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Abstract

A comprehensive account of the causes of alcohol misuse must accommodate individual 

differences in biology, psychology and environment, and must disentangle cause and effect. 

Animal models1 can demonstrate the effects of neurotoxic substances; however, they provide 

limited insight into the psycho-social and higher cognitive factors involved in the initiation of 

substance use and progression to misuse. One can search for pre-existing risk factors by testing for 

endophenotypic biomarkers2 in non-using relatives; however, these relatives may have personality 

or neural resilience factors that protect them from developing dependence3. A longitudinal study 

has potential to identify predictors of adolescent substance misuse, particularly if it can 

incorporate a wide range of potential causal factors, both proximal and distal, and their influence 

on numerous social, psychological and biological mechanisms4. Here we apply machine learning 

to a wide range of data from a large sample of adolescents (n = 692) to generate models of current 

and future adolescent alcohol misuse that incorporate brain structure and function, individual 

personality and cognitive differences, environmental factors (including gestational cigarette and 

alcohol exposure), life experiences, and candidate genes. These models were accurate and 

generalized to novel data, and point to life experiences, neurobiological differences and 

personality as important antecedents of binge drinking. By identifying the vulnerability factors 

underlying individual differences in alcohol misuse, these models shed light on the aetiology of 

alcohol misuse and suggest targets for prevention.

Alcohol misuse is common among adolescents5: slightly over 40% of all 13–14-year-old 

adolescents in the USA report alcohol use and 10% of this age group exhibit regular use. 

These figures rise to almost 65% for any alcohol use and 27%who report regular use by age 

16 years. This is of concern as murine models demonstrate that adolescents are more 

vulnerable to alcohol-induced neurotoxicity than adults1. Early alcohol use is a strong risk 

factor for adult alcohol dependence6 and therefore identifying inter-individual vulnerabilities 

and predictors of alcohol use inhuman adolescents is of importance. Generating such 

predictors, however, is challenging, not least because large sample sizes are needed to 

provide accurate estimates of the small effect sizes that prevail in the biological sciences7,8. 

Therefore, previous prospective studies, which typically focus on just one type of risk factor, 

have necessarily yielded modest predictions of future alcohol misuse. Moreover, previous 

classification approaches incorporating biological data have often been flawed due to 

overfitting9,10,11.
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Personality measures, particularly those assessing traits conferring risk for substance misuse, 

can identify adolescents at high risk of substance misuse12.Life events in early adolescence, 

such as parental divorce13, can also serve as predictors of future alcohol use. A number of 

candidate genes for alcohol dependence have been identified14, although the overall risk 

conveyed by any one polymorphism is small15. Cognitive factors such as executive function 

(for example, inhibitory control), but not attention and visual memory, distinguished non-

substance-using siblings of substance misusers from healthy controls16. Response inhibition 

was a modest predictor of adolescent alcohol misuse (explaining about 1% of variance) in a 

large sample of adolescents17.Until now, there have been no large-sample prospective 

studies examining the neural correlates of alcohol misuse, but there is some evidence of a 

reduction in brain activity during tests of inhibitory control for adolescents who 

subsequently engaged in heavy alcohol use18.

Here, we construct models of current and future adolescent binge drinking by combining a 

wide range of data (Extended Data Table 1) from the IMAGEN project19,20, a multi-

dimensional longitudinal study of adolescent development, using regularized logistic 

regression21 (Extended Data Fig. 1). First (Analysis 1), we identified the characteristics 

discriminating 115 14-year-old binge drinkers (a minimum of three lifetime binge drinking 

episodes leading to drunkenness by age 14) from 150 14-year-old controls (non-binge 

drinkers, a maximum of two lifetime uses of alcohol until at least the age of 16; see 

Extended Data Table 2 for participant details) returning an area-under-the-curve (AUC) 

receiver-operator characteristic (ROC) value of 0.96 (95% CI = 0.93–0.98; see Extended 

Data Table 3a for all beta weights). At the optimum point in the ROC curve, 91% of binge 

drinkers and 91% of non-binge drinkers were correctly classified, significantly better than 

chance (P = 8.0 × 10−61). At the maximum F-score value, this classification accuracy 

corresponds to a precision rate of 87% (that is, those identified as binge drinkers who are 

actually binge drinkers) and a recall rate of 99% (that is, binge drinkers that are successfully 

detected; Extended Data Fig. 2a, b).

The model reported in Analysis 1, although highly accurate, was dominated by the inclusion 

of smoking, which often co-occurs with alcohol use. In Analysis 2, therefore, we removed 

smoking and re-ran the analyses (see Extended Data for all additional analyses with smoking 

included), which resulted in an AUC of 0.90 (95% CI = 0.86–0.93). At the optimum point in 

the ROC curve, 82% of binge drinkers and 89% of non-binge drinkers were correctly 

classified (P = 8.8 × 10−48). At the maximum F-score value the precision rate was 87% and 

the recall rate was 89% (Extended Data Fig. 2e, f). The features included in this model, and 

their strength of association with group membership, are displayed in Fig. 1a.

Figure 2a displays the brain regions that most consistently discriminated current binge 

drinkers from non-binge-drinkers (see Extended Data Fig. 3 for the contributions of each 

brain feature). The most robust brain classifiers were in ventromedial prefrontal cortex 

(vmPFC) and the left inferior frontal gyrus (IFG). The vmPFC grey matter volume was 

smaller in the current binge drinkers and this group, compared to controls, also showed 

decreased activity when anticipating or receiving a reward, but increased activity when 

processing angry faces. In the left IFG, current binge drinkers had smaller volumes and 

reduced activity when anticipating and receiving rewards and when processing angry faces.
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The performance of each domain on its own (Analysis 3), both with and without age-14 

smoking, is displayed in Extended Data Fig. 4a. The History and Personality domains were 

each accurate classifiers (AUC > 0.8).Next, we sought to quantify the unique contribution of 

each domain to the classification of current binge drinkers both with (Analysis 4) and 

without (Analysis 5) age-14smoking. To this end, we iteratively removed each domain from 

the full model (re-calculating the optimum elastic net parameters), and observed the relative 

reduction in classification accuracy (Extended Data Fig. 4b, c). The History domain 

contributed the greatest unique variance to the model (significant correlations among 

features are displayed in Extended Data Fig. 5). The results of external generalizations of the 

current binge drinking models with and without nicotine (Analyses 6 and 7, respectively) are 

displayed in Extended Data Fig. 2c, d, g, h.

We have described the profile of current alcohol misusers while also demonstrating the 

efficacy of our modelling approach. However, to identify risk factors for adolescent alcohol 

misuse, a matter of clinical relevance, a model that predicts future binge drinking is 

required. Thus, in Analysis 8, we compared 121 future binge drinkers (a maximum of two 

drink occasions by age 14 and a minimum of three lifetime binge drinking episodes by age 

16) to the 150 controls described previously. This model had an AUC of 0.75 (95% CI = 

0.69–0.80; Extended Data Fig. 2i, j). At the optimum point in the AUC curve, 73% of non-

binge drinkers and 66% of binge drinkers were correctly classified, significantly better than 

chance (P = 4.2 × 10−17) given a base rate of 45% binge drinkers. This corresponds to a 

precision rate of 64% and a recall rate of 93% at the maximum F-score value. The features 

of the final model are displayed in Fig. 1b. Figure 2b displays the brain regions that 

discriminated future binge drinkers from non-binge-drinkers and the contributions of each 

functional/structural feature are displayed in Extended Data Fig. 6.

Next, we examined each domain on its own (Analysis 9). History was still the most 

predictive domain; however, now its influence was broadly comparable to Brain and 

Personality (Extended Data Fig. 4d), although the unique contribution of History was more 

apparent when each domain was iteratively removed from the model (Analysis 10; Extended 

Data Fig. 4e). Significant correlations among the features are displayed in Extended Data 

Fig. 7.

Our profile of adolescent binge drinking used a large sample and was internally valid, in that 

it generalized well using cross-validation. However, an outstanding question is whether or 

not this profile would be applicable to a new sample with different levels of alcohol 

consumption, which would speak to the dimensional nature of substance misuse22. Thus, we 

applied the prediction model from Analysis 8 to a new sample from the IMAGEN study 

(Analysis 11): all subjects had between 3–5 lifetime drink occasions (that is, a score of 2 on 

the substance misuse questionnaire) but no binge drinking episodes by age 14; by age 16, 61 

of these still had no binge-drinking episodes whereas 55 participants had at least 3 binge-

drinking episodes. Application of the model (without age-14 drinking as this was the same 

for all participants) resulted in similar predictability to that reported above: ROC AUC = 

0.75 (95% CI = 0.66–0.83). At the optimal point of the AUC 77% of binge drinkers and 

67% of non-binge-drinkers were correctly assigned (P = 2.71 × 10−8). At the maximum F-

score value, this corresponds to a precision rate of 65% and a recall rate of 93%. The most 
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robust brain predictors of future binge drinking were the right middle and precentral gyri 

(Brodmann Area 6) and bilateral superior frontal gyrus (Brodmann Area 9). At age 14 future 

binge drinkers had reduced grey matter volume but increased activity when receiving a 

reward in the superior frontal gyrus compared to controls. In premotor cortex, future binge 

drinkers showed greater grey matter volume and greater activity when failing to inhibit.

A number of features were common to both current and future alcohol misuse (Analyses 2 

and 8). Life events, such as a romantic or sexual relationship, were strong classifiers for both 

current and future binge drinkers. Personality measures associated with binge drinking 

included the novelty-seeking trait from the temperament and character inventory (TCI) 

psychobiological model of personality23. This trait identifies the behaviour of searching for, 

and feeling rewarded by, novel experiences and is regarded as a heritable, dopamine-related 

temperament: higher scores on Disorderliness and Extravagance (a tendency to approach 

reward cues) characterized both current and future binge drinkers. Conscientiousness (the 

degree to which an individual is organized, controlled and motivated to achieve a desired 

goal) was lower in both current and future binge drinkers.

Some features differed in their utility to classify current and future binge drinkers. 

Disruptive family events, the personality trait of agreeableness, more developed pubertal 

status, impulsivity and higher delay discounting (the tendency to devalue future rewards) 

classified current, but not future, binge drinkers. In contrast, the anxiety sensitivity subscale 

of the substance use risk profile scale (SURPS)24 (fear of anxiety-related emotions and 

sensations due to beliefs that these emotions and sensations could lead to harmful 

consequences) predicted non-binge drinking at age 16, not at age 14. Parenchymal volume 

and grey:white matter ratio predicted future, but not current binge drinking. The most 

prominent brain regions for classifying current binge drinkers included the vmPFC and the 

left lateral PFC, areas that have been implicated in emotional regulation of bingeing 

behaviour25,26. Whereas emotional processing areas were implicated in age-14 binge 

drinking, predicting age-16 binge drinkers from data at age 14 relied relatively more on 

regions associated with failed inhibitory control and reward outcome and on local and global 

brain structure. Notably, even 1–2 lifetime alcohol occasions by age 14 was sufficient to be 

an important predictor of future binge drinking at age 16.

We have identified a generalizable risk profile for alcohol misuse initiation. In contrast with 

the classification of current binge drinkers, which was primarily a function of the History 

domain, the prediction of future binge drinking relied relatively more on a combination of 

three domains: History, Personality and Brain (individual ROC AUCs of 0.68, 0.67 and 

0.63, respectively; Analysis 9). Thus, these results point to the value of a multi-domain 

analysis for predicting adolescent alcohol misuse and speak to the multiple causal factors for 

alcohol misuse. Further, we note that the influence of any one feature in isolation was 

modest, consistent with data showing that effect sizes in previous studies with smaller 

samples are likely to have been overestimated7,9. Given that the odds of adult alcohol 

dependence can be reduced by 10%for each year drinking onset is delayed in adolescence27, 

this risk profile may facilitate the development of targeted interventions24,28, which often 

yield higher effect sizes than general approaches29.
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METHODS

Overview of IMAGEN protocols

Full details of the procedures employed by the IMAGEN study, including details on ethics, 

recruitment, standardized instructions for administration of the psychometric and cognitive 

behavioural measures, and for blood collection and storage are available to view in the 

standard operating procedures for the IMAGEN project (http://www.imagen-europe.com/en/

Publications_and_SOP.php). Informed consent was obtained from all subjects and their 

parents/guardians.

FMRI acquisition and analysis

Full details of the magnetic resonance imaging (MRI) acquisition protocols and quality 

checks have been described previously, including an extensive period of standardization 

across MRI scanners19.

Functional MRI tasks

The stop signal task (SST), previously described in ref. 20 required volunteers to respond to 

regularly presented visual go stimuli (arrows pointing left or right) but to withhold their 

motor response when the go stimulus was followed unpredictably by a stop-signal (an arrow 

pointing upwards).We calculated contrast images for successful inhibitions (‘stop success’) 

and unsuccessful inhibitions (‘stop fail’), both versus an implicit baseline. The monetary 

incentive delay (MID) task (adapted from a task described previously30) required 

participants to respond to a briefly presented target by pressing either a left-hand or right-

hand button as quickly as possible to indicate whether the target appeared on the left or the 

right side of the monitor display. If the participants responded while the target was on the 

screen, they scored points but if they responded before the target appeared or after the offset 

of the target they received no points. A cue preceded the onset of each trial, reliably 

indicating the position of the target and the number of points awarded for a successful 

response. A triangle indicated no points (no win), a circle with one line 2 points (small win) 

and a circle with three lines 10 points (large win). We calculated contrast images for the 

anticipation period of large win minus no win, and the outcome period for large win minus 

no win. The emotional reactivity task involved passive viewing of video clips that displayed 

ambiguous (emotionally “neutral”) or angry face expressions or control (non-biological 

motion) stimuli31. Each trial consisted of short (2 to 5 s) black-and-white video clips 

depicting either a face in movement or a control stimulus. We calculated contrast images 

from angry faces minus ambiguous faces.

Personality measures

Broad dimensions of personality were assessed using the 60-item neuroticism-extraversion-

openness five-factor inventory, which returns measures on the dimensions of Extraversion, 

Agreeableness, Conscientiousness, Neuroticism, and Openness to Experience as described 

in the five-factor model of personality32. The substance use risk profile scale (SURPS33) 

assesses personality traits that confer risk for substance misuse and psychopathology along 

four distinct and independent personality dimensions; anxiety sensitivity, hopelessness, 
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sensation seeking, and impulsivity. The novelty seeking scale of the temperament and 

character inventory-revised (TCI-R34), which is composed of four sub-scales: Exploratory 

Excitability, Impulsiveness, Extravagance and Disorderliness, was administered.

Cognition

Participants completed a version of the Wechsler intelligence scale for children WISC-IV35, 

of which we included the following subscales. Perceptual Reasoning, Matrix Reasoning, 

Similarities and Vocabulary. The monetary-choice questionnaire (MCQ36) was administered 

to provide a measure of preference of immediate lower over delayed higher monetary 

rewards. Participants completed five CANTAB tests: the Affective Go/No-go task, the 

Pattern Recognition Memory task, the Spatial Working Memory Task, the Rapid Visual 

Information Processing task, and the Cambridge Guessing Task (CGT). Behavioural data 

from functional imaging tasks included the mean Go reaction time and the standard 

deviation of the Go reaction time from the Stop Signal Task (inhibitory control). 

Behavioural data from the monetary incentive delay (reward) task were as follows: the 

number of Big Win trials on which the target was not hit, the number of Big Win trials on 

which the target was hit, the number of Small Win trials on which the target was not hit, the 

number of Small Win trials on which the target was hit, the number of No Win trials on 

which the target was not hit, and the number of No Win trials on which the target was hit. 

After the Emotional Reactivity tasks scanning session, participants completed a recognition 

task in which they were presented with three of the faces previously presented in the 

scanning session and two novel faces. Behavioural data from this task included the number 

of targets and the number of foils correctly categorized. Participants were not informed 

before the scanning session about the subsequent recall task.

History

The life-events questionnaire (LEQ) is an adaptation of the stressful life-event 

questionnaire37, which uses 39 items to measure the lifetime occurrence and the perceived 

desirability of stressful events covering the following domains: Family/Parents, Accident/

Illness, Sexuality, Autonomy, Deviance, Relocation, and Distress. The life-events valence 

labels were as follows: very unhappy, unhappy, neutral, happy, very happy. The pregnancy 

and birth questionnaire (PBQ, adapted from ref. 38) was completed by each participant’s 

parent or guardian and parental cigarette and alcohol use during pregnancy were recorded, 

then recoded as binary variables. Subjects were classified into one of three categories: 

family history negative (a score of 0), neither positive nor negative (a score of 1), and family 

history positive (a score of 2).

Demographics

The puberty development scale (PDS39) was used to assess the pubertal status of our 

adolescent sample. The socioeconomic status score was comprised of the sum of the 

following variables: Mother’s Education Score, Father’s Education Score, Family Stress 

Unemployment Score, Financial Difficulties Score, Home Inadequacy Score, 

Neighbourhood Score, Financial Crisis Score, Mother Employed Score, Father Employed 

Score.
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Genetics

We included single nucleotide polymorphisms (SNPs) described in a recent review14 of 

genome wide association studies of alcohol dependence. Of the 30 unique SNPs listed in this 

review, the IMAGEN sample contained 14 SNPS that passed quality control, did not have a 

low minor allele frequency (<5%) or a high genotyping failure rate (>5%), and were not 

highly correlated (>.98) with any other available SNP. In addition, we also included an 

additional SNP, rs26907, reported in ref. 40. Genetic data were available on 1,835 

individuals.

Substance misuse measures

The European School Survey Project on Alcohol and Drugs (ESPAD41) was administered. 

The ESPAD category scores are as follows (Score/Lifetime occurrences): 0(0), 1(1–2), 2(3–

5), 3 (6–9), 4(10–19), 5(20–39), 6(40 or more). The primary questions of interest were 

regarding lifetime alcohol use (On how many occasions (if any) have you had any alcoholic 

beverage to drink?) and lifetime drunken episodes (On how many occasions (if any) have 

you been drunk from drinking alcoholic beverages?).

Machine learning procedure

We aimed to classify subjects based on both imaging and non-imaging data. Imaging data 

are comprised of a large number of potential predictive variables (voxels), which results in a 

high likelihood of overfitting (that is, fitting to the unique structure of a particular sample, 

resulting in a model with high apparent predictive value but which generalizes poorly to 

unseen data)9. Additionally, the high ratio of imaging to non-imaging variables would lead 

to the non-imaging variables being overwhelmed in any direct analysis. We overcome these 

issues through a multistep procedure in which each imaging contrast produced a single 

summary statistic for each individual (derived by identifying regions from different, training 

data), and nested cross-validation for tuning the parameters of the model and final validation 

(see Extended Data Fig. 1 for a schematic). This procedure was conducted for all seven 

domains (that is, all variables from Brain, Personality, History, Cognition, Demographics, 

Genetics and Site were included), for each domain separately (to assess how well each 

domain performed in isolation), and for six of the seven domains (to assess the unique 

contribution of a domain to the model by quantifying the decrement in performance of the 

full model arising from the deletion of one domain).

We implemented tenfold cross-validation with three levels of nesting for tuning and 

validating our model. A model is generated based on k − 1 training groups, and then applied 

to the remaining independent testing group. To implement cross-validation, the data are split 

into k groups (here k = 10). Each group serves as the testing group once, resulting in k 

different models and predictions for every subject based on independent data. In our 

approach, we had three levels of nested cross-validation (denoted inner, middle, and outer). 

At the inner fold, which was used to optimize the imaging thresholds, 72.9% (90%of 81%) 

of the subjects were used for training, 8.1%(10%of 81%) for testing, generating 1,000 voxel-

wise logistic regression models. At the middle fold, which was used to optimize the 

parameters of the regularization, 81% (90%of 90%) of the subjects were used for training, 

9% (10%of 90%) for testing, generating 100 models (note: new voxel-wise regression 
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models were generated at this step). At the outer fold, which was used to validate the model) 

90% of the subjects were used for training, 10% for testing, generating 10 models (note: new 

voxel-wise regression models were generated at this step).

Model performance was quantified using the area under the curve (AUC) of the receiver 

operating characteristic (ROC) curve, which compares sensitivity versus specificity at 

various discrimination thresholds. In essence, the AUC of the ROC curve quantifies the 

model’s ability to correctly assign a participant to the binge drinking group.

Generation of summary brain data (inner fold). The aim of this step was to generate brain 

maps of regions that differed between groups. Each iteration of Step 1 (see Extended Data 

Fig. 1) used 81% of the total sample: 72.9% of the sample as training data, the remaining 

8.1% as testing data. All brain data (that is, each functional task and grey matter volume) 

were combined within a single, voxel-wise, logistic regression model, implemented via 

MATLAB’s glmfit function. Specifically, at each voxel, data from reward anticipation and 

reward outcome contrasts from the MID, from the stop success and stop fail trials from the 

SST, angry versus neutral faces from the Faces task and proportional GMV (that is, GMV at 

that voxel divided by total brain GMV) were included in a single logistic regression analysis 

on the training data. Structural data were down-sampled from 1.5 mm to the same resolution 

as functional data (that is, 3 mm).

At each voxel, the area under the curve (AUC) of the receiver-operating characteristic 

(ROC) curve was computed on the test data. Maps of the AUC at each voxel and the 

contributions (beta weights) of each imaging contrast to the model were calculated. Given 

recent concern over the appropriate statistical thresholds in both neuroimaging and science 

generally8,42,43, we sought to empirically determine the optimum, generalizable threshold 

for voxel-wise classification accuracy. To this end, binary masks of classification accuracy 

were generated over a range of AUC thresholds (that is, minimum values of AUC from 0.56 

to 0.75 in 0.01 increments) and a range of cluster extent thresholds (1, 4, 8, 12, 16, 20, 24 

contiguous voxels) and were applied to the contrast images (the functional data and grey 

matter volume) of the novel, test data.

The binary masks from the inner fold test group, using the optimized parameters, were then 

used to generate a summary statistic. This summary statistic was calculated for each imaging 

contrast in each subject, with the weighting based on the AUC and the contribution (that is, 

beta value from the logistic regression) of each imaging feature at each voxel, averaged over 

the number of voxels in the thresholded AUC mask.

Optimization of elastic net parameters (middle fold). The optimal brain threshold parameters 

were determined by the median best AUC and median best cluster extent across each middle 

fold. That is, each of the 100 models in the middle fold had an AUC threshold and a cluster 

extent that resulted in the highest classification accuracy on a novel test set (for example, the 

highest ROC AUC for a particular model on a novel test set could have been generated with 

a voxel-wise threshold of AUC = 0.67 and a cluster extent of 12 voxels). We took the 

median of these 100 best parameter sets (AUC threshold and voxel extent) to be the optimal 

set of parameters. Aggregating across the middle, and not inner fold meant that the 
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optimized parameters were not separate from the middle fold training data. We deliberately 

used the median of the parameters across each middle fold in order to attenuate the effects of 

spuriously high AUCs, and we reasoned that the impact on overfitting in the middle fold 

was likely to be minimal. Note that the final, outer fold, results were determined by 

performance on an entirely separate test fold (that is, the optimized parameters were 

determined on separate training data).

Separate brain maps were generated for each nested cross validation fold (that is, 100 sets of 

maps for the middle fold). These summary values were then used in the classification 

procedure, implemented via a logistic regression (that is, a logit link function) with elastic 

net variable selection and regularization21, in combination with psychometric and other data. 

Feature scaling was performed on continuous and ordinal data by a z-score transformation. 

Continuous data were Winsorized (replacing data ±3 s.d. from the mean with the value at 3 

s.d. from the mean).

The elastic net has two key parameters: λ (the regularization coefficient) and α (representing 

the weight of lasso versus ridge optimization, with intermediate values representing elastic 

net optimization). Again, we used nested cross-validation at the middle-fold level to 

optimize the values of λ and α. On each fold, λ and α were each set to one of 21 values (that 

is, all 441 combinations of λ and α were tested).Matlab’s lassoglm (which implements lasso, 

ridge regression or elastic net constraints) was used to calculate the optimal model using 

maximum likelihood estimation. The median of the α and λ parameters that yielded the 

highest AUC across the middle fold were then used as inputs to the outer loop training set.

Final validation (outer fold). In the outer fold, the optimized brain and elastic net parameters 

were used to train a model on 90% of the sample, which was then tested on the remaining 

10% of the sample. Ninety-five percent confidence intervals were estimated via 10,000 

bootstraps.

External validation

In order to generate a single value for each brain metric for the external validation group 

(that is, each of the ten main folds had slightly different brain maps), we applied each of the 

maps from the outer loop data to the participants comprising the external validation 

(Analyses 6, 7 and 11). Next, we calculated the mean value across the 10 folds for each 

participant in the external validation group. Non-brain data were imputed in the same 

manner as the internal group. The median λ and α thresholds across all 10 folds of the 

internal sample (that is, the median of the median of the best λ and α values) were used as 

parameters for the elastic net.
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Extended Data

Extended Data Figure 1. A schematic of the analysis protocol
A schematic of the analysis protocol showing the inner cross-validation loop (to optimize 

the imaging parameters), the middle cross-validation loop (to optimize the elastic net 

parameters) and the outer loop (to quantify the generalizability). An external validation was 

also performed to quantify generalizability to a slightly different phenotype. The percentage 

of the sample used in each step is also displayed. AUC, area under the receiver-operating 

characteristic curve.
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Extended Data Figure 2. Receiver-operating characteristics (ROC), precision-recall (PR) curves
a, ROC of age-14 binge drinking classification, with age-14 nicotine included (Analysis 1). 

b, PR of age-14 binge drinking classification, with age-14 nicotine included (Analysis 1). c, 

ROC of age-14 binge drinking external generalization, with age-14 nicotine included 

(Analysis 6). AUC = 0.68, 95% CI = 0.59–0.76). At the optimum point in the AUC curve, 

93% of binge drinkers and 34% of non-binge drinkers were correctly classified, significantly 

better than chance (P = 0.035), given a base rate of 24% non-binge drinkers. d, PR of age-14 

binge drinking external generalization, with age-14 nicotine included (Analysis 6). At the 
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maximum F-score value, this corresponds to a precision rate of 47% and a recall rate of 

54%. e, ROC of age-14 binge drinking classification, with age-14 nicotine excluded 

(Analysis 2). f, PR of age-14 binge drinking classification, with age-14 nicotine excluded 

(Analysis 2). g, ROC of age-14 binge drinking external generalization, with age-14 nicotine 

excluded (Analysis 7). AUC = 0.80, 95% CI 0.73–0.85. At the optimum point in the AUC 

curve, 95% of binge drinkers and 34% of non-binge drinkers were correctly classified, 

significantly better than chance (P = 0.016), given a base rate of 24% non-binge drinkers. h, 

PR of age-14 binge drinking external generalization, with age-14 nicotine excluded 

(Analysis 7). At the maximumF-score value, this corresponds to a precision rate of 56% and 

a recall rate of 57%. i, ROC of age-16 binge drinking classification (Analysis 8). j, PR of 

age-16 binge drinking classification (Analysis 8). k, ROC of age-14 binge drinking external 

generalization (Analysis 11). l, PR of 14-year-old binge drinking external generalization 

(Analysis 11). AUC, area under the curve. CI, confidence interval.
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Extended Data Figure 3. Brain images showing regions that classify binge drinkers at age 14
The bar charts show the contribution of each brain metric to the shown clusters. The bar is 

the average beta weight for each brain metric (normalized to sum to 1 and averaged over the 

ten outer folds). a, b, Binge drinkers had reduced activity levels in the left putamen and left 

hippocampus when anticipating a reward (a) and reduced activity in the right hippocampus 

when rewards were received (b). c–e, Binge drinkers had greater activity in the right 

precentral and left postcentral gyri (c) when failing to inhibit a response and had greater 

activity in left and right precuneus (d) when they were successful in inhibiting. When 
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processing angry faces, binge drinkers showed reduced right temporal pole and right cuneus 

activity (e). f, Binge drinkers had reduced grey matter volume in bilateral ventromedial 

prefrontal cortex, right inferior and left middle frontal gyri, but increased volume in the right 

putamen.

Extended Data Figure 4. Classification accuracy for each individual domain and the effects of 
removing each domain on the classification accuracy
The y-axis represents the area under the receiver-operating characteristic curve and the error 

bars represent the 95% confidence intervals (calculated via 10,000 bootstraps). a, The 

classification accuracy of age-14 binge drinking for each domain separately (Analysis 3). b, 
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the effects of removing each domain on the classification accuracy of age-14 binge drinking 

(nicotine included in the model; Analysis 4). c, the effects of removing each domain on the 

classification accuracy of age-14 binge drinking (nicotine excluded from the model; 

Analysis 5). d, The classification accuracy of age-16 binge drinking for each domain 

separately (Analysis 9). e, the effects of removing each domain on the classification 

accuracy of age-16 binge drinking (Analysis 10).

Extended Data Figure 5. Correlations among the features classifying age-14 binge drinking
Significant correlations among the selected features (Analysis 2) are displayed (Spearman 

non-parametric test; P < 0.05). The colour bar denotes the correlation coefficient. GMV, 

grey matter volume; WMV, white matter volume; SWM, spatial working memory; AGN, 

affective go/no go; hx, history.
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Extended Data Figure 6. The brain images show regions that predict binge drinking at age 16 
from data collected at age 14
The bar charts show the contribution of each brain metric to the prediction accuracy of the 

shown clusters, which were derived from the training data. a, b, Future binge drinkers had 

reduced activation during reward anticipation in occipito-temporal and posterior cingulate 

regions (a) and for reward outcomes had reduced activity in the left temporal pole but 

increased activity in bilateral superior frontal gyrus (b). c, When failing to inhibit a motor 

response, future binge drinkers showed greater activity in the right middle, medial and 
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precentral gyri and in the left postcentral and middle frontal gyri. d, e, Future binge drinkers 

showed reduced activity in the left middle frontal gyrus when processing angry faces (d) and 

also had reduced grey matter volume in the right parahippocampal gyrus but increased grey 

matter volumes in the left postcentral gyrus (e).

Extended Data Figure 7. Correlations among the features predicting age-16 binge drinking
Significant correlations among the selected features are displayed (Spearman non-parametric 

test; P < 0.05). The colour bar denotes the correlation coefficient. GMV, grey matter 

volume; WMV, white matter volume; SWM, spatial working memory; AGN, affective 

go/no go; hx, history.
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Extended Data Table 1

A list of all features that were used

Domain Measures Features

Brain Functional MRI: Monetary Incentive Delay task Reward anticipation, reward outcome

Functional MRI: Stop Signal Task Inhibitory control success, Inhibitory control 
failure

Functional MRI: Faces Task Emotional reactivity to angry faces

Structural MRI Regional brain volume, parenchymal volume, 
grey-white matter ratio

Personality Revised NEO Personality Inventory: Five-factor 
model

Neuroticism, openness, extraversion, 
agreeableness, conscientiousness

Substance use risk profile scale Anxiety sensitivity, impulsivity, negative 
thinking, sensation seeking

Trait and character inventory: revised (novelty-
seeking subscale)

Impulsivity, disorganization, extravagance, 
excitability

Cognition Kirby K: rate of delay discounting

Wechsler Intelligence Scale for Children Performance IQ, verbal IQ,

Affective go/no-go Negative target word reaction time, positive target 
word reaction time, negative target word 
omissions, positive target word omissions

Cambridge Guessing Task Delay aversion, deliberation time, decision 
quality, proportion bet (all trials), proportion bet 
(rational bets)

CANTAB Pattern recognition memory percentage correct, 
rapid visual processing d’, spatial working 
memory errors, spatial working memory strategy

Behavioural data: Monetary Incentive Delay 
task

Big reward (10 point) failures, big reward 
successes, small reward (5 point) failures, small 
reward successes, no reward failures, no reward 
successes

Behavioural data: Stop Signal Task All Go trials mean reaction time, all Go trials 
standard deviation reaction time

Behavioural data: Faces Task Face task target recognition, Face task foil 
recognition

History Life events questionnaire (Frequency) Accident, autonomy, deviance, distress, family 
relocation, romantic

Life events questionnaire (Valence, perceived 
desirability)

Accident, autonomy, deviance, distress, family 
relocation, romantic

European School Survey Project on Alcohol and 
Other Drugs

Age-14 smoking*, 1–2 alcohol occasions by 14†

Family History questionnaire (general), 
diagnostic Michigan Alcohol Screening Test

Family history of alcohol misuse, drug misuse

Pregnancy and Birth Questionnaire Gestational exposure to cigarettes, alcohol

Demographics Age, sex, pubertal development status, 
handedness, socioeconomic status

Site Data acquisition center London, Nottingham, Dublin, Mannheim, Berlin, 
Hamburg, Paris, Dresden

Genetics Single nucleotide polymorphisms rs10511260G, rs10758821T, rs10893366T, 
rs10975990G, rs1789891A, rs2140418T, 
rs6701037C, rs717207T, rs2369955C, rs26907A, 
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Domain Measures Features

rs750338G, rs7530302A, rs7590720G, 
rs770182G, rs7916403T

Features are grouped by domain, by measure (for example, psychometric measure, functional imaging task, cognitive task) 
and by feature.
*
Not included in all analyses.

†
Not included in the analysis of age-14 drinking.

Extended Data Table 2

Subject characteristics and percentage of imputed data for each group

Controls Current Binge
drinkers

Future binge
drinkers

External validation
controls

External
validation
current binge
drinkers

External validation
future binge
drinkers

Group size 150 115 121 61 190 55

Analyses 1–5, 8–10 1–5 8–10 6,7,11 6,7 11

Summary statistics

Age (M/SD) 14.53(.43) 14.62(.39) 14.45 (0.40) 14.60(.37) 14.63(.44) 14.51(.49)

Sex (% female) 53 57 43 60 53 46

Lifetime drinks 14 (M/SD) .29(.46) 4.23(1.39) .59(.49) 2(0) 3.11(1.45) 2(0)

Lifetime drinks 16 (M/SD) .54(.50) 5.22(1.22) 4.80(1.05) 3.18(1.39) 4.63(1.39) 4.74(1.01))

Cannabis 14 (M/SD) .01(.08) .69(1.49) .03(.22) 0(0) .26(.90) .02(.13)

Cannabis 16 (M/SD) .05(.50) 2.31(2.4) 1.39(1.8) .10(.65) 1.33(1.96) 1.07(1.85)

Pubertal development scale 
(median/IQR)

4(1) 4(0) 4(1) 4(1) 4(1) 4(1)

Performance IQ (M/SD) 106(15) 105(16) 109(15) 114(14) 107(13) 111(14)

Verbal IQ (M/SD) 110(15) 108(14) 112(15) 113(14) 110(15) 116(13)

Socioeconomic status† (M/SD) 17.8(3.9) 17.1(4.0) 17.8(3.7) 18.8(3.7) 17.58(4.3) 17.8(3.6)

% imputed data

Pubertal development status 0.00 0.87 0.00 0.00 0.00 0.53

Substance use risk profile 
scale

0.66 4.35 0.83 0.00 0.00 2.11

Handedness 0.66 4.35 2.48 1.64 0.00 1.05

Trait and character inventory 0.00 1.74 0.00 0.00 0.00 1.05

Five-factor model 0.66 4.35 2.48 0.00 1.82 0.53

Wechsler Intelligence Scale 6.62 13.04 3.31 9.84 1.82 11.58

Temporal discounting 0.00 1.74 0.00 0.00 0.00 0.00

Life events questionnaire 5.96 5.22 1.65 3.28 3.64 2.11

Family history 1.32 1.74 1.65 0.00 1.82 0.00

CANTAB 1.99 6.09 2.48 3.28 3.64 1.05

Average imputed data 1.79 4.35 1.49 1.80 1.27 2.00

Summary statistics derived only from non-imputed data. The external validation current binge drinker group consisted of 
190 new subjects from the IMAGEN sample with 1–2 binge-drinking episodes by age 14.

M, mean; SD, standard deviation; IQR, interquartile range.
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Extended Data Table 3

Beta weights for classification of age-14 binge drinking and prediction of age-16 binge 

drinking

a

Feature Mean Beta SEM

Constant 0.232 0.053

Reward anticipation 0.208 0.051

Reward outcome 0.359 0.039

Emotional reactivity 0.270 0.033

Regional GMV 0.204 0.019

Extravagance −0.210 0.018

SURPS impulsivity −0.077 0.017

Hopelessness −0.102 0.015

Sensation seeking −0.181 0.029

Deviance history −0.191 0.018

Distress history −0.109 0.015

Family history −0.229 0.026

Romantic history −0.547 0.060

Autonomy valence −0.313 0.041

Deviance valence −0.174 0.026

Family hx drug misuse −0.141 0.017

Smoking −1.681 0.259

Pubertal Development Status −0.061 0.012

Site 2 −0.346 0.043

b

Feature Mean Beta SEM

Constant 0.356 0.012

Reward anticipation 0.076 0.008

Reward outcome 0.109 0.013

Failed inhibition 0.085 0.015

Successful inhibition 0.087 0.011

Emotional reactivity 0.127 0.009

Regional GMV 0.110 0.012

Disorganization −0.067 0.007

Extravagance −0.124 0.013

SURPS impulsivity −0.065 0.004

Hopelessness −0.054 0.005

Sensation seeking −0.077 0.009

Neuroticism −0.039 0.005

Extraversion −0.044 0.004

Agreeableness 0.065 0.004
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b

Feature Mean Beta SEM

Conscientiousness 0.071 0.007

Delay discounting −0.051 0.004

AGN negative targets RT 0.039 0.005

SWM errors 0.053 0.007

Deviance history −0.178 0.018

Distress history −0.092 0.009

Family history −0.140 0.015

Romantic history −0.244 0.029

Autonomy valence −0.071 0.010

Deviance valence −0.172 0.021

Family valence −0.055 0.006

Romantic valence −0.022 0.003

Family hx drug misuse −0.048 0.009

Gestational alcohol −0.040 0.006

Age −0.016 0.003

Pubertal Development Status −0.090 0.010

Site 2 −0.086 0.011

Site 3 0.039 0.005

rs2140418T −0.027 0.004

rs6701037C −0.051 0.007

rs2369955C −0.030 0.005

rs7530302A −0.018 0.004

rs7590720G −0.030 0.004

rs7916403T −0.065 0.009

c

Feature Mean Beta SEM

Constant 0.259 0.011

Reward anticipation 0.115 0.024

Reward outcome 0.225 0.021

Failed inhibition 0.177 0.027

Emotional reactivity 0.136 0.020

Regional GMV 0.164 0.014

Parenchymal volume −0.102 0.013

GMV:WMV 0.071 0.007

Disorganization −0.025 0.005

Extravagance −0.082 0.011

Excitability −0.083 0.011

Anxiety sensitivity 0.075 0.013

Hopelessness −0.076 0.013

Sensation seeking −0.054 0.007
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c

Feature Mean Beta SEM

Neuroticism −0.027 0.009

Extraversion −0.062 0.010

Conscientiousness 0.086 0.008

Performance IQ −0.051 0.007

Verbal IQ −0.042 0.007

AGN positive omissions 0.040 0.007

SWM errors 0.066 0.008

SWM strategy 0.065 0.011

RT mean −0.022 0.004

RT variability −0.081 0.012

Foil recognition 0.106 0.017

Accident history −0.051 0.007

Autonomy history −0.039 0.007

Deviance history −0.078 0.009

Romantic history −0.184 0.023

Autonomy valence −0.040 0.010

Deviance valence −0.134 0.015

Family valence −0.077 0.014

Smoking −0.052 0.007

1–2 alcohol occasions by 14 −0.180 0.020

Family hx alcohol misuse −0.024 0.006

Family hx drug misuse −0.054 0.011

Gestational alcohol −0.066 0.013

Age 0.046 0.010

Sex 0.033 0.005

Handedness −0.062 0.010

Site 1 0.035 0.005

Site 5 −0.095 0.012

Silt 7 0.038 0.006

rs10758821T −0.028 0.005

rs10893366T 0.028 0.008

rs2140418T −0.040 0.007

rs2369955C −0.067 0.010

a, Mean beta weights (averaged over 10 outer folds) and the standard error of the mean (SEM) beta for classification of 
age-14 binge drinking (Analysis 1). b, Mean and SEM of the beta weights for classification of age-14 binge drinking 
(Analysis 2). c, Mean and SEM of the beta weights for prediction of age-16 binge drinking (Analysis 8).
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Figure 1. The relationship between group membership and each feature that was present in at 
least 9 folds of the final model
Position on the horizontal represents the point-biserial correlation statistic (r) between each 

feature and group membership. Negative r values indicate that higher scores are associated 

with an increased likelihood to engage in binge drinking at 14. Error bars represent 95% 

confidence intervals (calculated using 10,000 bootstraps). a, Analyses 1 and 2, the 

classification of binge drinking at age 14 years (n = 265). b, Analysis 8 predicting binge 

drinking at age 16 years (n = 271). AGN, affective go/no go; hx, history; SURPS, substance 

use risk profile scale; SWM, spatial working memory; GMV, grey matter volume; WMV, 

white matter volume.
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Figure 2. Brain regions associated with binge drinking and the relative contribution of each 
brain metric to the classification
The average beta weight for each brain metric (normalized to sum to 1 and averaged over 

the ten outer folds). Error bars depict standard errors of the mean across the folds. a, b, 

Brain regions that classify binge drinking at age 14, Analyses 1 and 2 (n = 265). The most 

robust brain classifiers were in ventromedial prefrontal cortex (a) and the left inferior frontal 

gyrus (b). c, d, Brain regions that predict binge drinking at age 16, Analysis 8 (n = 271). The 

most robust brain predictors of future binge drinking were the right precentral gyrus (c) and 

bilateral superior frontal gyrus (d).
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