
Information-limiting correlations

Rubén Moreno-Bote1,2, Jeffrey Beck3, Ingmar Kanitscheider4, Xaq Pitkow3,5,6, Peter 
Latham7, and Alexandre Pouget3,4,7

1Research Unit, Parc Sanitari Sant Joan de Déu and Universitat de Barcelona, Esplugues de 
Llobregat, Barcelona, Spain 2Centro de Investigación Biomédica en Red de Salud Mental 
(CIBERSAM), Esplugues de Llobregat, Barcelona, Spain 3Department of Brain and Cognitive 
Sciences, University of Rochester, Rochester, New York, USA 4Department of Basic 
Neuroscience, University of Geneva, Geneva, Switzerland 5Department of Neuroscience, Baylor 
College of Medicine, Houston, Texas, USA 6Department of Electrical and Computer Engineering, 
Rice University, Houston, Texas, USA 7Gatsby Computational Neuroscience Unit, University 
College London, London, UK

Abstract

Computational strategies used by the brain strongly depend on the amount of information that can 

be stored in population activity, which in turn strongly depends on the pattern of noise 

correlations. In vivo, noise correlations tend to be positive and proportional to the similarity in 

tuning properties. Such correlations are thought to limit information, which has led to the 

suggestion that decorrelation increases information. In contrast, we found, analytically and 

numerically, that decorrelation does not imply an increase in information. Instead, the only 

information-limiting correlations are what we refer to as differential correlations: correlations 

proportional to the product of the derivatives of the tuning curves. Unfortunately, differential 

correlations are likely to be very small and buried under correlations that do not limit information, 

making them particularly difficult to detect. We found, however, that the effect of differential 

correlations on information can be detected with relatively simple decoders.

Neuronal responses are typically variable in the sense that the number and timing of the 

spikes in response to the same stimulus is never the same from one trial to the next1. This 

variability can greatly reduce the precision of the neural code, as several values of the 

encoded stimulus are typically compatible with the observation of a given spike count. 

When stimuli are encoded in large populations of neurons, this problem may be reduced by 

averaging. However, the effectiveness of averaging depends greatly on the pattern of 
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correlations across neurons (note that we use the term correlations to refer to what are 

commonly called noise correlations, that is, the correlations among neurons for a fixed 

stimulus2).

When the response variability is independent (Fig. 1), information increases linearly with 

the number of neurons in the population (ρ = 0; Fig. 1c). This is a well-known case in which 

averaging helps. In contrast, when neurons have translation-invariant tuning curves (Fig. 1a) 

and correlations among neurons are positive and stronger for similarly tuned neurons than 

for dissimilarly tuned ones, as has been reported in multiple cortical areas3–7 (Fig. 1b), the 

information saturates as the number of neurons increases (Fig. 1c)3,8. In this case, beyond a 

certain number of neurons, averaging does not help. Because the information decreases as 

correlations increase (Fig. 1c), it would seem advantageous to decorrelate neural activity, 

either by a passive process such as balancing excitation and inhibition9, or an active one 

such as attention10,11.

The supposed benefits of reducing noise correlations have, in fact, motivated a large number 

of studies9–12. However, are these benefits real? Can one simply go into a network that is 

receiving information about the outside world, reduce the correlations and expect the 

information to go up (Fig. 1c)? Notably, neither these results nor the large number of 

theoretical studies on which they are based8,13–16 can answer this question. This is because 

all of those studies simply assumed a correlational structure, without taking into account the 

fact that the information must come from other spike trains, which are themselves variable.

So what changes when one considers the more realistic case of networks receiving noisy 

external input? An obvious change is that the input carries finite information. For example, 

because of variable distortions caused by the lens, micro–eye movements and ocular media, 

even an ideal observer of photoreceptors in bright light (where the noise is essentially 

nonexistent) would not know the orientation of a line exactly. And for more complex tasks, 

the problem is worse: when processing the speech of a person talking in a noisy street, the 

ability to recognize the words is limited by the physical mixing of the voice with the 

background noise, which in turn imposes a limit on the information conveyed by the sound 

stream. Thus, even if neurons were independent, adding more of them wouldn’t increase 

information forever. This immediately rules out the ρ = 0 line in Figure 1c for large 

networks.

A less obvious effect of realistic input is that it changes the relationship between correlations 

and information. Information drops as correlations increase (Fig. 1c). But this assumes that 

only the correlations change. What would happen if the input was fixed and network 

parameters such as connectivity or single neuron properties were modified? Such a 

modification would typically change the correlations, but it would also change other aspects 

of the network, including tuning curves. It’s not known in general what would happen to 

information in this case. However, we will show at least one realistic network in which the 

level of correlations has virtually no effect on the information. Thus, contrary to what Figure 

1c suggests, smaller correlations do not necessarily imply more information.
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This doesn’t mean that correlations don’t affect information. Indeed, they do. However, it’s 

not typically the size of correlations that matters, it’s the pattern. We found that large 

networks receiving finite information must contain correlations approximately proportional 

to the product of the derivatives of the tuning curves (referred to as differential correlations, 

see below), which are solely responsible for the information limitation. Thus, positive 

correlations between neurons with similar preferred stimuli (Fig. 1b) do not always limit 

information: they do so only when they contain differential correlations. We also found that 

these information-limiting correlations can be exceedingly difficult to measure directly, 

primarily because they can be very small and masked by other correlations. Fortunately, 

their effect on information can be detected with a realistic number of trials so long as the 

neurons are recorded simultaneously.

RESULTS

Why decorrelation does not imply more information: a simple case

To determine the relationship between correlations and information, we considered a 

network that receives finite information. We varied the parameters of the network in a way 

that caused the correlations to change without changing the input information, and examined 

how this affected the information in the network (Fig. 2a, Online Methods (equations (6–

11)) and Supplementary Modeling).

The network consists of an all-to-all connected homogeneous population of leaky integrate-

and-fire excitatory and inhibitory neurons. Connection strengths were chosen so that each 

neuron received large amounts of excitation and inhibition, the so-called balanced regime. In 

addition, each neuron received external input in the form of a common signal s corrupted by 

temporal white noise. The white noise has two components: an independent one, with 

variance , and a shared one, common to all neurons, with variance . Because of the 

shared component of noise, the information entering the network is finite.

We used a particular measure of information known as Fisher information, which is 

inversely proportional to the square of the discrimination threshold of an ideal observer of 

the neural activity17,18. We focused on Fisher information because many animal 

experiments involve discrimination tasks. The rate at which Fisher information enters the 

network, the input information rate (Online Methods, equations (27) and (28)), is given by

(1)

and, in the limit that the leak time-constant goes to infinity, the output information rate is 

given by

(2)

where N is the number of neurons in the network and T is the observation time window. We 

found that in the relevant regimes, time windows above 2 s and networks above 250 
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neurons, the dependence on T was relatively weak (Supplementary Fig. 1). Equation (2) 

implies that, for large time windows and a long leak time-constant, the output information is 

equal to the input information for all values of N: the network preserves all of its input 

information despite the spiking non-linearity of integrate-and-fire neurons. It should be 

noted, however, that the information saturates as a function of the number of neurons, very 

much like what we saw in Figure 1c. However, unlike that case, equation (2) has no explicit 

dependence on the overall correlations in the network; instead, it depends only on the 

correlations inherited from the input. This implies that we should be able to change network 

parameters in such a way that correlations change without affecting information. This is 

indeed what we found: we could change the mean level of correlations by a factor 10 or 

more (Fig. 2b,c), simply by changing connectivity, without changing the information (Fig. 

2d). Notably, this is true even for small networks (N = 75) for which the input information 

has not yet saturated to its maximum value (Fig. 2d).

For the more realistic case of leaky integrate-and-fire neurons, it is much more difficult to 

compute information analytically, but simulations revealed similar behavior: information 

was independent of the level of correlations for large networks (Fig. 2d). For small networks 

(N = 75), away from saturation, information decreased slightly with overall correlations, but 

this dependence was very weak compared to what we saw in Figure 1c. Indeed, for N = 500, 

information changed by a few percent when the correlations changed by a factor of 10 (Fig. 

2b,d), whereas information changed by 1,000% for the same relative change in correlations 

in Figure 1c.

What this example shows is that noise decorrelation does not necessarily increase 

information in networks of spiking neurons receiving finite information. This doesn’t mean, 

of course, that correlations have no effect on information. The saturation of information was 

indeed a result of correlations (Figs. 1c and 2d). However, this saturation was a result of a 

very specific pattern of correlations. To show this, we left spiking networks and asked a 

general question. If the information in a network saturates as the number of neurons 

increases, what is the pattern of correlations that must be present? In other words, what do 

information-limiting correlations look like?

Information-limiting correlations in population codes

Consider a population composed of N neurons with bell-shaped tuning curves. For such a 

population, the mean activity in response to stimulus s takes the shape of a hill of activity 

(Fig. 3a). If the distribution of neuronal responses conditioned on the stimulus, p(r|s), 

follows the exponential family with linear sufficient statistics, which is known to provide a 

good approximation to neural responses in vivo1,5,7,19–24, then Fisher information is given 

by

(3)

where f′ is a vector of the derivatives of the tuning curve with respect to s (f = (f1(s), …, 

fN(s))T and f′ = df/ds), and Σ is the noise covariance matrix of the neural activity. The right 

side of equation (3) is sometimes referred to as the linear Fisher information; independent of 

the spike train statistics, its inverse is the variance of a locally optimal linear estimator25.
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What are the types of covariance matrices for which Fisher information saturates as N goes 

to infinity? Or equivalently, what are the covariance matrices that limit the ability to detect a 

small change in the stimulus? With population codes, a small change in the stimulus induces 

a shift in the hill of activity (Fig. 3a). One kind of noise that can limit performance is noise 

that similarly shifts the hill of activity sideways from trial to trial across multiple 

presentations of the same stimulus. In this case, the noise looks just like the signal and 

cannot be averaged away. To see this more explicitly, consider a space in which each axis 

corresponds to the activity of one neuron. A particular noiseless hill of activity corresponds 

to a point in that space, and the set of all possible noiseless hills (corresponding to all 

possible stimuli) lies on a curve in the same space (Fig. 3a,b). Noise that shifts only the 

position of the hill produces random shifts along the curve. This type of noise results in a 

distribution that lies only on the curve (Fig. 3b). In other words, given a true stimulus, the 

activity ends up somewhere along the curve corresponding to the set of noiseless hills. If the 

shifts are small compared with the curvature, this distribution can be approximated by one 

that lies along a line tangent to the curve (Fig. 3b). This distribution has a covariance matrix 

proportional to the product of the tuning curve derivatives, which we refer to as differential 

correlations; these are the correlations that limit information (Supplementary Fig. 2). For 

simplicity, here we focus on the approximate distribution.

To see more formally that differential correlations limit information, consider a covariance 

matrix of the form

(4)

where Σ0 is a covariance matrix that does not limit information, that is, a matrix such that 

 does not saturate as N goes to infinity. The information in this case (Online 

Methods, equation (34)) is given by

(5)

Because I0 goes to infinity with N, this expression saturates at 1/ε as N goes to infinity. We 

found that this result is more general (Online Methods): differential correlations are the only 

correlations that can lead to information saturation in the large N limit. Notably, this result 

does not rely on any assumptions about the shape of the tuning curves or whether the tuning 

curves depend on a single variable. Thus, it holds for any shape of the tuning curves (that is, 

not just Gaussian tuning curves; Fig. 3), and for tuning curves that depend on multiple 

variables, including time (the only difference when there are multiple variables is that total 

derivatives must be replaced with partial derivatives). This last point implies that our 

analysis applies to dynamical networks in which tuning curves change over time, as is the 

case, for instance, in the motor system26.

Although the effects of differential correlations are most prominent in the large N limit, they 

are also important for small populations, or for observation times that are so short that only a 

handful of neurons fire (thereby effectively reducing the population size). Even in these 

cases, increasing the level of differential correlations always lowers the information. This is 
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because differential correlations effectively move the hill of activity to a different place on 

every trial, and so necessarily make it harder to accurately decode the stimulus, independent 

of how many neurons there are, the observation time window or the structure of the noise. 

This is true even if information is defined as the inverse of the variance of the locally 

optimal linear estimator, as opposed to Fisher information. In the large N limit and for long 

time windows, these two quantities are equal. However, for small time windows, Fisher 

information underestimates the discrimination threshold of an optimal estimator27.

In addition, we found a subtle, yet important, result (Online Methods, equation (39)). 

Suppose correlations of the form uuT are added to the covariance matrix. If u is not parallel 

to f′, then information decreases, but it does not saturate in the large N limit. Thus, only 

differential correlations can make information saturate as N increases; other correlations can 

decrease information, but cannot make it saturate.

Potential sources of differential correlations

Two factors contribute to the emergence of differential correlations in the brain: limited 

information in the world and approximate computations. The first factor is quite simple. If 

the information provided by the outside world about a stimulus, s, is finite, then information 

must saturate as we increase the number of neurons coding for s, just as in Figures 1c (with 

ρ ≠ 0) and 2d. This in turn implies the presence of differential correlations (assuming the 

tuning curves don’t disappear altogether). The second factor is suboptimal computations28. 

If information saturates because of finite information in the world, and the brain performs 

suboptimal computation on this input, the value at which information saturates must 

decrease. This is because, by definition, suboptimal computation must induce an information 

loss. Given that the amount of information at saturation is controlled by differential 

correlations, suboptimal computations must also increase differential correlations (again 

assuming that the tuning curves don’t change and that suboptimal computations introduce 

additional variance, not bias).

This tells us when differential correlations arise, but it doesn’t tell us how they arise. A 

natural culprit is shared connectivity. Indeed, it has been proposed that shared connectivity 

among neurons with similar tuning properties induces positive correlations that limit 

information29. The intuition is quite simple. If neurons share input, the resulting shared 

variability in their response cannot be averaged out. Although this intuition is sometimes 

valid, it isn’t always: multiple neurons may partially share different aspects of the 

variability, and those differences can be combined to eliminate the variability almost 

entirely8,30. To demonstrate this, we simulated a feedforward network, wired so that each 

neuron in the output layer received a large number of shared connections from neurons in 

the input layer (Fig. 4a). We used independent neurons in the input layer, and the input and 

output layers contained the same number of neurons, such that input information scaled with 

the number of neurons. The drive to the neurons in the output layer was chosen so that they 

all fired at close to 50 Hz; this produced near Poisson statistics (Fano factors of 0.9; Fig. 4b). 

Because of shared connections, the neurons in the output layer were correlated, with average 

correlation coefficients around 0.1 (Fig. 4c and Supplementary Modeling). Despite these 

correlations, information grows linearly with the number of neurons (Fig. 4d), with the same 
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slope as the information in the input layer (data not shown). Thus, this network, similar to 

the one we studied in Figure 2, preserves the information it receives. Shared connectivity 

therefore does not necessarily induce information-limiting correlations.

Another potential source of information-limiting correlations is shared fluctuations in the 

excitability, or gain, of neurons. This has recently been shown to be a major source of 

correlations in cortex, particularly in anesthetized animals31,32. In the case of population 

codes like the one shown in Figure 3, this would induce fluctuations in the height of the hill 

of activity, but not in the position of this hill. As such, the correlations induced by these 

shared fluctuations have little effect on discrimination tasks. However, they could create 

differential correlations for detection task, thereby making it harder to determine whether or 

not an object is present or what its overall contrast is. Note that these arguments are not 

specific to bell-shaped tuning curves, but also apply to curves with other shapes, including 

sigmoidal.

Differential correlations might be small and masked

We then turned to the problem of detecting differential correlations in experimental data. 

One approach is to look for them directly. When differential correlations are the only 

correlations, they are easy to find. One can simply plot the correlation coefficient between 

any pair of neurons as a function of the difference in preferred stimulus, and average over 

preferred stimuli, as is often done in experiments33. For bell-shaped tuning curves, the 

resulting plots have a very characteristic shape (Fig. 5a): positive when the difference in 

preferred stimulus is small and negative when the difference is large. Moreover the 

correlations between pairs of cells are stimulus dependent and have a characteristic shape 

when plotted as a function of stimulus. We plotted the correlation coefficient versus 

stimulus for two pairs of neurons (Fig. 5b), one with preferred stimuli at ±0.5 and the other 

with preferred stimuli at ±0.25. The negative correlations at zero (where the stimulus falls 

on parts of the tuning curves that have opposite slope for the two neurons) and the positive 

side lobes (where the stimulus falls on parts of the tuning curves that have the same slope for 

the two neurons) were telltale signs of differential correlations.

Correlations such as these (Fig. 5a) have, to the best of our knowledge, been seen in only 

one study34. In that study, activity corresponded to a slowly diffusing hill of activity in a 

working memory—ideal conditions for the emergence of differential correlations. However, 

such correlations have not been observed in other experiments. Instead, correlations, 

particularly in sensory areas, look like those shown in Figure 1b; they do not have the 

stimulus dependence shown in Figure 5b33,35. This would appear to suggest that differential 

correlations in vivo are very rare, or at the very least show up under only the most favorable 

conditions. However, that is not the case. Figure 5a,b correspond to almost pure differential 

correlations (with additional independent noise), but it is quite likely that the nervous system 

contains additional correlations that do not limit information, and those correlations can 

mask the differential component. Thus, the pattern of correlations predicted by pure 

differential correlations may be very hard to see. Indeed, in Figure 2 of ref. 36, the 

correlations look somewhat like those shown in Figure 5b, in the sense that they are slightly 

negative when the preferred stimulus is zero and slightly positive away from zero. However, 
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the modulation was weak compared with the error bars, making it difficult to draw strong 

conclusions.

To see the masking effect in a simplified setting, consider tuning curves of the form

with a > b (to avoid negative or zero firing rates), and a covariance matrix given by

where δij is 1 when i = j and 0 otherwise and the preferred stimuli, si, are equally spaced. It 

can be shown for this case that information saturates with the number of neurons 

(Supplementary Modeling). Yet the correlations have no stimulus dependence (unlike in 

Fig. 5a), and there appears to be no differential component. This, however, is a bit of an 

illusion. We can rewrite the covariance matrix as

The last term, c sin(s − si) sin(s − sj), is proportional to , which is exactly the kind 

of correlation that limits information.

Masking via the above mechanism is one way that differential correlations can be hidden. 

They may also simply be small compared with the other correlations. To illustrate this, we 

considered the more biologically realistic case of heterogeneous tuning curves, with 

amplitudes and widths varying from one neuron to the next (Fig. 6a). This case is important 

because, for heterogeneous tuning curves and the correlations shown in Figure 1b (and, in 

fact, for any correlational structure that is sufficiently independent of the tuning curves), 

information does not saturate with N15,16 (Fig. 6b). However, adding even a small 

differential component causes information to saturate. This saturation is shown by the blue 

curve in Figure 6b, which is the information in a population with heterogeneous tuning 

curves (that is, a set of tuning curves with varying peak firing rates; Fig. 6a), with the 

covariance matrix set to Σ0 + εf′f′T. Here, Σ0 corresponds to the kind of correlations shown 

in Figure 1b, and ε = 0.0027 (Supplementary Modeling). Notably, the presence of the 

differential component (f′f′T) cannot be revealed by plotting the correlations as a function of 

the difference in preferred stimuli. The correlation coefficients estimated empirically from 

1,000 trials looked essentially the same whether or not there were information-limiting 

correlations (Fig. 6c).

These examples show that it is difficult to detect differential correlations simply by 

inspecting the noise correlations. This is because differential correlations can be very small 

and may be masked by non–information-limiting correlations. However, it is possible to 

detect the effect of differential correlations on information (see below). This must be done 

by estimating information directly, rather than by estimating correlations.
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Discrete classification and other performance measures

Although our results thus far were derived for fine discrimination and Fisher information, 

they generalize to coarse discrimination between two classes. In this case the information-

limiting correlations are proportional to ΔfΔfT, where Δf is the mean difference in neural 

responses for the two classes; this is just the discrete version of correlations proportional to f
′f′T. To illustrate this, we plotted the percent correct in a binary categorization task as a 

function of the number of neurons (Fig. 6d). As before, we compare two correlational 

structures: Σ0 and Σ0 + εΔf ΔfT, where Σ0 corresponds to the kind of correlations shown in 

Figure 1b (the same covariance matrix used in Fig. 6b) and ε was set to 0.2742 

(Supplementary Modeling). Asymptotic performance was 75% in the presence of 

correlations, but 100% when these correlations were removed, once again illustrating that 

differential correlations limit performance.

Our results are also valid for two-alternative forced-choice tasks in which subjects are asked 

to effectively determine a boundary. A classic example is the well-known motion dot task37, 

in which subjects are asked to discriminate upward versus downward motion. The difficulty 

of this task is determined by the coherence of the dots (the percentage of dots moving 

coherently upward or downward), and is hardest when the coherence is near zero. This task 

would seem to involve a coarse discrimination of direction of motion (up versus down), and 

is often referred to as a coarse discrimination task. However, subjects are effectively asked 

whether coherence is greater than or less than zero, with greater than zero corresponding to 

up, and less than zero to down, so this is really a fine discrimination task around a coherence 

of zero. Information-limiting correlations are, then, the ones proportional to the product of 

the derivative of the tuning curves with respect to coherence, evaluated at a coherence of 

zero. The fact that the derivative is with respect to coherence, rather than direction of 

motion, illustrates an important point: correlations that limit information are different for 

different stimuli and tasks.

Detecting differential correlations by directly measuring information

Although it is typically not possible to observe differential correlations directly, we can infer 

their existence by computing information versus the number of neurons, and determining 

where the information saturates. However, although it is straightforward in principle to 

compute information from data, in practice, care must be taken.

Correlations between spike trains are typically collected by recording a few neurons at a 

time with single electrodes, tetrodes or electrode arrays. Even with large electrode arrays, 

most neurons are not recorded simultaneously. Thus, if one built a covariance matrix based 

on that data, many entries would be empty. Unfortunately, estimating information from such 

an incomplete covariance matrix is prone to profound errors. This is because one must use 

interpolation techniques to fill in the missing entries. For example, a common approach is to 

assume that correlations decrease with the distance between preferred stimuli (Fig. 1b). 

However, this is almost guaranteed to lead to a serious mis-estimation of information: if the 

tuning curves are not translation invariant, as is the case in vivo (and as is shown in Fig. 6a), 

then correlations of this type do not limit information (Fig. 6b). One would mistakenly 

conclude that information is not limited even when the population code contains an 
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information-limiting component. This is, in fact, a general problem: one usually relies on 

strong assumptions about the parametric form of the covariance matrix, and estimates of 

information will depend more on the parameterization than on the scarce covariance data.

To illustrate this point, we performed simulations in which we measured correlations among 

N/2 pairs of neurons and, as proposed previously38 (Supplementary Modeling), we filled in 

the missing elements by approximately resampling the measured correlation coefficients. 

This approach greatly over-estimated the information and, not surprisingly15,16, failed to 

reveal that the information saturates (Fig. 7a). It should be noted that, in a previous study10, 

this approach did reveal saturating information. This is because the study used a suboptimal 

decoder (Supplementary Modeling).

Even when all the neurons are recorded simultaneously, such that all pairwise correlations 

can be measured, estimating information can be tricky because of the limited number of 

trials. In Figure 7b, we show the information obtained directly via equation (3) for the 

information-limited neuronal population simulated in Figure 6a. Here, ‘directly’ means that 

we estimated derivatives of the tuning curves and the correlations from data, inverted the 

covariance matrix, and used equation (3). Even for 2,400 trials, the information obtained in 

this way grew linearly with the number of neurons; it took 4,000 trials for a hint of 

saturation to emerge. Similar results were obtained with ridge regularization of the 

covariance matrix (Supplementary Modeling).

Fortunately, so long as enough neurons are recorded simultaneously, it is possible to obtain 

a reliable estimate of information. This can be done using a cross-validated decoder of 

neural activity (trained with gradient descent and early stopping39, a method that bypasses 

the matrix inversion step of the direct method described above, making it much more robust; 

Supplementary Modeling). This approach revealed information saturation with only a few 

hundred trials (Fig. 7c). It should be noted, however, that although a linear decoder is 

guaranteed to reveal information saturation when the true information saturates, the reverse 

is not true: finding that the information estimated by a linear decoder saturates does not 

imply that the true information saturates, as that decoder may be suboptimal 

(Supplementary Modeling).

Perhaps surprisingly, although differential correlations almost exclusively determine 

information in the large N limit, the locally optimal linear decoder does not depend on them. 

Specifically, if the covariance matrix is Σ0 + εf′f′T, as in equation (4), the optimal decoder 

depends on Σ0, but not on ε. Intuitively, this is because even an optimal decoder cannot get 

rid of the fluctuations resulting from the differential correlations, as they simply shift the hill 

of activity without leaving any trace of whether it was shifted by the stimulus or by noise. 

All the decoder can do is to ensure that the correlations resulting from Σ0 have been 

properly taken into account (Online Methods, equations (33), (36) and (37)).

To conclude, in large populations of neurons, it is typically difficult to assess the patterns of 

correlated activity with sufficient accuracy to determine whether or not differential 

correlations exist, and so it is difficult to conclude anything about information in a 

population from measurements of correlations. Nonetheless, it is possible to accurately 

Moreno-Bote et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2015 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assess information and, if enough neurons are recorded, to find out whether sensory 

information in a neural population saturates. It is critical to always use neurons that are 

recorded simultaneously (that is, never fill in missing entries in the covariance matrix). But 

even with simultaneously recorded neurons, it is best to use a method such as a cross-

validated decoder to obtain accurate estimates of information (Fig. 7c and Supplementary 
Fig. 3), as opposed to direct estimates obtained via equation (3) (Fig. 7b).

DISCUSSION

The fact that information can saturate in population codes with positive correlations, such as 

those shown in Figure 1b, has often been used to argue that positive noise correlations 

among neurons with similar tuning properties limit information. It has also been proposed 

that such positive correlations are the unavoidable consequence of shared input connections 

between neurons with similar tuning, thereby suggesting that shared connections might be 

the main cause of information limitation in neural circuits29.

Our results contradict this perspective in several respects. First, we found that, when 

information is limited, the limit is a result of differential correlations; that is, correlations 

proportional to the product of the derivatives of the tuning curves. These correlations 

necessarily emerge in any (sufficiently large) network receiving finite information and/or 

performing suboptimal computations. Second, correlations induced by shared connections 

did not necessarily limit information. And third, information was not limited by the overall 

level of correlations or by correlations that fell off with the difference in preferred stimuli 

(also see refs. 15,16), from which it follows that decorrelation does not necessarily increase 

information.

It is crucial to keep in mind that these results, particularly the last one about decorrelation, 

are valid only for noise correlations (the correlations among neurons at fixed stimulus). In 

the case of signal correlations (the correlations between the mean responses of the neurons 

as the stimulus varies), the story is very different and is very well understood, thanks to 

previous studies (for a thorough discussion, see ref. 40).

We also found that it is very difficult to detect differential correlations in vivo by measuring 

the correlations directly, as the differential correlations are likely to be masked by other 

correlations that do not limit information. Ultimately, however, the main reason to look for 

such correlations is to determine whether information is limited in a particular area. Thus, a 

better approach is to measure information directly by decoding the neural activity. Notably, 

this decoding must be done on simultaneously recorded neurons, and not on sets of neurons 

recorded on different trials. In the latter case, even if one fills in the missing entries in the 

covariance matrix, it is very likely that the critical differential component will be missed, 

and the information will therefore be radically overestimated.

These results have an important implication: the effect of attention or perceptual learning on 

information in a particular area cannot be assessed by simply measuring pairwise 

correlations. Thus, the fact that pairwise correlations decrease when attention is engaged, 

which has been observed in several studies10,11, cannot be taken as evidence that 
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information must have gone up, nor as a mechanism that can explain any improved 

performance. The only way to determine the true effect of correlations in these kinds of 

studies is to record from large populations of neurons in parallel and decode the neural 

activity with and without attention, or before and after perceptual learning.

ONLINE METHODS

Here we describe the recurrent network of leaky integrate-and-fire neurons used in our 

simulations, and compute information analytically in that network in the limit of long time 

windows and small leak. We then switch to a more theoretical topic and show that 

differential correlations, and only differential correlations, limit information in large 

networks.

A network of leaky integrate-and-fire neurons

We computed the mean and covariance of the response of a network of N leaky integrate-

and-fire neurons. Our starting point is the time evolution equation for the membrane 

potential, denoted Vi. For the leaky integrate-and-fire neuron, this is given by

(6)

Here τm is the membrane time constant (set to 20 ms), Jij is the connectivity matrix (so the 

sum over j runs from 1 to N),  is the time of the lth spike of neuron j,  is the 

synaptic response to that spike (its properties are given in equation (11) and preceding text, 

and the form for hij(t) that we use in our simulations is given in Supplementary Modeling), 

gi(s) is the mean synaptic drive, which depends on a (potentially multi-dimensional, but 

time-independent) stimulus, s, and ξk(t) is time-dependent Gaussian noise

(7)

The autocorrelation function, C(τ), is chosen to integrate to 1,

(8)

and δkk′ is the Kronecker delta. The last term in equation (6) corresponds to a mixing of 

noises, where Mik is an arbitrary mixing matrix, taken in our simulations to consist of both 

independent and shared noise; the latter is taken into account by letting Mik = σindδik + σsδk0. 

Consequently,

(9)
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The neuron emits a spike when the voltage reaches a threshold, denoted θi for neuron i, after 

which the voltage is reset to Vr, which we take to be 0. To take care of the reset, we 

introduce a negative self-current,

(10)

where δ(t) is the Dirac delta function. When i ≠ j, hij(t) corresponds to a brief current pulse; 

it is zero when t < 0 and, for convenience we choose it so that it integrates to 1,

(11)

This gives hij(t) units of inverse time, and so Jij has units of voltage. For now, we take Jij to 

be an arbitrary matrix. In our simulations, however, we consider excitatory-inhibitory 

networks.

Fisher information for long time windows and small leak

Although we would like to compute Fisher information analytically for this network, that is 

not, as far as we know, possible. However, there is one limit in which we can compute it: the 

observation time window is long, and the leak time constant, τm, is infinite (corresponding 

to a non-leaky integrate-and-fire neuron). We consider that limit here.

Our starting point is to compute spike count in a window of size T. This is straightforward: 

simply integrate both sides of equation (6) from 0 to T. This gives

(12)

where ΔVi(T) ≡ Vi(T) − Vi(0). The first integral is approximately the spike count at time T, 

denoted nj(T) for neuron j,

(13)

The term δnj(t) comes from the fact that hij(t) has finite width in time (if i ≠ j). Note that δnj 

is at most 1. The mean of the second integral is zero, and, using equation (7), its variance is 

given by

(14)
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If the correlation time is zero (corresponding to delta-correlated white noise), the double 

integral on the right is just T. However, for finite correlation time, there is a small reduction 

due to edge effects. To take that into account, we write

(15)

where Tc is smaller than T by about the correlation time. Thus,

(16)

where ηk are a set of uncorrelated, zero mean, unit variance Gaussian random variables,

(17)

Inserting equations (13) and (16) into equation (12), yields

(18)

where the noise term, γi, is given by

(19)

How big is γi(T)? In the large T limit, there are typically a large number of spikes, so δnj is 

small compared to nj. Moreover, ΔVi is at most θi. Consequently, in this limit, γi(T) is 

usually small compared with T. However, it isn’t always small: although ΔVi can be at most 

θi, it can be negative, and it can be large and negative. This happens whenever a neuron 

receives a consistently negative current, in which case ΔVi(T) is proportional to −T. We can 

partially solve this problem by simply ignoring any neuron that doesn’t spike. 

Unfortunately, this is only a partial solution, because it’s possible for a neuron to fire once 

or twice due to noise, and then for the voltage to steadily decrease with time; this would 

again mean ΔVi ∝ −T in the large T limit. This can be taken care of by ignoring the 

transients, which we effectively do in our simulations: we run one very long simulation, 

divide them into intervals of either 2 or 10 s, and collect spike counts in those intervals.

Assuming that the connectivity matrix, Jij, is invertible, we can solve equation (18) directly 

for spike count. To simplify notation we switch to vectors and matrices, for which we use 

bold font. Multiplying both sides of equation (18) by J−1, we have

(20)

The mean and covariance of the spike count are therefore given by
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(21)

where the superscript −T denotes transpose and inverse, and, for clarity, we suppress the fact 

that η and γ depend on T.

Linear Fisher information

Our next step is to compute the linear Fisher information, both in the input and in the output. 

In general, for a random variable with stimulus-dependent mean f(s) and covariance matrix 

Σ(s), the linear Fisher information is given by41

(22)

where a prime denotes a derivative with respect to s (if s were a vector, I would be the 

Fisher information matrix, but here we restrict ourselves to scalars). Using the expression of 

the covariance in equation (21), and working to lowest non-vanishing order in 1/T1/2, we 

find that the linear Fisher information in the spike train, denoted Iout, is given by

(23)

How does this compare to the information in the input? The latter is the information 

available to an observer that has direct access to the current, g(s) + Mξ. After observing this 

current for time T, the mean is Tg(s) and, to lowest non-vanishing order in 1/T, the variance 

is TMMT. Thus, using equation (22), the Fisher information in the input, denoted Iin, is 

given by

(24)

This is almost the same as the Fisher information in the output, Iout. The difference is that 

there is extra noise, captured by the O(T−1/2) correction, associated with spikes. Essentially, 

for small times, spikes inject additional noise into the estimate of the mean, but as time 

increases, that noise diminishes. Note, however, that in general there is one more potential 

loss of information: if some neurons never spike, they need to be taken out of the network. 

See, for example, the comments following equation (28).

Here, and in the simulations, we consider a simple model in which the noise is given in 

equation (9), so that

(25)
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where I is the identity matrix, 1 is a vector consisting of all 1’s (so 11T is a matrix with all 

elements equal to 1), and the signal, g(s), is given by

(26)

In this case, as is straightforward to show, the input information is given by

(27)

The output information, Iout, is only slightly smaller,

(28)

Note that here N should really be the number of neurons that fire. However, assuming that 

number is large, it doesn’t really matter what it is—the Fisher information is determined 

mainly by the shared noise, .

Equations (27) and (28) correspond to equations (1) and (2), except that in the main text we 

report information rates, so we divide by T.

Theoretical analysis of differential correlations

In this section we leave neural networks, and turn to theoretical analysis of differential 

correlations. We analyze information when there is a ‘pure’ f′f′T component and, just as 

importantly, when there is a not so pure component. We show that in the former case 

information saturates with N; in the latter case it doesn’t. We also show, somewhat 

surprisingly, that the optimal decoder doesn’t need to know about the f′f′T component of the 

correlations. In the Supplementary Modeling, we provide further insight into differential 

correlations by expressing them in terms of the eigenvectors and eigenvalues of the 

covariance matrix, and we use that analysis to understand why, and when, it’s hard to 

accurately estimate Fisher information.

Here we ask how the linear Fisher information scales with the number of neurons, N, when 

the covariance matrix contains a pure f′f′T component (the second term in equation (31)). 

Our starting point is a covariance matrix, Σ0(s), that doesn’t necessarily contain an f′f′T 

component. As in equation (3), the (linear) Fisher information associated with Σ0(s), 

denoted I0, is given by

(29)

where, as usual, f(s) is a vector of tuning curves,

(30)
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and a prime denotes a derivative with respect to s. Note that the information also depends on 

stimulus, s; we suppress that dependence for clarity. To add a pure f′f′T component, we 

define a new covariance matrix, Σε(s), via

(31)

The new information, denoted Iε, is given by

(32)

To compute Iε, we need the inverse of Σε. As is easy to verify, this inverse is given by

(33)

Inserting equation (33) into (32), we arrive at

(34)

which is equation (5).

Perhaps surprisingly, although f′f′T correlations have a critical role in determining 

information, they are irrelevant for decoding, in the sense that they have no effect on the 

locally optimal linear estimator. To see this explicitly, note first of all that the locally 

optimal linear estimator, denoted wT, generates an estimate of the stimulus near some 

particular value, s0, by linearly operating on neural activity,

(35)

In the presence of the covariance matrix given in equation (31), the optimal weight,  is 

given by

(36)

where we have dropped, for clarity, the explicit dependence on s0. Using equation (33), this 

reduces to

(37)

Thus, the locally optimal linear decoder does not need to know the size of the f′f′T 

correlations.
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In hindsight this makes sense: f′f′T correlations shift the hill of activity, and there is, quite 

literally, nothing any decoder can do about this. This suggests that these correlations are in 

some sense special. To determine just how special, we ask what happens when we add 

correlations in a different direction—say correlations of the form uuT, where u is not 

parallel to f′. In that case, the covariance matrix becomes (with a normalization added for 

convenience only)

(38)

Repeating the steps leading to equation (34), we find that

(39)

where I0 is defined in equation (29) and

(40)

Whenever θ ≠ 0—meaning u is not parallel to f′(s)—information does not saturate as N goes 

to infinity. Thus, in the large N limit, f′(s)f′(s)T correlations are the only ones that cause 

saturation.

A Supplementary Methods Checklist is available.
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Figure 1. 
The effect of correlations on a population code with translation invariant tuning curves. (a) 

A neuronal population with translation invariant tuning curves to the stimulus s (arbitrary 

units). (b) Correlations in vivo often decrease as a function of the difference in preferred 

stimuli, δs. This decrease is often reasonably well described by a circular Gaussian (as 

shown here) or an exponential function of the stimulus. (c) Information in a population of 

neurons with the tuning curves and correlations shown in a and b. The different curves 

correspond to different maximum correlation values (the correlation coefficient, ρ, at δs = 

0). When neurons are independent (ρ = 0), the information scales linearly with the number 

of neurons. For ρ > 0, the information saturates as N increases. This plot is often used to 

argue that correlations such as those in b limit information in population codes.
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Figure 2. 
Decorrelation does not necessarily increase information. (a) Network architecture. Each 

neuron receives input from recurrent connections, and, in addition, external input with mean 

proportional to s, but corrupted by shared and independent noise (Online Methods, equation 

(9)). (b) Mean correlation coefficient as a function of the number of neurons. The three 

colors correspond to three networks that differ only in their connection strengths, but chosen 

so that, in all cases, the mean firing rate was close to 40 Hz. For a fixed number of neurons, 

the mean correlation coefficients can vary by more than a factor of 10 across the three 

networks. Solid lines show the analytical predictions for non-leaky integrate-and-fire 

neurons, and the open and closed circles show the results of the simulations with non-leaky 

and leaky integrate-and-fire neurons, respectively. Some of the open circles fall behind the 

closed ones and are therefore not visible. The observation time window was 10 s for the 

non-leaky integrate-and-fire neurons and 2 s for the leaky integrate-and-fire neurons. (c) 

Histogram of correlation coefficients (N = 500); same color code as in b. The red 

distribution has a mean very close to zero (0.013), whereas the green distribution has a mean 

of 0.108. (d) Information as a function of the number of output neurons (same color code as 
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in b). The black solid line shows the input information (equation (1)) and the red solid line 

corresponds to the information in the input for infinite networks (equation (1) with N taken 

to be infinity). As in b, open and closed circles show the results of the simulations with non-

leaky and leaky integrate-and-fire neurons, respectively. Inset, information as a function of 

the correlations for each network size. Unlike in Figure 1c, the information at which the 

network saturates (open dots, N = 500) has a very weak dependence on the mean 

correlations; instead, all three networks show nearly the same asymptotic value of 

information. Even for small networks away from the saturation, information is independent 

of overall correlations for non-leaky integrate-and-fire neurons, and only weakly dependent 

on correlations for leaky integrate-and-fire neurons. Thus, smaller correlations do not 

necessarily imply more information. Error bars correspond to s.e.m.
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Figure 3. 
Differential correlations induced by a shifting hill. (a) Population activity for neurons with 

translation invariant tuning curves (as in Fig. 1a), with neurons ranked according to their 

preferred stimulus. The red and pink curves correspond to the population response to the 

same input on two different trials. We assumed that the variability is such that the hill 

simply translated sideways from trial to trial. When this was the case, correlations were 

mostly proportional to the product of the derivatives of the tuning curves. The two blue 

neurons were positively correlated because the derivatives of their tuning curves were 

negative for both neurons, and the product of their derivatives was therefore positive. In 

contrast, the green neuron was negatively correlated with either of the blue neurons because 

its derivative had the opposite sign as theirs. (b) Population patterns of activity, as in a, can 

be thought of as points in an N-dimensional space, in which each axis corresponds to the 

activity of one neuron. Only two neural dimensions are shown here, out of N. As the hill of 

activity shifts with s, the mean population activity traces out a curve (the black curve labeled 

f(s)). Pure information-limiting noise looks like a sideways shift of the hill, corresponding to 

movement along the curve. In this case, the activity has a probability distribution that wraps 

along the curve f(s), as shown in yellow. If the variability is small compared with the 

curvature of the manifold, the yellow distribution can be approximated by the blue 

distribution that lies along the tangent to the curve, corresponding to the f′(s) direction, with 

a resultant covariance matrix proportional to f′(s)f′(s)T.
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Figure 4. 
Shared connections do not necessarily induce information limiting correlations. (a) Network 

architecture. The network consists of two layers. The input layer contains N neurons. These 

are modeled as white noise process and they project to N output neurons. The output 

neurons, which were not recurrently connected, were modeled as non-leaky integrate-and-

fire neurons. The output neurons also receive independent and identically distributed (i.i.d.) 

noise. A parameter f controls the probability that a connection is shared by two neurons. (b) 

The Fano factor was roughly constant at around 0.9. Not shown are the firing rates; these 

were held at 50 Hz, independent of network size, by adjusting the mean drive to each 

neuron. (c) Correlations were also roughly constant as the size of the network increases. (d) 

Information in the output layer (which was the same as in the input layer; data not shown). 

Unlike in Figure 1c, where positive correlations led to information saturation as a function 

of the number of neurons, information increased linearly with network size. Thus, the 

correlations induced by the shared connectivity do not limit information in this case. In b–d, 

the solid lines indicate analytical predictions, the dots show the results of simulations and 

error bars represent s.e.m.
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Figure 5. 
Differential correlations. (a) Average correlation coefficient as a function of the difference 

in preferred stimuli for a population of neurons with differential correlations (as shown in 

Fig. 3a) plus independent Poisson noise. The average was taken over all pairs of neurons 

with the same difference in preferred stimuli, δs. Correlations were negative for large δs, in 

contrast to the correlations found in vivo (Fig. 1b). (b) Correlation coefficient between two 

pairs of neurons as a function the stimulus. The blue line represents a pair of neurons with 

preferred stimuli −0.5 and 0.5. The red line represents a pair with preferred stimuli −0.25 

and 0.25. Correlations were strongly modulated by the value of the stimulus.
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Figure 6. 
Small differential correlations can have a large effect on information. (a) A population code 

with tuning curves of varying amplitudes. (b) Information as a function of the number of 

neurons for the population code shown in a. The two curves correspond to two different 

covariance matrices, Σ0 (red) and Σ0 + εf′f′T (blue), where Σ0 is a covariance matrix in 

which pairwise covariances follow a decaying exponential function of the cosine of the 

difference in preferred stimuli (as in Fig. 1b; see Supplementary Modeling). Information 

saturated in the presence of differential correlations (the εf′f′T component). (c) Empirically 

estimated correlations from 1,000 trials plotted as function of the difference in preferred 

stimuli for the two covariance matrices Σ0 (red) and Σ0 + εf′f′T (blue). The two distributions 

of correlation coefficients were nearly indistinguishable even though the amount of 

information was very different (b). (d) Percentage correct in a binary classification task as a 

function of the number of neurons. The red and blue curves correspond to two different 

covariance matrices, Σ0 (red) and Σ0 + εΔf ΔfT (blue), where Σ0 is as described in b and Δf 
is the mean difference of activity of the neurons for the two stimulus classes; the black curve 

corresponds to the performance of an independent population. Performance was limited to 

72% when ΔfΔfT correlations were present, but reached the value predicted for an 
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independent code when there were no ΔfΔfT correlations (Supplementary Modeling). Data 

points and error bars represent mean and s.e.m., respectively.
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Figure 7. 
Estimating information from neuronal populations with differential correlations 

(Supplementary Modeling). (a–c) Empirical estimate of Fisher information versus the 

number of sampled neurons (N) and number of trials (M). In all panels, the solid blue line 

shows the average Fisher information as a function of the number of simultaneously 

sampled neurons, with the average calculated over 20 random sets of N neurons; the black 

horizontal line shows the true Fisher information for the entire population, which is assumed 

to have infinite size. Error bars represent s.e.m. The same color code for M is used in all 

panels. (a) Fisher information computed from equation (3), using a covariance matrix in 

which only N/2 correlation values were measured experimentally. The missing entries were 

estimated from the empirical measurements by requiring that they have approximately the 

same statistics as the observed correlation coefficients27. Regardless of the number of trials, 

the estimated information failed to reveal the saturation of information, thereby missing the 

presence of differential correlations. (b) Fisher information again computed from equation 

(3), but using a covariance matrix estimated from N simultaneously recorded neurons. The 

estimated information still missed the information saturation even for thousands of trials. (c) 

Fisher information estimated with a locally optimal linear estimator trained with early 

stopping to prevent overfitting. This method consistently returned a lower bound on the true 

information for the entire population (horizontal black line), even for a small number of 

trials and neurons. As a result, it revealed the presence of information limiting correlations. 

Data points represent mean values in all panels.
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