers, serum MICA (sMICA) and serum MICB
(sMICB) are related to disease stage and survival rates, and thus
may be used to predict prognosis (for review, see ref. 3838). His-
tone deacetylase inhibitors (HDACis) are being tested as treat-
ments to upregulate MICA/MICB (for review, see ref. 2525).
Other substances that target the shedding of NKG2DL are also
being explored to enhance CD8C T cell cytotoxic killing of can-
cer cells.39

Influencing T-cell trafficking
Although cytotoxic T cells are likely to play a role in elimi-

nating tumors, failure to access the target tumor tissue presents
a critical obstacle. Tumors may influence T-cell trafficking by
downregulating adhesion molecules such as ICAM-1/2,
VCAM-1, and CD34 in their vessel component to prevent T
cells from infiltrating the tumor.40,41 Tumors may also adversely
influence T-cell trafficking by overexpressing vascular cell adhe-
sion molecule-1 (VCAM-1).42 VCAM-1 is widely known as a
cell surface glycoprotein expressed in endothelial cells that medi-
ates leukocyte extravasation to inflammatory sites by binding to
a4 integrin on T cells43 (for review, see ref. 4444). Recently,
overexpression of VCAM-1 in tumors has been proposed as an
important mechanism for tumor metastasis and immune
escape.45 A study led by Lin et al. demonstrated that introduc-
ing VCAM-1 into a murine cancer cell line could render the

tumor highly resistant to T-cell infiltration and killing.42

Tumors expressing VCAM-1 with mutated amino acids at sites
required for interaction with a4b1 integrins completely lost the
immune resistance conferred by VCAM-1.42 This interaction
between VCAM-1 and a4 integrin is thought to promote T-
cell migration away from the tumor, thus reducing infiltration
of CD8C T cells. Aberrant expression of VCAM-1 on tumors is
not only found in preclinical models, but also in human
tumors. For example, human renal cell carcinomas (RCCs) are
highly positive for VCAM-1 expression.46 VCAM-1 may also
be associated with tumor stage and overall survival of patients
with RCC.47,48 Interestingly, the only RCC that responded to
immunotherapy in one clinical trial was negative for VCAM-
1.46 Thus, VCAM-1 expression may serve as an indicator for
the outcome of immunotherapy.

Affecting T-cell metabolism
IDO
Tumor cells use a number of altered metabolic pathways to

contribute to an unfavorable environment for T-cell expansion.
For instance, indoleamine-2,3- dioxygenase (IDO) is a heme-
containing enzyme that is overexpressed in tumors49 and overex-
pression of IDO has been correlated with poor prognosis of sev-
eral types of cancer50-54(for review, see ref. 5555). In addition,
IDO overexpression has been found in stromal immune cells,
especially in certain sets of dendritic cells and MDSCs,49,56 where
it reduces the levels of tryptophan, an essential nutrient for T
cells. This function has multiple effects on T-cell mediated clear-
ance of tumor cells. T cells are very sensitive to tryptophan short-
age, therefore deprivation of tryptophan ultimately impairs T-
cell proliferation in the tumor microenvironment by causing
arrest in the G1 phase of the cell cycle.49,57 Depletion of trypto-
phan also causes downregulation of TCR z-chain in CD8C T
cells, which impairs T-cell function.58 IDO may convert trypto-
phan into toxic metabolites, such as kynurenine, that are harmful
to T-cell function59 (for review, see ref. 6060) and induce IDO-
dependent apoptosis of T cells.61-63 In addition, tumor-derived
IDO has been shown to recruit regulatory T cells into the tumor
microenvironment and promote their differentiation from na€ıve
T cells, thus exerting an immunosuppressive effect.50,58, 64

Although the exact mechanisms that regulate IDO expression in
tumor cells remain to be clarified, one study has shown that IDO
is under the genetic control of the tumor suppressor gene Bin1.65

Elevated expression of IDO may therefore be related to the loss
of Bin1 in tumors.66

Consequently, blocking IDO may allow for effective T-cell
immune responses against tumors. Several studies have shown
that inhibition of IDO with 1-methyltryptophan (1MT) or other
small molecule inhibitors, including thiohydantooin derivatives
of tryptophan, or by RNA interference can promote antitumor
effects by re-establishing T-cell immunity (for review, see ref.
6767).65, 68 1MT is anticipated to have no serious side effects
since it inhibits IDO while sparing tryptophan dioxygenase, a
hepatic enzyme that regulates body tryptophan levels.69 Design
and development of more effective IDO inhibitors is underway
(for review, see ref. 60, 67, 70).60, 67, 70
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Arginase and nitric-oxide synthase
Alteration in the pathway involving the catabolism of L-argi-

nine is linked to the suppression of T-cell expansion. Two impor-
tant enzymes involved in arginine metabolism are arginase and
inducible nitric oxide synthase (iNOS).9 Arginine is used by
iNOS as a precursor for the production of nitric oxide (NO).
Therefore, elevated levels of arginase and iNOS deplete arginine,
an essential nutrient of T cells, from the tumor microenviron-
ment.9,71 Various types of tumors exhibit elevated arginase and
iNOS levels,72-76 and MDSCs recruited by tumor cells into the
tumor microenvironment78,79 have been shown to produce argi-
nase.75, 79, 80 Arginine depletion by increased levels of arginase
leads to downregulation of z-chains on T-cell receptors80, 81 and
is associated with cell cycle arrest of T cells72,82 (for review, see
ref. 7979). Increased iNOS expression by MDSCs, and thus
higher levels of NO, may also induce cell cycle arrest of T cells83

and has been shown to be related to tumor progression and
angiogenesis.84 In addition, increased NO blocks T cell produc-
tion of IL-2,85,86 a cytokine that stimulates T-cell proliferation.
Consequently, the use of inhibitors against arginase/iNOS, such
as N(omega)-Hydroxy-nor-L-arginine (nor-NOHA), N(omega)-
Hydroxy-L-arginine (NOHA),87-89 or the iNOS inhibitor NG-
Monomethyl-L-arginine, monoacetate salt (L-NMMA), has been
shown to restore T-cell expansion and block tumor growth in
mouse models.80, 90-93 Blocking NO may also allow for effective
antitumor effects. One study showed that NO inhibition using
nitroaspirin (NCX-4016) combined with a tumor vaccine
improved the number and effector function of T cells, leading to
reduced tumor growth and improved survival of mice.94

Although arginine analogs that block arginase activity are avail-
able for investigating this biological pathway,95,96 none are cur-
rently used for clinical studies because of safety concerns
associated with disrupting the natural role of arginine in the urea
cycle.

Dysregulating the function of T cells
Gangliosides
Tumors are capable of escaping destruction by adopting strat-

egies that impair T-cell function in the microenvironment. One
proposed mechanism involves the shedding of gangliosides by
tumors. Gangliosides are glycosphingolipids found as clusters on
the surface of all mammalian cells that regulate cellular responses
such as growth and differentiation (for review, see ref. 97,
9897,98). Many tumors, however, express large quantities of gan-
gliosides that are not expressed in their normal tissue origin or
overexpress certain gangliosides specific to the tissue that are
often shed into the microenvironment. This phenomenon has
been observed in several types of human cancers (for review, see
ref. 9898). The soluble gangliosides shed into the tumor microen-
vironment can dysregulate T-cell function in multiple ways. For
instance, there is evidence that these soluble gangliosides inhibit
tumor-specific T-cell proliferation99,100 and induce T-cell apo-
ptosis.8,101-103 They may play a role in disrupting cytokine pro-
duction, including that of IFNg in T helper 1 cells104,105 and IL-
5 in T helper 2 cells.106 In addition, soluble gangliosides may
skew the T-cell response against tumor antigen toward a Th2

response, which contributes far less than a Th1 response to tumor
clearance.105,107 Furthermore, soluble gangliosides have been
shown to disrupt nuclear factor kappa B (NF-B) function in
immune cells108,109 as well as lytic granule trafficking and exocy-
tosis in CD8C T cells.110 Thus, gangliosides that are shed into
the microenvironment can disrupt the normal functioning of T
cells in numerous ways. Therapies targeting the tumor ganglio-
sides GD2, GM3, and GD3 may potentially prevent gangliosides
from inducing T-cell dysfunction. For example, an anti-GM2
monoclonal antibody, DMF10.167.4, has been shown to inhibit
tumor growth in vitro and in a preclinical model.111 Antibodies
targeting gangliosides GD2, GM3, and GD3 may also serve as
promising vaccines,111-115 (for review, see ref. 116, 117116,117).
Since gangliosides are expressed on all cells, it is essential that the
engineered monoclonal antibodies bind specifically to tumor
gangliosides and not to normal tissues (for review, see ref.
116116).

Interleukin-10
Another mechanism utilized by tumors to disrupt T-cell func-

tion is the production of interleukin-10 (IL-10) and its secretion
into the microenvironment. IL-10 is an important cytokine that
displays both immunostimulatory and immunosuppressive activ-
ities toward various components of the immune system.118,119

IL-10 mRNA and protein have been found in freshly excised
human tumors and cancer cell lines of a variety of origins,120-124

and IL-10 secreted into the tumor microenvironment can be pro-
duced by tumor cells120 or tumor-associated macrophages.125

There are several ways in which IL-10 may assist in tumor
immune evasion. For instance, IL-10 downregulates HLA class I
expression on tumors, thereby facilitating tumor escape from T-
cell recognition.126 In addition, IL-10 has been shown to down-
regulate immune effector mechanisms, such as CD8C T-cell
mediated tumor cell lysis.126,127 Furthermore, IL-10 may block
T helper 1 cell differentiation and proliferation and suppress pro-
duction of Th1 cytokines,128-130 which would negatively impact
the proliferation of cytotoxic T cells. IL-10 also serves as an acti-
vator of STAT, which in turn inhibits maturation of dendritic
cells and immature myeloid cells (IMCs) through STAT3 activa-
tion.131-133 These immature myeloid cells then become MDSCs
and exert immunosuppressive effects on CD8C T-cells through
various mechanisms.134,135 Considering the immunosuppressive
functions of IL-10, administration of neutralizing antibodies
may provide a promising strategy to target IL-10.136 In fact, neu-
tralizing antibodies against IL-10 have been shown to signifi-
cantly restore T-cell proliferation137,138 and enhance antitumor
immune responses. However, given the dual function of IL-10,
its knockdown may also diminish immune responses (for review,
see ref. 119119). Thus, further evaluation of IL-10 blockade as an
immunomodulatory approach is required (for review, see ref.
139139). Major efforts have also been made to identify inhibitors
or inhibition strategies of STAT3, downstream of the IL-10
pathway. For example, suppressor of cytokine signaling (SOCS)
has been shown to negatively regulate STAT3 activation.140,141

In a preclinical study, demethylation followed by pharmacologic
inhibitors of SOCS-1 expression resulted in the inhibition of
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STAT3 activation and cell proliferation and the stimulation of
cell apoptosis in a mouse carcinoma cell line.140 Although several
STAT3 inhibitors are under development, none of them have
made it to clinical stage investigation (for review, see ref. 142142).
With recent advancements of technology, small molecule STAT3
inhibitors such as TW-37 represent potential candidates for fur-
ther development in clinical trials143-145 and STAT3 still serves
as a promising target for cancer immunotherapy (for review, see
ref. 140, 142140, 142).

TGF-b
Overexpression of transforming growth factor (TGF)-b, a

cytokine known to regulate the growth and activity of T cells,
profoundly suppresses T-cell responses (for review see ref.
146146). Various types of tumors that produce TGF-b exploit
this mechanism to evade immune attack.147 Overexpression of
TGF-b by tumors suppresses T-cell responses through numerous
TGF-b signaling pathways. In terms of activation and function,
TGF-b cytokines may bind to TGF-b receptors on T cells and
inhibit IL-2 production, cytotoxic T lymphocyte activation,
clonal expansion of memory CD8C T cells, and expression of
perforin, an essential mediator for CD8C T cell killing of tumor
cells148,149 (for review, see ref. 150150). Another equally impor-
tant immunosuppressive role of TGF-b is altering the differentia-
tion of Th1 and Th2 cells by inhibiting their lineage specification
transcription factors.151, 152 TGF-b is also involved in inducing
the expression of transcription factor FoxP3, which ultimately
promotes growth and differentiation of CD4C CD25C T regula-
tory cells.153-155 These regulatory T cells then secrete TGF-b and
other inhibitory cytokines to suppress CD8C T cell-mediated
killing of tumor cells (for review, see ref. 155155). TGF-b can
also promote the development and maintenance of T helper 17
(Th17) cells, which have been shown to suppress CD8C T-cell
effector functions.156 The roles of Th17 cells in the tumor micro-
environment, however, appear to be double edged. In addition to
its role in the procarcinogenic inflammatory response, Th17 cells
may also play a role in antitumor immunity, as demonstrated by
a number of studies on human cancer and mouse models.157-161

Nevertheless, inhibiting TGF-b-induced inactivation of T cells
may provide protection against tumors.147 In fact, several agents
are being developed in preclinical and clinical settings with this
aim. One potential strategy to block TGF-b is the use of anti-
sense gene therapy, which impedes the translation of TGF-b
mRNA.162 Other strategies to inhibit TGF-b include monoclo-
nal anti-TGF-b antibodies, small molecule inhibitors of TGF-b,
and Smad inhibitors (for review, see ref. 163, 164163, 164). Thus,
we expect that future endeavors will focus on effective ways to
block TGF-b to enhance T-cell responses.

PGE2 and COX2
Numerous tumors, particularly colorectal, pancreatic, lung,

and breast cancer, overexpress cyclooxygenase-2 (COX2) enzyme
and its metabolite prostaglandin E2 (PGE2), which both contrib-
ute to T-cell dysfunction165,166 (for review, see ref. 167167).
PGE2 induces the accumulation of MDSCs, which inhibit the
activation of CD4C and CD8C T cells.165 The interaction

between PGE2 released by tumors and prostaglandin E2 receptor
(EP2) on T cells has been shown to alter the cytokine profile of T
cells, fueling the Th2-type while reducing Th1-type cytokine lev-
els.168,169 This cytokine imbalance promotes humoral immune
responses that are ineffective in targeting tumors, which requires
cellular immune responses established by Th1 cells. In vivo stud-
ies have shown that PGE2 overexpression results in production
of the immunosuppressive cytokine IL-10 and downregulation of
the immunostimulatory cytokines IL-12 and IFNg.169-172 Fur-
ther support of the importance of COX2 in inhibiting antitumor
immune responses is provided by an in vivo study in which
COX2 expression was silenced with antisense oligonucleotides or
COX2 activity was blocked with a selective COX2 inhibitor.173

Knockdown/inhibition of COX2 resulted in increased lympho-
cyte infiltration, increased levels of IL-12 and IFNg, and
decreased levels of IL-10, ultimately reducing tumor burden.171,
173 Thus, inhibition of COX2 and PGE using COX2 inhibitors
may stimulate cellular immunity, resulting in potent antitumor
effects.172

RANK/RANKL
Receptor activator of NFkB (RANK)8 is a member of the

tumor necrosis factor (TNF) receptor molecular subfamily that
is associated with immune cell function. It has been shown that
RANK is highly expressed in breast and prostate cancers.174

The engagement of RANK with RANK ligand (RANKL)
expressed on regulatory T cells leads to the expansion of regula-
tory T cells, one of the major types of immunosuppressive cells
in the tumor microenvironment, ultimately forming an immu-
nosuppressive niche that contributes to cancer bone metastasis
and disrupts effector T cell function.175 Since this pathway is
important in bone marrow metastasis of prostate cancer in
humans and immunosuppression, RANK/RANKL is a clinically
validated target.

Resisting killing by T cells
Antiapoptotic proteins
Tumors can prolong their survival by overexpressing antia-

poptotic proteins. Well-known antiapoptotic proteins include
Bcl-2, Bcl-xL, X-linked inhibitor of apoptosis protein (XIAP),
survivin (SVV), and an active form of phospho-Akt (pAkt).
Upregulated Bcl-xL has been found in 63% of hepatocellular car-
cinoma specimens and has been associated with poor survival.176

High expression of SVV or XIAP (for review, see ref. 177177) has
also been observed in numerous cancers. Both XIAP and SVV
have been shown to be highly expressed in malignant mesothelio-
mas.178 XIAP overexpression in renal cell carcinomas was associ-
ated with worse prognosis 179 and SVV overexpression was
associated with tumor progression, tumor cell resistance to che-
motherapy, and tumor recurrence180 (for review, see177,181). In
one study, tumor expression of antiapoptotic proteins was linked
to tumor immune evasion. Kim et al. developed an HPV-16 E7–
expressing tumor capable of escaping attack by E7-specific
CD8C T cells through multiple cycles of in vivo immune selec-
tion.182 Further characterization of the tumor revealed increased
expression of pAkt, which led to upregulation of antiapoptotic
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proteins Bcl-2, Bcl-xL, and XIAP. Tumors can also express acti-
vated signal transducer and activator of transcription 3 (STAT3),
which is associated with numerous oncogenic signaling pathways
and linked to increased proliferation and inhibited apoptosis of
tumor cells (for review, see ref. 183183). This constantly activated
STAT3 pathway in tumor cells has multiple effects. For example,
STAT3 signaling pathways upregulate the antiapoptotic protein
BCL-X, rendering the tumor cell more resistant to T-cell induced
apoptosis.

Inducing apoptosis of T cells
Co-inhibitory molecules
Tumors can evade immune attack by inducing apoptosis of T

cells. When induced by oncogenic signals or in response to
endogenous antitumor immune responses, tumors upregulate a
co-inhibitory molecule, programmed death ligand 1 (PD-L1),
which functions as an immune checkpoint signal.6, 184-187 Bind-
ing of PD-L1 to program death receptor-1 (PD-1) on activated
T cells188, 189 results in T-cell anergy or death, thus dampening
antitumor activity and promoting tumor growth.188, 190, 191

Studies have also shown high levels of PD-L1 on tumor-associ-
ated myeloid cells in the tumor microenvironment of human
cancers, serving as an important immune escape mecha-
nism.192,193 These discoveries propelled development of the cur-
rent PD-1/PD-L1 blockade therapeutic strategies, which have
been successful in overcoming this tolerance mechanism. Anti-
body blockade of PD-L1 can protect CD8C T cells from apopto-
sis in vitro and augment the antitumor effects of adoptively
transferred T cells194 and tumor cell-based vaccines.195 In addi-
tion, clinical trials using anti-PD-1 and anti-PD-L1 antibodies
showed durable tumor regression and prolonged stabilization of
disease in non-small cell lung cancer, melanoma, and renal cell
carcinoma.185, 196-200 Other novel approaches targeting PD-L1,
including interference RNA or small molecules (for review, see
ref. 201201) and soluble PD-1, which can bind PD-L1 and render
it inactive,202 are under development. Encouraging clinical
results using single blocking agents against PD-1 have led to trials
exploring the combination of anti–PD-L1 antibody or anti–PD-
1 treatment with a granulocyte macrophage colony-stimulating
factor (GM-CSF)-secreting allogeneic pancreatic tumor cell vac-
cine (GVAX) in human patients.203

B7-H4 is another co-inhibitory molecule that is expressed on
the surface of tumor cells and immunosuppressive tumor-associ-
ated macrophages and has been used as a negative prognostic
indicator for many human tumors. It has the ability to inhibit T-
cell proliferation, cell cycle progression, IL-2 cytokine produc-
tion, and effector T cell function. The specific receptor of B7-H4
has not yet been identified, necessitating further investigation
(for review, see ref. 204204). As B7-H4 molecules play such an
important role in inhibiting T-cell function, strategies aimed at
blocking their activity are currently being developed to improve
the efficacy of cancer immunotherapy. The application of mono-
clonal antibodies that block B7-H4 has been shown to promote
T-cell responses,205 although studies using anti-B7-H4 combined
with immunotherapy remain to be tested.

Fas ligand
A wide variety of tumors have been reported to express Fas

ligand (FasL/CD95L) (for review, see ref. 1010). Upregulation of
FasL on tumor cells might be another mechanism that allows
tumors to counterattack T cells. FasL is a transmembrane protein
belonging to the TNF superfamily and the death receptor sub-
family that can trigger apoptotic cell death when bound to its Fas
(CD95) receptor. FasL expression and its association with tumor
immune escape have been extensively studied. Activated effector
T cells upregulate expression of Fas on their surface upon recog-
nition of tumor antigenic peptides.206 It has been proposed that
upregulation of Fas ligand on tumor cells enables the tumors to
counterattack T cells.207-213 When FasL on tumors interacts with
the Fas receptor on T cells, FasL delivers death signals to Fas-
expressing T cells resulting in apoptosis of tumor-specific effector
T cells that have infiltrated the tumor207,208,213 However, the
role of FasL in tumor immune evasion is not entirely clear10 and
several contradictory results have been reported in recent stud-
ies.10,214-217 For instance, FasL expression on tumor cells may
confer antitumor and proinflammatory effects.207,211,217,219

Researchers have therefore hypothesized that other immunosup-
pressive factors are required in order for FasL to exert its
effect.209,213 As shown in the next section, galectin-1 can help to
create an immunosuppressive tumor microenvironment in favor
of FasL action. Despite its debatable role in immune counterat-
tack, FasL still presents a potential target for cancer therapy.
Strategies to downregulate FasL expression or block FasL on
tumors may decrease its binding to Fas on T cells, thus decreasing
Fas-mediated apoptosis of T cells. Downregulation of FasL
expression using an antisense FasL has been shown to signifi-
cantly reduce tumor bulk and suppress tumor immune evasion of
colon cancers in a preclinical model as a result of increased T-cell
infiltration within tumors.220 Further research is encouraged and
indeed necessary to unravel the application of FasL inhibition in
cancer therapy.

Galectin-1
Galectin-1 (Gal1) overexpression by tumors contributes to

immune evasion by promoting T-cell apoptosis. Gal1 is a
b-galactoside-binding protein that is involved in cell–cell adhe-
sion,221 cell–matrix interactions,221-223 immune system homeo-
stasis224,225 and cell growth.225 It is also associated with
angiogenesis,226,227 transformation,228 and poor prognosis.226,
229-231 Studies have shown that Gal1 is overexpressed on tumor
cells and secreted at high levels in a wide variety of cancers (for
review, see ref. 232, 233232,233), in which Gal1 may serve as a
negative regulator of immune responses.234 Gal1 interacts with a
receptor on T cells that is yet to be identified, and can induce
apoptosis of activated T cells.215,234 There are contradicting
opinions on whether CD45 is the functional Gal1 receptor
expressed on T cells.235-241 Gal1 is a determining factor of tumor
cell-induced T-cell apoptosis, as demonstrated by in vitro and in
vivo Gal1 knockdown experiments.215 Hypoxia, which is com-
monly present in solid tumors, enhances Gal1 secretion from
tumors, further promoting T-cell apoptosis.242,243 Expression
and cell surface/extracellular matrix presentation of Gal1 on
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tumor cells contributes to tumor cell-induced T-cell death,243-245

which requires direct T cell–tumor cell contact.245 High expres-
sion levels of Gal1 by tumor-associated stromal cells246-249 and
tumor-associated blood vessel endothelium250, 251 enhance this
process. Upon encountering its target on T cells, Gal-1 induces
the caspase-dependent mitochondrial route of apoptosis involv-
ing p56Lck and ZAP70.235, 245 Furthermore, extracellular Gal1
can regulate the survival of tumor-infiltrating T cells by promot-
ing Fas ligand-induced apoptosis in T cells, thus reinforcing the
immunoregulatory effect of Fas ligand.252 As mentioned previ-
ously, Gal1 can help create an immunosuppressive microenviron-
ment in favor of FasL action. Gal1 may suppress IFNg
production and increase IL-10 release from T cells215 253 or skew
the Th1/Th2 cytokine balance toward a more Th2 cytokine pro-
file,253 thereby further decreasing cellular immunity against
tumors. Targeting galectin-1 might promote antitumor responses
by improving T-cell infiltration into tumors, reducing T-cell
death, and enhancing cellular immunity (for review, see ref.
232232). Strategies currently under investigation include Gal-1
neutralizing antibodies,254, 255 competent inhibitors of Gal1-
binding,256-259 and metabolic modifiers of N-acetyl-D-Lactos-
amine (LacNAc).

TRAIL, RANTES, RCAS1
Other mechanisms that tumors employ to outmaneuver

immune attack by inducing T-cell apoptosis involve TRAIL,
RANTES, and RCAS1. TNF-related apoptosis-inducing ligand
(TRAIL) is a type II transmembrane protein of the TNF family
that can activate apoptosis through the death-signaling receptors
DR4 and DR5 and formation of a death-inducing signaling com-
plex208 (for review, see ref. 209209). TRAIL shares significant
homology with FasL, which as mentioned above, also belongs to
the TNF family and can induce T-cell apoptosis.207, 211, 214

Moreover, TRAIL seems to suppress cytotoxic T cell responses in
a manner similar to that of FasL.216 Both tumor cell membrane-
bound and soluble forms of TRAIL can initiate apoptosis in IL-
2–secreting T cells, but not in inactivated T cells.210 RANTES
(also known as CCL5) is a chemokine that can also activate the
apoptotic cell death pathway in T cells. RANTES is a strong che-
moattractant for CD8C T cells and can bind to G protein-cou-
pled receptors CCR1, CCR3, CCR4, and CCR5 on T cells.213

Upon binding to CCR5 on tumor infiltrating T lymphocytes,
RANTES activates a CCR5-dependent apoptotic pathway that
involves the release of cytochrome-c into the cytosol, activation
of caspase-3 and caspase-9 pathways, and cleavage of poly ADP-
ribose polymerase (PARP).206, 260, 261 Hypoxia in the tumor
microenvironment can induce strong release of RANTES, which
promotes tumor migration.262, 263 In addition, RANTES in
serum is associated with cancer clinical stage and tumor progres-
sion in several cancers (for review, see ref 264264).191, 263, 265-267

One study demonstrated that RANTES may induce Fas-medi-
ated apoptosis of cytotoxic T cells,268 whereas another study
found that RANTES is able to enhance regulatory T cell-medi-
ated CD8C T cell killing.269 Tumors can also enhance T-cell
apoptosis by expressing the membrane ligand receptor-binding
cancer antigen expressed on Siso cells 1 (RCAS1), which is

secreted by ectodomain shedding.218, 270 RCAS1 is expressed in
a variety of tumors and is related to poor patient survival (for
review, see ref. 270, 271270,271). Soluble RCAS1 can bind to
RCAS1 receptors on activated T cells, initiating cell cycle arrest
and thereby suppressing clonal expansion and increasing the
destruction of RCAS1 receptor-positive T cells via apoptosis.217,
218, 272 One study used shRNA to knock down RCAS1 expres-
sion, which reduced T-cell apoptosis and partially reversed T-cell
function.273 However, current knowledge of the role of TRAIL,
RANTES, and RCAS1 in T-cell apoptosis is very limited and
further research is recommended before these 3 factors can be
used as immunotherapeutic targets. Future development of new
strategies to interfere with their immunosuppressive effects may
be helpful as an adjuvant to cancer treatment.

Conclusion

The tumor microenvironment is predominantly infiltrated
with immunosuppressive factors that cripple T cell responses
against the tumor. These factors are not present in normal tissues,
but are components of tumor regulatory pathways in response to
inflammatory or infectious etiologies. They are also induced or
“hijacked” by tumor cells to act as tumor protectors. Altering
these factors may provide effective cancer immunotherapy. For
example, PD-1 and PD-L1 have become 2 of the most exciting
targets for immune-based cancer therapies.

Despite efforts to understand tumor-induced immunosup-
pressive factors and their interactions in the tumor microenviron-
ment, our current understanding is insufficient to develop a
comprehensive treatment strategy for many cancers. Moreover,
targeting one single immunosuppressive factor is often not effec-
tive because tumor cells have formed a network of immunosup-
pressive factors to protect them and have programed the tumor
microenvironment to be immune quiescent. Identification of
novel and effective molecular targets in the tumor immunosup-
pressive network and stimulants of T-cell–mediated immunity is
desperately needed. Treatment strategies that change the balance
of the immune regulatory network and reprogram the tumor
microenvironment from an immune quiescent one to an immune
active one may render tumors more susceptible to immunothera-
pies that would be otherwise not be effective as monotherapy.
Finally, strategies for targeting the tumor immunosuppressive
network as a whole, rather than targeting a single molecular tar-
get, should also be established.
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