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Conventional treatment for cancer routinely includes
surgical resection and some combination of chemotherapy
and radiation. These approaches are frequently accompanied
by unintended and highly toxic collateral damage to healthy
tissues, which are offset by only marginal prognostic
improvements in patients with advanced cancers. This
unfortunate balance has driven the development of novel
therapies that aim to target tumors both safely and efficiently.
Over the past decade, mounting evidence has supported the
therapeutic utility of T-cell-centered cancer immunotherapy,
which, in its various iterations, has been shown capable of
eliciting highly precise and robust antitumor responses both
in animal models and human trials. The identification of
tumor-specific targets has further fueled a growing interest in
T-cell therapies given their potential to circumvent the non-
specific nature of traditional treatments. Of the several
strategies geared toward achieving T-cell recognition of
tumor, bispecific antibodies (bsAbs) represent a novel class of
biologics that have garnered enthusiasm in recent years due
to their versatility, specificity, safety, cost, and ease of
production. Bispecific T-cell Engagers (BiTEs) are a subclass of
bsAbs that are specific for CD3 on one arm and a tumor
antigen on the second. As such, BiTEs function by recruiting
and activating polyclonal populations of T-cells at tumor sites,
and do so without the need for co-stimulation or
conventional MHC recognition. Blinatumomab, a well-
characterized BiTE, has emerged as a promising recombinant
bscCD19£CD3 construct that has demonstrated remarkable
antitumor activity in patients with B-cell malignancies. This
clinical success has resulted in the rapid extension of BiTE
technology against a greater repertoire of tumor antigens
and the recent US Food and Drug Administration’s (FDA)
accelerated approval of blinatumomab for the treatment of a
rare form of acute lymphoblastic leukemia (ALL). In this
review, we dissect the role of T-cell therapeutics in the new
era of cancer immunotherapy, appraise the value of CAR T-
cells in the context of solid tumors, and discuss why the BiTE

platform may rescue several of the apparent deficits and
shortcomings of competing immunotherapies to support its
widespread clinical application.

Introduction

Cancer remains among the most devastating causes of death
worldwide, with nearly 600,000 deaths projected to occur this
year in the United States alone.1 Despite aggressive clinical inter-
vention, systemic progression and overall disease burden have
hindered improvements in prognosis for most patients suffering
with solid tumors in advanced stages. This is perhaps best exem-
plified by glial tumors residing in the “immunologically distinct”
brain, where the overall survival (OS) for patients suffering with
glioblastoma (GBM), the most common primary malignant
brain tumor, remains often less than 15 mo. These therapeutic
shortcomings are also often compounded by the debilitating side
effects of conventional therapy on patient quality of life, owing
to the inherent non-specific nature of available treatment regi-
mens. These factors have driven the development of novel strate-
gies that can target cancers both specifically and efficiently, while
eliminating tumors with minimal collateral toxicity.

The immune system presents an ideal such platform by virtue
of its physiologic surveillance role, which normally proceeds in a
highly precise and robust manner. Paul Ehrlich was among the
first to propose the intimate connection between host immunity
and neoplastic disease a century ago; it is well accepted today that
the immune system plays dual roles in modulating the develop-
ment of neoplastic cells through a “Darwinian selection” of sorts,
as described by Schreiber and colleagues in the cancer
“immunoediting” hypothesis.2 The mechanisms underlying the
tumor-sculpting actions of host immunity have been described
extensively elsewhere.3-5 That cancer results, at least in part, from
the failure of the immune system to eliminate certain neoplastic
cells - variants that are “fit” to survive-has fueled preclinical and
clinical investment toward redirecting host immunity against
them. Immunotherapy, then, aims to harness and redirect the
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immune response against cells that have replicated in the face of a
frequently failed immunosurveillance task. A variety of platforms
- both passive and active-have been explored for this purpose; in
this review, we will discuss and compare several strategies that
have recently entered or evolved in the clinical arena. Specifically,
we will review adoptive-T-cell therapy and the use of bsAbs,
which have emerged as a highly versatile and promising class of
novel biologics. We will discuss the utility of bsAbs in facilitating
T-cell mediated tumor destruction, and how a growing class of
bsAbs, termed BiTEs, is particularly promising in terms of safety,
cost, and ease of production.

The case for T-cell therapy

Adoptive transfer
An effective immune response against cancer requires a thresh-

old presence of activated T-cells that recognize tumor, often spe-
cifically CD8C cells, which mediate tumor killing through
expression of granzymes and perforin. CD4C helper T-cells are
also thought to be important players in potentiating CD8C

responses, and both populations are present in high numbers in
blood and organs. As such, one niche of immunotherapy aims to
augment the immune response by providing or modulating T-
cell responses, and this can be accomplished by direct ex vivo
manipulation of autologous lymphocytes, or by passively recruit-
ing T-cells non-specifically to the site of tumor.

Adoptive cell therapy (ACT) is one highly attractive method
wherein tumor-reactive lymphocytes are identified or produced,
expanded ex vivo, and transferred back into cancer-bearing
patients. Since its introduction in the late 1980s, ACT has
evolved dramatically to mediate the durable responses seen in
patients with leukemia, metastatic melanoma, and other solid
cancers this decade. In 2002, non-myeloablative lymphodeple-
tion was introduced as a compulsory pre-conditioning regimen
that drastically improved ACT response rates,6-8 in part by ablat-
ing immunosuppressive regulatory T-cells (TREG) and cytokine
sinks. Additionally, the immunologic space created by an absence
of host lymphocytes prior to infusion is believed to support the
homeostatic cytokine-driven expansion of infused T-cells, up to a
thousand-fold in some instances.6,7,9

Tumor infiltrating lymphocytes
In its earliest days, ACT often employed tumor-infiltrating

lymphocytes (TILs), typically a mixed bag of CD4C helper and
CD8C cytotoxic T-cells that had trafficked to and were isolated
from tumor. Despite their tumor reactivity, they were frequently
exposed to immunosuppressive cytokines within the tumor
microenvironment that rendered them functionally inert. Early
format ACT aimed to isolate and expand these TILs to clinically
relevant numbers prior to clonal repopulation in patients.
Although TILs have been shown to mediate tumor regression
and durable responses in patients with melanoma,10-12 TIL-ACT
has not yet reached widespread application due to the technical
difficulty associated with identifying, isolating, and expanding
tumor-reactive lymphocytes.10 This strategy, however, has

remained as an important proof-of-principle, demonstrating the
therapeutic potential of tumor-directed lymphocytes in a clinical
setting. The question, then, has evolved into one surrounding the
source of tumor-reactive lymphocytes; if we cannot sufficiently
isolate and grow them, can we instead manufacture them?

Some of the most impressive developments in ACT are thus
indebted to modern advancements in DNA recombinant tech-
nology, molecular biology, and gene-engineering, which have
together made possible the genetic modification of T-cells to
endow them with specificity for tumor antigens, rather than
depend wholly on the isolation of a tumor-reactive species. In
one variation, T-cells can be engineered with a transgenic T-cell
receptor (TCR) specific for a tumor-associated or -specific anti-
gen (TAA or TSA, respectively).13,14 Results from the first-in-
man trial using autologous lymphocytes engineered with MART-
1-specific TCRs demonstrated safety and induced tumor regres-
sion in patients with metastatic melanoma.15,16

Chimeric antigen receptors
Similar advances have also paved way for the intricate design

and production of tumor-specific synthetic receptors capable of
mimicking TCR-based activation, without depending on con-
ventional TCR signaling per se. One example of this is the advent
of chimeric antigen receptors (CARs),17 which today consist of
intracellular T-cell signaling domains (i.e., CD3z) fused to an
extracellular single chain variable fragment (scFv) of a tumor-
reactive monoclonal antibody (mAb).18 Since CAR specificity is
derived from a mAb, these constructs can be designed to recog-
nize any cell surface antigen and can be retrovirally integrated
into T-cells to trigger in them an MHC-independent mode of
activation. This MHC-independence is especially relevant, as
tumors frequently downregulate MHC molecules,19-22 lose
expression of MHC-I associated b2-microglobulin23 and intra-
cellular peptide transporters,24,25 and can even alter the architec-
ture of intracellular proteasomes, preventing adequate MHC
presentation of antigens on cell surfaces. These represent mecha-
nisms that would otherwise paralyze immunotherapies dependent
on TCR-MHC complex formation (i.e., TIL-ACT and TCR
gene therapy). The caveat to this MHC-independence is that tar-
geted antigens must be on the cell surface (as with antibody ther-
apies), limiting the number of appropriate targets available.

The first generation of CARs consisted of the CD3z chain
fused to a tumor-associated scFv. These CARs were capable of
redirecting and activating T-cells to elicit cytotoxicity and tumor
cell lysis,26,27 but were limited in their activation, proliferation,
and persistence in patient trials.28-30 More recently developed
CARs have improved on this design to incorporate co-stimula-
tory signaling domains such as CD28, 4-1BB and OX40
(Fig. 1).18,31-34 These endo domains provide CARs with co-
stimulatory signals that enhance T-cell activation, proliferation,
survival, cytokine secretion, and prevent activation-induced cell
death (AICD). Recently, these “modern” CARs have gained
notable attention for their clinical efficacy against lymphoid leu-
kemias,35-38 where CD19-directed CARs have achieved complete
remissions in several patients with refractory disease. In a recent
phase I/IIA study from the University of Pennsylvania, Maude
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and colleagues reported complete
remissions in 27 out of 30 chemother-
apy-resistant or -refractory CD19C leu-
kemia and lymphoma patients
receiving CD3z-4-1BB second genera-
tion CD19 CARs39 - a remarkable
90% response rate in children and
adults whose disease was previously
considered refractory or incurable.

As would be expected, appropriate
target selection is of critical importance
with T-cell therapy, as CARs targeting
shared antigens on normal tissue have
led to patient death.42 The current scar-
city of tumor-specific targets on the cell
surface greatly complicates T-cell ther-
apy in cases where known targets are
not ubiquitously expressed by malig-
nant cells. GBM is one such example of
a heterogeneous burden where tumors
vary in their expression profile of
EGFRvIII, a tumor-specific mutation
of the epidermal growth factor recep-
tor. EGFRvIII-directed therapies there-
fore remain vulnerable to the outgrowth of tumor cells that do
not express the target antigen,43 although early preclinical evi-
dence suggests that EGFRvIII-CAR therapy may offer long-term
immunologic protection, perhaps via epitope spreading.44 Simi-
larly, one promising alternative has been the ambitious approach
of eliciting a global anti-GBM immune response by improving
intratumoral recruitment of dendritic cells (DCs) in conjunction
with cytotoxic therapy in order to leverage the release of immu-
noreactive antigens from dying tumor cells. In 2009, Curtin and
colleagues demonstrated this proof-of-concept by combining the
intratumoral expression of a known DC chemoattractant, Fms-
like tyrosine kinase 3 ligand (Flt3L), and cytotoxic agent, thymi-
dine kinase (TK), plus ganciclovir to treat syngeneic high-grade
gliomas. This study found that dying glioma cells released the
TLR2 agonist high-mobility group box 1 (HMGB1), which acti-
vated local DCs migrating to sites of tumor-kill in response to
Flt3L chemokine gradients.45 The authors demonstrate that the
net effect of this cascade - brain tumor elimination - was depen-
dent on HMGB1, lending greater credence to an immunothera-
peutic strategy preemptively designed to elicit tumor epitope
spreading.

It remains to be seen if the problems of single-antigen target-
ing will impede the wide scale adoption of CAR therapy, or
whether preclinical evidence of immunologic memory and long-
term protection will be reproduced in patients. The clinical
implementation of this strategy is also met with several obstacles
that complicate standardization and its “scaling up” for the
masses. CAR therapy is exceedingly laborious since CAR T-cells
must be produced on a patient-to-patient basis, requiring signifi-
cant institutional investment in clinical infrastructure and resour-
ces that is usually only possible at major academic centers.
Moreover, the capricious nature of retroviral transduction and

the varied differentiation states of isolated T-cells can produce
inconsistent CAR expression levels, further complicating the
delivery of therapy. Retroviral integration into genomes also runs
the low risk of insertional mutagenesis, causing concerns over
safety. Ongoing studies, however, further substantiate T-cells as a
crucial and obligatory component of immune-mediated tumor
clearance.

Navigating solid tumors
Unique physiology equips solid tumors with an assemblage of

regulatory immune cell types that are key players in both the
development of neoplastic tissue and the sustained resistance of
established masses to cytotoxic therapy. The formation and sur-
vival of solid tumors requires not only the accumulation of aber-
rant mutations at the genetic level, but also a series of dynamic
interactions mediated through signaling cascades between them.
These events together result in the generation of abnormal vascu-
lature, create hypoxic environments, promote tumor-beneficial
modes of inflammation, and orchestrate the recruitment and
retention of inhibitory immune cells that underlie the highly
immunosuppressive architecture typical of solid tumors. In fact,
the composition of tumor microenvironments is believed to be a
critical determinant of cancer progression,46 as local structural
and soluble components can be deciding factors in whether a
tumor remains a benign hyperplasia or evolves into a malignant
lesion.47

At onset, tumor formation has been documented to resemble
“wounds that fail to heal”,48 as evidenced by cell-to-cell interac-
tions that act in concert to promote a state of chronic inflamma-
tion. In the classical immune response to injury, resident and
migratory leukocytes degrade local tissue, ingest debris, and
secrete a combination of cytokines and proteinases that can

Figure 1. CARs directed against EGFRvIII are produced by combining the humoral specificity of an
EGFRvIII-specific antibody with the intracellular signaling domains of a T-cell receptor (TCR). In general,
CARs are composed of the variable heavy and light chains of a mAb fused (via a transmembrane hinge)
to CD3z. More recently, CAR design has evolved to include additional costimulatory moieties – namely
CD28 and/or 4–1BB – to improve OS, proliferation, and antitumor activity. The third-generation EGFR-
vIII-specific CAR incorporates the CD28, 4–1BB, and CD3z signaling constructs. These same CAR designs
can be used to target wild-type EGFR. Reproduced from permission from reference.114
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drastically alter tissue architecture by activating stromal fibro-
blasts and vascular support cells. These processes are aimed at
restoring normal tissue homeostasis by expanding the extracellu-
lar matrix (ECM) and inducing angiogenesis for new capillary
formation.49,50 These pro-homeostatic mechanisms, however,
are tightly regulated by immunosuppressive leukocytes that mini-
mize potential for autoimmunity during tissue remodeling. Dur-
ing cancer progression, the mechanisms that typically restore
these states of acute inflammation to normalcy after injury repair
are absent, and instead, the chronic inflammation that persists is
characterized by the accumulation of immunosuppressive cells,
including TREG, regulatory B-cells,51,52 type II natural killer T-
cells,53 immature macrophages, alternatively activated macro-
phages (M2), and TH2 CD4C T-cells.54,55 These cellular subsets
increase local concentrations of immunosuppressive cytokines
TFGb, IL-4,-5,-6,-10,-13, and -35,54,56 all of which contribute
to pro-tumor immunity by promoting T-cell anergy and inhibit-
ing cytotoxic T-cell responses.

Moreover, one critical function of these regulatory cells is
their ability to simultaneously promote angiogenesis by signaling
endothelial cells through the section of VEGFA, bFGF, CCL2,
and ANGPT2.56 New vasculature is typically formed in disorga-
nized fashion, owing to diminished regulation and local hypoxia.
These new vessels, however, rarely rescue the deficits associated
with the limitations of oxygen diffusion,57 and hypoxia has been
shown to increase recruitment of TREG through the CCL28-
CCR10 axis.58,59 Moreover, there is overwhelming evidence sup-
porting the hypoxia-induced secretion of inhibitory molecules
and the shedding of MHC class I chain-related proteins A and B
from cell surfaces to avoid killing by immune effectors.60-62

Recent studies have also identified the hypoxia-induced upregula-
tion of PD-L1 (B7-H1) on tumor cells as a critical mechanism of
tumor immune escape, as this has been described to increase can-
cer cell resistance to cytolysis.63

Eradication of solid tumors therefore requires CARs to not
only (i) migrate to malignant tissue, (ii) penetrate through des-
moplastic stroma - which can account for up to 90% of total
tumor mass48 - but to also (iii) circumvent or function in spite of
the immunosuppressive and immune-evasive obstacles that oth-
erwise protect neoplasms from surveillance. Importantly, these
features have frustrated attempts at curing solid tumors since the
1950s.64 The one notable exception has been curative immuno-
therapy for metastatic melanoma in trials conducted at the
National Cancer Institute, and the evolution of CAR therapy has
been largely based on the principles established in these studies.
To date, however, there remains a scarcity of promising results
utilizing CARs clinically against solid cancers. An early phase I
study in patients with metastatic ovarian cancer receiving a-folate
receptor-directed first-generation CARs reported no evidence of
tumor killing,28 and is likely explained by low persistence and
the absence of radiolabeled T-cells at tumor sites, although111

labeling limits long-term T-cell tracking and carries a low resolu-
tion. Other investigators have also evaluated first- and second-
generation CARs targeting PSMA, CEA, and HER2/neu, and
these studies have corroborated the critical association of the per-
sistence of transferred cells with tumor progression and clinical

outcome. Based on this premise, third-generation CARs have
also entered the clinical arena for other solid tumors, including
GBM (NCT01454596). Whether improved persistence can
overcome the obstacles of solid tumor microenvironments
remain to be seen. Tremendous preclinical efforts are currently
underway, however, to further engineer CAR design to include
novel building blocks or intrinsic modifications that may address
specifically the issues of hypoxia, TREG, and intratumoral
migration.

Immunomodulatory therapeutics
A fine balance between immune stimulatory and inhibitory

signals exists in the setting of cancer, modulation of which can be
exploited toward a therapeutic end. Effector CD8C T-cells
require a ‘trifecta’ of TCR and costimulatory signals to achieve a
sufficient activation profile for tumor killing. The TCR-CD3
complex must first bind antigen bound to MHC on an antigen
presenting cell (APC) (Signal 1), followed by ligand binding of
co-stimulatory or co-inhibitory receptors on T-cells that control
and tune the TCR signal.65 B7 family ligand (CD80/CD86)
binding to CD28, a cell-surface molecule present on approxi-
mately half of all CD8C T-cells, produces a co-stimulatory
response that promotes cytotoxicity (Signal 2). CD28 molecules
respond to stimulation by eliciting an intracellular cascade of sig-
nals that together enhance cytokine secretion (Signal 3) and pre-
vent cellular anergy. Induced anergy among tumor-reactive T-
cells has been proposed as one major mechanism underlying
tumor immune-evasion, due both in part to the absence of co-
stimulatory ligands for CD28 and to an immunosubversive
tumor microenvironment. This thought has spawned the genera-
tion of a relatively new class of therapeutic antibodies designed to
mimic co-stimulation by stimulation through targets such as
CD28 and 4-1BB in addition to the targeted tumor antigen,
thereby perpetuating immune responses.

One concern, however, is that indiscriminate strengthening of
co-stimulation carries the potential for autoimmunity and life-
threatening systemic inflammatory responses. A recent phase I
trial that evaluated the safety and activity of an anti-CD28 mAb,
TGN1412, for example, led to severe cytokine release syndrome
and multi-organ failure in several patients.66-68 A separate class
of mAbs designed to instead antagonize co-inhibitory molecules,
including CTLA-4 and PD-1, are currently under active investi-
gation and warrant similar caution, as non-specific immune
checkpoint blockade can remove barriers that otherwise protect
hosts from autoimmunity (although antibodies to both have
proven fairly well-tolerated thus far). In fact, in a recent trial for
patients with metastatic melanoma, the combination of anti-
CTLA-4 with a peptide vaccine was associated with the uninten-
tional induction of colitis, dermatitis, uveitis, and hypophysitis.69

Similar symptoms were reported in other studies evaluating anti-
CTLA-4 alone,70 or in combination with IL-2 administration.71

These immune-related adverse events are, however, strongly cor-
related with tumor regression, and are likely due to the breaking
of tolerance to self-antigens. It is a continued theory that suffi-
ciently potent anti-tumor immune responses will be accompa-
nied, almost necessarily, by a degree of autoimmunity, as
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thresholds for self-tolerance are intentionally crossed. In light of
the 2010 approval of anti-CTLA-4 for patients with metastatic
melanoma, potential for autoimmunity in the CNS is of particu-
lar concern, given that anywhere from 10 to 50% of these
patients develop CNS metastases.72,73 In a 2014 case report of a
patient with stage IV melanoma m1c, treatment with low-dose
anti-PD-1 for systemic disease led to non-specific CNS toxic-
ity,74 which subsided after the drug was discontinued. Concerns
over the systemic effects of wholesale immunomodulatory mAbs
have therefore reinforced enthusiasm in expediting the clinical
translation of antibody-based therapeutics which are tumor-spe-
cific, in order to direct biologic function exclusively to sites of
tumor.

Novel biologics
BsAbs were first developed for the purpose of bridging interac-

tions between effector mechanisms and tumor cells - similar in
principle to CAR and transgenic TCR therapies - albeit through
a different approach. Based in principle on the design and func-
tionality of mAbs, construction of bsAbs sought to exploit the
exquisite specificity and affinity of two separate, naturally occur-
ring antibodies, by aligning their humoral specificities into one
structure.

MAbs of the IgG isotype, the most abundant isotype in blood
and extracellular fluid, are composed of four peptide chains, two
identical heavy chains and two identical light chains, joined by a
constant fragment domain (Fc). Within the IgG structure, two
identical antigen-binding fragments (Fab) can be defined; they
are composed of one constant and one variable domain for each
heavy and light chain, and both Fab structures can be enzymati-
cally separated from the Fc region. The earliest bsAbs were pro-
duced by isolating antigen-binding Fab fragments from two
distinct mAbs and chemically crosslinking them at their hinge
residues.75 These bsAbs have also been produced by fusing two
distinct hybridoma cell lines together (e.g., hybrid hybridoma or
a quadroma). Quadroma-derived bsAbs are assembled by ran-
dom pairing of immunoglobin heavy and light chains, and so are
comprised of a heterogeneous population of pure and fusion
antibodies. The bsAb of interest can be isolated chromatographi-
cally and cleaved of the Fc region afterward, which helps mitigate
unintended induction of Fc-mediated effects through alternative
immune mechanisms. Despite the production of functional
bsAbs, these methods have been largely abandoned due to the
high cost and inefficiency associated with them; quadroma tech-
nology produces a high proportion of non-functional byprod-
ucts, and both require sophisticated purification procedures,
making the isolation of clinically useful amounts of material diffi-
cult or impossible.

Recent advances in recombinant technology have made novel
strategies of bsAb production favorable over conventional meth-
ods by using only variable domains as starting material.76 Two
formats which utilize antibody fragments have emerged as supe-
rior strategies for their efficiency, ease of production, and ability
to produce the smallest bsAb constructs to date (which can
improve tumor penetrance). Both formats use scFvs that are con-
structed by associating variable heavy (VH) and light (VL) chain

domains with a stabilizing, flexible polypeptide linker. In one
variation, two fusion scFvs are produced by linking the VH of
one antibody with the VL of another, and both chains are held
together by non-covalent forces to form a structure termed a
“diabody”.77,78 In contrast to these fusion scFvs, a second format
in which two scFvs are translated in tandem through a short,
non-immunogenic linker has proven to be a highly successful
method of bsAb production.79 In this model, the scFv of one
antibody is covalently bound to the scFv of the other, and there-
fore offers greater stability than their diabody fusion counter-
parts. The linker sequence maximizes rotational flexibility for
scFvs to bind two epitopes on separate cell surfaces at once.
Though tandem scFvs and diabodies were first produced using
Escherichia coli, this system has since been replaced with mamma-
lian systems (e.g., Cricetulus griseu, Chinese Hamster Ovary
(CHO) cell line80) that tend to produce bispecific proteins with
fewer folding errors and greater efficiency,80 a breakthrough
method to scale production for clinical translation.

BiTE: Bispecific Antibodies for Cancer Therapy

BiTEs are a subclass of bsAbs that consist of two scFvs origi-
nating from two separate mAbs; one scFv recognizes a tumor
antigen, while the second is specified for CD3e on T-cells.81,82

The combination of two linked scFvs results in a recombinant
polypeptide chain of about 55-60kDa. A small fusion linker con-
nects both variable fragments and allows them to rotate freely,
facilitating optimal interaction between T-cell and target cell in
an immunologic synapse (Fig. 2).83,84 BiTE-induced lytic synap-
ses are architecturally similar in size, composition, and spatial
arrangement of subdomains to lytic synapses formed by activated
T-cells in a typical scenario.85 However, the T-cell-BiTE-tumor
cell configuration induces greater frequency and concentration of
synapse formation, allowing robust lysis of target cells.85 BiTE
recruitment and activation of T-cells leads to the upregulation of
typical activation markers CD69 and CD2586,87 and secretion of
cytokines IFNg, TNF-a, IL-2, IL-4, IL-6, and IL-10.87,88

Importantly, BiTE-mediated cytotoxicity does not occur by
monovalent binding to CD3; both arms (i.e., to TAA as well)
must be bound, linking antigen to activation and addressing con-
cerns regarding the non-specific toxicity seen with globally
activating mAbs. It is similarly important to recognize that
BiTE-efficacy is not dependent on the antigen specificity of
bound T-cells - it essentially confers TAA-specificity to the entire
contacted T-cell populous. Target cell lysis also requires BiTE
engagement of cytotoxic T-cells that express granzymes and per-
forin which, unlike na€ıve T-cells, do not require costimulatory
signals to actively secrete toxins.89,90 Perforin-mediated delivery
of granzyme B causes a calcium-dependent proteolytic activation
of intracellular caspases which results in tumor cell death.91,92

The FasL-Fas receptor system, despite its apoptotic role in nor-
mal cells, has not been shown to be significantly involved in
BiTE activity.92,93

In addition to CD8C cytotoxic T-cells, BiTEs can also bind
CD4C helper T-cells and TREG cells.94,95 Remarkably, recent
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data has shown that BiTE-binding of these two cell types leads to
dramatic upregulation of granzyme B and perforin in response to
target cells.92,96-98 Previous studies have described this perforin-
granzyme axis as a means by which TREG assert their suppressive
function through the killing of effector cells. Given the presence
of intratumoral TREG, the finding that BiTEs carry the potential
to co-opt TREG killing of lymphocytes for direct tumor cell lysis
might play a dramatic role in upcoming studies evaluating BiTE
efficacy.

BiTEs are also being investigated in combinatorial formats. In
a recent study by Yu and colleagues,99 an oncolytic vaccinia virus
(VV) encoding secretory EphA2-specific BiTEs was shown to
enhance T-cell mediated tumor killing of human A549 lung can-
cer cells. Importantly, specifying VV for secretory BiTEs did not

interfere with either viral replication or the antitumor activity of
oncolytic VV. Instead, the secretion of BiTEs synergized with the
antitumor efficacy of VV by recruiting T-cells to the site of
tumor. The use of VV as both an oncolytic agent and delivery
mechanism represents a novel application of two exciting thera-
pies, which may also further enhance the safety profile of the
BiTE platform.

Clinical Translation

The BiTE format has been evaluated against an impressive
variety of tumor-associated targets. These include CD19, CD20,
EpCAM, EGFR, MUC-1, CEA, and HER2. Blinatumomab
(MT103), a CD19/CD3 targeted BiTE, became the first BiTE
ever tested in man in 2001 and has shown safety and promising
efficacy in treating ALL and B non-Hodgkin’s lymphoma
(NHL) in phase I/II trials. Importantly, the phase II data from
ALL patients supported the notion that BiTEs are efficacious
against both advanced and minimal residual disease.100,101 In a
separate trial by Schlegel and colleagues, nine post-transplant
relapsed pediatric patients suffering with ALL were treated with
blinatumomab at infusion dosages of 5 to 15 mg/m2/day,102 and
remarkably, six patients responded with complete remission after
one or two cycles. The remaining three patients did not respond
to treatment. Early preclinical studies by Wong et al. also dem-
onstrate promising results for patients with chronic lymphocytic
leukemia - an incurable B-cell malignancy. When peripheral
blood mononuclear cells from 28 patients were tested with blina-
tumomab against leukemic cells, cytotoxicity and tumor cell
death was observed at low T cell:tumor cell ratios.103 Blinatumo-
mab was recently approved by the FDA for Philadelphia chromo-
some-negative precursor B-cell ALL under the FDA’s accelerated
approval program after receiving ‘breakthrough therapy designa-
tion’ earlier this year.

The EpCAM-targeting MT110 is the second BiTE to have
entered a phase I clinical trial for solid tumors including gastric,
colorectal, ovarian, breast, prostate, and small cell lung cancer.
Minimal doses (1 mg/day) of MT110 were found to be well-tol-
erated, and dose escalation is currently under evaluation. BiTEs
under active clinical investigation in trials registered with www.
clinicaltrials.gov are summarized in Table 1.

Expert Opinion

BiTEs are novel biologics that are beginning to demonstrate
great promise in tumor therapy. The growing interest and enthu-
siasm surrounding this platform is owed in part to the wide-
spread clinical and commercial success of mAbs over the past two
decades. As of 2012, 40 mAbs have received FDA-clearance for
clinical use against several cancers, including lymphoma,104

breast cancer,105 and colorectal cancer,106 among others. Recent
advances in DNA recombinant and hybridoma technologies have
helped streamline the bench-to-bedside translation of mAbs, and
their low cost of manufacturing has helped them become the

Figure 2. A schematic representing EGFRvIII-specific BiTE creating an
immunologic synapse by binding to a tumor cell via the tumor specific
antigen EGFRvIII and a T cell via CD3-epsilon. Note that the EGFRvIII bind-
ing portion does not bind to the wild-type EGFR, thus mediating tumor
cell specific targeting. Reproduced with permission from reference.115
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highest selling class of biologics in industry, peaking to nearly
$25 billion in US sales in 2012.107 BiTEs therefore represent an
extension of a class of drugs that is cheaply made, “off-the-shelf”,
and within a market that has already proven lucrative.

These factors may ultimately determine whether BiTEs enjoy
greater commercial success than competing immunotherapies.
The pharmaceutical industry, for example, has had relatively lim-
ited experience with ACT, and there will be significant obstacles
in delivering this platform to clinics and community hospitals
that do not have the resources of large, well-funded academic
centers to support the infrastructure necessary for cell banks and
production of clinical-grade retrovirus for CAR T-cell produc-
tion. BiTEs also carry many of the same advantages of CARs,
namely MHC-independence and tumor-specificity, with several
added benefits. CAR T-cells, for example, are prone to tumor
immune-subterfuge, in a similar fashion to inert TILs found
within tumors. CARs can therefore be overwhelmed by immuno-
suppressive cytokines or intratumoral TREG inhibition, impeding
their antitumor activity. It remains to be seen if novel modifica-
tions to the CAR design will overcome these factors. By contrast,
BiTEs have been shown to not only re-activate T-cells within
tumor microenvironments,108,109 but can also transform the
immunosuppression of TREG into tumor-directed cytotoxicity.
To our knowledge, there is currently no evidence to support a
similar conversion of function in CARCTREG. ACT-based thera-
pies also depend on the trafficking, localization, and in situ
expansion of adoptively transferred T-cells near tumor, which
can vary dramatically based on the patient and type of cancer.
BiTEs do not depend on the trafficking patterns of infused lym-
phocytes, but may instead recruit and activate T-cells polyclo-
nally, conferring upon all contacted T-cells specificity for and

activation by tumor. These latter two factors may prove particu-
larly important; given their small size, BiTEs may be able to pen-
etrate deep into solid masses to either activate local TILs or co-
opt TREG that are within the vicinity of tumor cells expressing
the BiTE-directed antigen. This is in comparison to CARs,
which depend completely on the successful migration of single-
cells deep into tumor for clonal expansion upon antigen engage-
ment. Like CARs, BiTEs also carry the potential to confer hosts
with immunologic protection against tumor antigens by coupling
DC recruitment with BiTE-mediated tumor killing. In theory,
activated DCs from the CNS could stimulate an endogenous
host response through antigen cross-presentation in the draining
lymph nodes, which has been shown to confer primed T-cells
with a tropism for homing to the CNS.110 Furthermore, BiTEs
do not run the safety risk of insertional mutagenesis associated
with gene-therapy, and the short half-life of BiTEs allows a rela-
tively quick cessation of any unintended severe adverse events
resulting from therapy. Regardless of the specific therapeutic plat-
form, however, it remains clear that the identification of cell sur-
face tumor-specific targets represents the most important barrier
to the clinical application of either therapy.

Importantly, BiTEs have also been shown to elicit antitumor
activity against tumors residing in the brain, overcoming previous
concerns regarding the treatment of tumors in immunologically
“distinct” areas such as the CNS.87,111,112 BiTEs recognizing
EGFRvIII have been studied extensively in preclinical models of
GBM.87,111,113 These studies have demonstrated localization of
BiTEs to brain tumors resulting in prolonged survival of tumor-
bearing mice with up to a 75% complete cure rate.87 Other
potential surface targets for the treatment of GBM by BiTE ther-
apy include HER2 and IL-13R. While the clinical translation of

Table 1. Summary of patient trials investigating Bispecific T-cell Engagers (BiTEs). EpCAM D epithelial cell adhesion molecule; CEA D carcinoembryonic
antigen; PSMA D prostate specific membrane antigen

BiTE� Target antigen Disease Phase Status ClinicalTrials.gov ID

Blinatumomab (MT103 / AMG 103) CD19 Relapsed NHL I Completed NCT00274742
AMG 110 / MT110 EpCAM Lung cancer (adenocarcinoma and small

cell), gastric cancer or adenocarcinoma
of the gastro-esophageal junction,
colorectal cancer, breast cancer,
hormone-refractory prostate cancer,
and ovarian cancer

I Active, not recruiting NCT00635596

AMG 211 / MEDI-565 CEA Gastrointestinal Adenocarcinomas I Active and recruiting NCT01284231
AMG 212 / BAY2010112 PSMA Prostate cancer I Active and recruiting NCT01723475
Blinatumomab CD19 Pediatric and adolescent patients with

relapsed/refractory B-ALL
I / II Active and recruiting NCT01471782

Blinatumomab CD19 Relapsed/Refractory B-ALL II Active, not Recruiting NCT01466179
Blinatumomab Philadelphia Positive/BCR-ABL Positive ALL II Active and recruiting NCT02000427
Blinatumomab CD19 Relapsed/Refractory B-ALL II Active, not recruiting NCT01209286
Blinatumomab CD19 Minimal residual Disease of B-ALL II Active, not recruiting NCT01207388
Blinatumomab CD19 Minimal residual disease of B-ALL II Active, not recruiting NCT00560794
Blinatumomab CD19 Relapsed/Refractory B-ALL II Active, not recruiting NCT01209286
Blinatumomab CD19 Relapsed/Refractory diffuse large B-cell

lymphoma
II Active, not recruiting NCT01741792

Blinatumomab CD19 Relapsed/Refractory ALL III Active and recruiting NCT02013167
Blinatumomab CD19 Newly diagnosed BCR-ABL-negative B-ALL

in adults
III Active and recruiting NCT02003222
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BiTEs in this setting has yet to be realized, the technology repre-
sents a new boon for patients where the need for improved ther-
apy is great.
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