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Abstract

Behavior varies from trial to trial even when the stimulus is maintained as constant as possible. In 

many models, this variability is attributed to noise in the brain. Here, we propose that there is 

another major source of variability: suboptimal inference. Importantly, we argue that in most tasks 

of interest, and particularly complex ones, suboptimal inference is likely to be the dominant 

component of behavioral variability. This perspective explains a variety of intriguing observations, 

including why variability appears to be larger on the sensory than on the motor side, and why our 

sensors are sometimes surprisingly unreliable.

Introduction

Even the simplest of behaviors exhibits unwanted variability. For instance, when monkeys 

are asked to visually track a black dot moving against a white background, the trajectory of 

their gaze exhibits a great deal of variability, even when the path of the dot is the same 

across trials (Osborne et al., 2005). Two sources of noise are commonly blamed for 

variability in behavior. One is internal noise; that is, noise within the nervous system (Faisal 

et al., 2008). This includes noise in sensors, noise in individual neurons, fluctuations in 

internal variables like attentional and motivational levels, and noise in motoneurons or 

muscle fibers. The other source of behavioral variability is external noise—noise associated 

with variability in the outside world. Suppose, for instance, that instead of tracking a single 

dot, subjects tracked a flock of birds. Here there is a true underlying direction—determined, 

for example, by the goal of the birds. However, because each bird deviates slightly from the 

true direction, there would be trial-to-trial variability in the best estimate of direction. 

Similar variability arises when, say, estimating the position of an object in low light: 

because of the small number of photons, again the best estimate of position would vary from 

trial to trial.
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Although internal and external noise are the focus of most studies of behavioral variability, 

we argue here that there is a third cause: deterministic approximations in the complex 

computations performed by the nervous system. This cause has been largely ignored in 

neuroscience. However, we argue here that this is likely to be a large, if not dominant, cause 

of behavioral variability, particularly in complex problems like object recognition. We also 

discuss why deterministic approximations in complex computations have a strong influence 

on neural variability although not so much on single cell variability. Instead, we argue that 

the impact of suboptimal inference will mostly be on the correlations among neurons and, 

possibly, the tuning curves. These ideas have important implications for current neural 

models of behavior, which tend to focus on single-cell variability and internal noise as the 

main contributors to behavioral variability.

Although these arguments apply to any form of computation, we focus here on probabilistic 

inference. In this case, deterministic approximations correspond to suboptimal inference.

Internal Noise and Behavioral Variability: The Standard Approach

For most models in the literature, the sole cause of behavioral variability is internal noise. 

Many of these models focus on discrimination tasks and their architectures are variations of 

the simple network depicted in Figure 1. The input layer contains a population of neurons 

encoding a sensory variable with a population code; for instance MT neurons encoding 

direction of motion (Law and Gold, 2008; Shadlen et al., 1996). These neurons are assumed 

to be noisy, often with a variability following either a Poisson distribution or a Gaussian 

distribution with a variance proportional to the mean activity. Typically, the population then 

projects onto a single output unit whose value determines the response of the model/

behavior of the animal. In mathematical psychology, the input neurons are often replaced by 

abstract “channels.” These channels are then corrupted by additive or multiplicative noise 

(Dosher and Lu, 1998; Petrov et al., 2004; Regan and Beverley, 1985).

Despite these differences, the neural and psychological models are conceptually nearly 

identical. In particular, in both types of models behavioral performance depends critically on 

the level of neuronal variability, since eliminating that variability leads to perfect 

performance. Many models, including several by the authors of the present paper, explicitly 

assume that this neuronal variability is internally generated, thus blaming internal variability 

as the primary cause of behavioral variability (Deneve et al., 2001; Fitzpatrick et al., 1997; 

Kasamatsu et al., 2001; Pouget and Thorpe, 1991; Rolls and Deco, 2010; Shadlen et al., 

1996; Stocker and Simoncelli, 2006; Wang, 2002). Other studies are less explicit about the 

origin of the variability but, particularly in the attentional (Reynolds and Heeger, 2009; 

Reynolds et al., 2000) and perceptual learning domains (Schoups et al., 2001; Teich and 

Qian, 2003), the variability is assumed to be independent of the variability of the sensory 

input and, as such, it functions as internal variability. For instance, it is common to assume 

that attention boosts the gain of tuning curves, or performs a divisive normalization of the 

sensory inputs. Importantly, in such models, the variability is unaffected by attention: it is 

assumed to follow an independent Poisson distribution (or variation thereof) both before and 

after attention is engaged, as if this variability came after the sensory input has been 

enhanced by attentive mechanisms (Reynolds and Heeger, 2009; Reynolds et al., 2000). A 
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similar reasoning is used in models of sensory coding with population codes. Thus, several 

papers have argued that sharpening or amplifying tuning curves can improve neural coding. 

These claims are almost always based on the assumption that the distribution of the 

variability remains the same before and after the tuning curves have been modified 

(Fitzpatrick et al., 1997; Teich and Qian, 2003; Zhang and Sejnowski, 1999). This is a 

perfectly valid assumption if one thinks of the variability as being internally generated and 

added on top of the tuning curves. A common explanation of Weber’s law relies on a 

variation of this idea (Dehaene, 2006; Nover et al., 2005).

Given that internal variability is indeed perceived as a primary cause of behavioral 

variability, neuroscientists have started to investigate its origin. Several causes have been 

identified; two of the major ones are fluctuations in internal variables (e.g., motivational and 

attentional levels) (Nienborg and Cumming, 2009) and stochastic synaptic release (Stevens, 

2003). Another potential cause is the chaotic dynamics of networks with balanced excitation 

and inhibition (Banerjee et al., 2008; London et al., 2010; van Vreeswijk and Sompolinsky, 

1996). Chaotic dynamics lead to spike trains with near Poisson statistics—close to what has 

been reported in vivo, and close to what is used in many models.

Although it is clear that there are multiple causes of internal variability in neural circuits, the 

critical question is whether this internal variability has a large impact on behavioral 

variability, as assumed in many models. We argue below that, in complex tasks, internal 

variability is only a minor contributor to behavioral variability compared to the variability 

due to suboptimal inference. To illustrate what we mean by suboptimal inference and how it 

contributes to behavioral variability, we turn to a simple example inspired by politics.

How Suboptimal Inference Can Increase Behavioral Variability

Suppose you are a politician and you would like to know your approval rating. You hire two 

polling companies, A and B. Every week, they give you two numbers, dA and dB, the 

percentage of people who approve of you. How should you combine these two numbers? If 

you knew how many people were polled by each company, it would be clear what the 

optimal combination is. For instance, if company A samples 900 people every week, while 

company B samples only 100 people, the optimal combination is d̂opt = 0.9dA + 0.1dB. If 

you assume that the two companies use the same number of samples, the best combination is 

the average, d̂av = 0.5dA + 0.5dB.

In Figure 2, we simulated what dA and dB would look like week after week, assuming 900 

samples for company A and 100 for company B and assuming that the true approval ratings 

are constant every week at 60%. As one would expect, the estimate obtained from the 

optimal combination, dôpt, shows some variability around 60%, due to the limited sample 

size. The estimate obtained from the simple average, however, shows much more variability, 

even though it is based on the same numbers as d̂opt, namely, dA and dB. This is not 

particularly surprising: unbiased estimates obtained from a suboptimal strategy must show 

more variability than those obtained from the optimal strategy. Importantly, though, the 

extra variability in d̂av compared to d̂opt is not due to the addition of noise. Instead, it is due 

to suboptimal inference—the deterministic, but suboptimal, computation d̂av = 0.5dA 

Beck et al. Page 3

Neuron. Author manuscript; available in PMC 2015 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



+0.5dB, which was based on an incorrect assumption about the number of samples used by 

each company.

Although this simple example might seem far removed from the brain, it is in fact similar to 

the problem of multisensory integration: for example, dA and dB could correspond to an 

auditory and a visual cue about the position of an object in space, and d̂av to the observer’s 

estimate of the position of the object.

The effect of suboptimal inference can even be seen in a simple discrimination task. For 

instance, consider the problem of discriminating between two Gabor patches oriented at 

either +5° or −5°, and containing a small amount of additive noise, as shown in Figure 3A, 

first column. Here, the additive noise is meant to model internal noise, such as noise in the 

photoreceptors. Figure 3A shows two linear discriminators, whose responses are 

proportional to the dot product of each image with the linear filter (Figure 3A, second 

column) associated with each discriminator. The linear filter for the top unit in the third 

column of this figure was optimized to maximize its ability to discriminate between the two 

orientations of the Gabor patches. The linear filter of the other unit (bottom one in the third 

column of Figure 3A) was optimized for Gabor patches with the same Gaussian envelope 

but half the wavelength. The unit at the bottom thus performs suboptimal inference; it 

assumes the wrong statistical structure of the task, just like the politician did with d̂av in the 

polling example.

The graph in the right panel of Figure 3A shows the responses of the two units to a sequence 

of images with the same orientation but different noise. The responses have been normalized 

to ensure that the estimates are unbiased for both units. Given this normalization, greater 

response variability implies greater stimulus uncertainty and, therefore, greater behavioral 

variability. This simulation reveals two important facts. First, suboptimal inference has an 

amplifying effect on the internal noise. Indeed, if we set the noise to zero, the variability in 

both units would be zero. Second, most of the behavioral variability can be due to 

suboptimal inference. This can be seen by comparing the variability of the two units. For the 

top unit, all the variability is due to internal noise. In the bottom unit, all the extra variability 

is due to suboptimal inference, which in this case is 54 times the variability from the noise 

alone; more than 98% of the total variability.

The fraction of variability due to suboptimal inference depends, of course, on the severity of 

the approximation, i.e., on the discrepancy between the optimal frequency and the one 

assumed by the suboptimal filter. As shown in Figure 3B, the information loss grows 

quickly as the difference between the filter and image wavelengths grows.

The point of this example is to show that in psychophysics experiments, much of the 

behavioral variability might be due to suboptimal inference and not noise. This is true even 

in experiments in which external noise is minimized, as when the very same image is 

presented repeatedly across trials: suboptimal inference will amplify any internal noise 

(Figure 3A). In fact, we will also see that suboptimal inference can increase variability even 

in the absence of internal noise.
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External Noise and Generative Models

In the polling and discrimination examples, we saw that suboptimal inference can amplify 

existing noise. In most real-world situations that the brain has to deal with, there are two 

distinct sources of such noise: internal and external. We have already discussed several 

potential sources of internal noise. With regard to external noise, it is important to point out 

that we do not just mean random noise injected into a stimulus, but the much more general 

notion of the stochastic process by which variables of interest (e.g., the direction of motion 

of a visual object, the identity of an object, the location of a sound source, etc) give rise to 

the sensory input (e.g., the images and sounds produced by an object). Here, we adopt 

machine learning terminology and refer to the state-of-the-world variables as latent variables 

and to the stochastic process that maps latent variables into sensory inputs as the generative 

model. For the purpose of a given task, all external variables other than the latent variables 

of behavioral interest are often called nuisance variables, and count as external noise.

Is Suboptimal Inference or Internal Noise More Critical for Behavioral 

Variability?

In situations in which there is both internal and external noise (i.e., a generative model), 

there are now three potential causes of behavioral variability: the internal noise, the external 

noise and suboptimal inference. Which of these causes is more critical to behavioral 

variability? To address this question, we consider a neural version of the polling example 

(Figure 2) with internal and external noise. The problem we consider is cue integration: two 

sensory modalities (which we take, for concreteness, to be audition and vision) provide 

noisy information about the position of an object, and that information must be combined 

such that the overall uncertainty in position is reduced. A network for this problem, which is 

shown in Figure 4A, contains two input populations that encode the position of an object 

using probabilistic population codes (Ma et al., 2006). These input populations converge 

onto a single output population which encodes the location of the object. Output neurons are 

so-called LNP (Gerstner and Kistler, 2002) neurons, whose internal state at every time step 

is obtained by computing a nonlinear function of a weighted sum of their inputs. This 

internal state is then used to determine the probability of emitting a spike on that time step. 

This stochastic spike generation mechanism acts as an internal source of noise, which leads 

to near-Poisson spike trains similar to the ones used in many neural models (Gerstner and 

Kistler, 2002). We take the “behavioral response” of the network to be the maximum 

likelihood estimate of position given the activity in the output population, and the 

“behavioral variance” to be the variance of this estimate. Our goal is to determine what 

contributes more to the behavioral variance: internal noise or approximate inference.

Figure 4B shows the behavioral variance of the network as a function of the number of 

neurons in the output population. The red line indicates the lower bound on this variance 

given the external noise (known as the “Cramer-Rao bound”; Papoulis, 1991); the variance 

of any network is guaranteed to be at or above this line. The blue line indicates the variance 

of a network that performs exact inference; that is, a network that optimally infers the object 

position from the input populations (see Ma et al., 2006). The reason this variance is above 

the minimum given by the red line is that there is internal noise, which, as mentioned above, 
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arises from the stochastic spike generating mechanism. As is clear from Figure 4B, for large 

numbers of neurons, this increase is minimal. This is because for a given stimulus, each 

neuron generates its spikes independently of the other neurons, and, as long as there are a 

large number of neurons representing the quantity of interest (which is typically the case 

with population codes), this variability can be averaged out across neurons. This 

demonstrates that, for large networks, internal noise due to independent near-Poisson spike 

trains has only a minor impact on behavioral variability. Of course, this is unsurprising: 

independent variability can always be averaged out. Nonetheless, many models focus on 

independent Poisson noise (Deneve et al., 2001; Fitzpatrick et al., 1997; Kasamatsu et al., 

2001; Pouget and Thorpe, 1991; Reynolds and Heeger, 2009; Reynolds et al., 2000; Rolls 

and Deco, 2010; Schoups et al., 2001; Shadlen and Newsome, 1998; Stocker and 

Simoncelli, 2006; Teich and Qian, 2003; Wang, 2002), and many experiments measure Fano 

factor and related indices (DeWeese et al., 2003; Gur et al., 1997; Gur and Snodderly, 2006; 

Mitchell et al., 2007; Tolhurst et al., 1983).

In contrast, the green line shows the extra impact of suboptimal inference. In this case, the 

connections between the input and output layers are no longer optimal: the network now 

over-weights the less reliable of the two populations. As a result, the behavioral variance is 

well above the minimal value indicated by the red line. Importantly, the gap between the red 

and green lines cannot be closed by increasing the number of output neurons. Therefore, for 

large numbers of neurons, a large fraction of the extra behavioral variability is due to the 

suboptimal inference, with very little contribution from the internal noise.

This example illustrates that internal noise in the form of independent Poisson spike trains 

has little impact on behavioral variability. This is counter to what appears to be the 

prevailing approach to modeling behavioral variability (Deneve et al., 2001; Fitzpatrick et 

al., 1997; Kasamatsu et al., 2001; Pouget and Thorpe, 1991; Reynolds and Heeger, 2009; 

Reynolds et al., 2000; Rolls and Deco, 2010; Schoups et al., 2001; Shadlen and Newsome, 

1998; Stocker and Simoncelli, 2006; Teich and Qian, 2003; Wang, 2002). In addition, it 

should be clear that the more severe the approximation, the larger effect it has on behavior 

variability. For example, the more the network overweights the less reliable cue, the higher 

the green curve will be in Figure 4. This latter point is critically important because, as we 

argue next, severe approximations are inevitable for complex tasks.

Why Suboptimal Inference Is Inevitable

Why can’t we be optimal for complex problems? Answering this requires a closer look at 

what it means to be optimal. When faced with noisy sensory evidence, the ideal observer 

strategy utilizes Bayesian inference to optimize performance. In this strategy, the observer 

must compute the probability distribution over latent variables based on the sensory data on 

a single trial. This distribution—also called the posterior distribution—is computed using 

knowledge of the statistical structure of the task, which earlier we called the generative 

model. In the polling example, the generative model can be perfectly specified (by simply 

knowing how many people were sampled by each company, NA = 900, NB = 100), and 

inverted, leading to optimal performance.
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For complex real-world problems, however, this is rarely possible; the generative model is 

just too complicated to specify exactly. For instance, consider the case of object recognition. 

The generative model in this case specifies how to generate an image given the identity of 

the objects present in the scene. Suppose that one of the objects in a scene is a car. If there 

existed one prototypical image of a car from which all images of cars were generated by 

adding noise (as was the case for the pooling example where dA and dB are the true approval 

rating plus noise due to the limited sampling), then the problem would be relatively simple. 

But this is not the case; cars come in many different shapes, sizes, and configurations, most 

of which you have never seen before. Suppose, for example, that you did not know that cars 

could be convertibles. If you saw one, you would not know how to classify it. After all, it 

would look like a car, but it would be missing something that may have previously seemed 

like an essential feature: a top.

In addition, even when the generative model can be specified exactly, it may not be possible 

to perform the inference in a reasonable amount of time. Consider the case of olfaction. 

Odors are made of combinations of volatile chemicals that are sensed by olfactory receptors, 

and olfactory scenes consist of linear combinations of these odors. This generative model is 

easy to specify (because it’s linear), but inverting it is hard. This is in part because of the 

size of the network: the olfactory system of mammals has approximately a thousand receptor 

types, and we can recognize tens of thousands or more odors (Wilson and Mainen, 2006). 

Performing inference for this problem is intractable because obtaining an exact solution 

requires an amount of time that is exponential in the number of behaviorally relevant odors. 

Importantly, olfaction is not an exception; for most inference problems of interest, the 

computational complexity is exponential in the total number of variables (Cooper, 1990).

Therefore, for complex problems, there is no solution but to resort to approximations. These 

approximations typically lead to strong departures from optimality, which generate 

variability in behavior. In general, one expects the variability due to the sub-optimal 

inference to scale with the complexity of the problem. This would predict that a large 

fraction of the behavioral variability for a complex task like object recognition is due to 

suboptimal inference (which is in deed what Tjan et al., 1995, have found experimentally), 

while subjects should be close to optimal for simpler tasks (as they are for instance when 

asked to detect a few photons in an otherwise dark room; Barlow, 1956).

In Complex Problems, Suboptimal Inference Increases Behavioral 

Variability Even in the Absence of Internal Noise

So far we have argued that suboptimal inference is unavoidable for complex tasks and 

contributes substantially to behavioral variability. In the orientation discrimination example 

(Figure 3), however, it would appear that internal noise, (i.e., stochasticity in the brain either 

at the level of the sensors or in downstream circuits) is also essential, regardless of whether 

the downstream inference is suboptimal. Indeed, if we set this noise to zero (which would 

have resulted in noiseless input patterns in Figure 3), the behavioral variability would have 

disappeared altogether even for the suboptimal filter. This would imply that the brain should 

keep the internal noise as small as possible since it is amplified by suboptimal inference. 

However, approximate inference does not always simply amplify internal noise. For 
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complex problems, suboptimal inference can still be the main limitation on behavioral 

performance even in the absence of internal noise.

To illustrate this point, we consider the problem of recognizing handwritten digits. Each 

image of a particular digit can be represented as a list, or a vector, of N pixel values, where 

N is the number of pixels in the image. This vector corresponds to a point in an N-

dimensional space in which each axis corresponds to one particular pixel. The set of all 

points which correspond to a particular digit, say 2, includes 2s of every possible size and 

orientation. This set of points makes up a smooth surface in this N-dimensional space, also 

known as a manifold. Figure 5 shows schematic representations of two such manifolds for 

the digits 2 and 3 (solid lines). According to this perspective, object recognition becomes a 

problem of modeling these manifolds, which is typically very difficult because of how they 

are curved and tangled in the high-dimensional space of possible images (DiCarlo and Cox, 

2007; Simard et al., 2001). In this case, there is no alternative but to resort to severe 

approximations. For instance, the manifolds might be approximated by locally linear ones 

(dashed lines) around certain exemplars (Simard et al., 2001). New instances of a digit are 

then classified according to the closest linear manifold. This procedure results in 

misclassifying some digits when irrelevant variables (here, rotation) change the image 

beyond where the linear approximation is good, illustrating that this computation is 

suboptimal. Although here orientation and size constitute external noise because they are 

irrelevant to the digit classification, there is no internal noise of any kind in this example: the 

misclassified digits lie precisely on the corresponding manifolds. Therefore, approximate 

inference can have a strong impact on performance even when there is no internal noise.

Implications for the Reliability of Sensors and Neural Hardware

We have argued that when external and internal noise are present, suboptimal inference 

detrimentally affects behavioral performance much more than internal noise, at least for 

large networks. We also argued that suboptimal inference is a greater problem in more 

complex tasks. Together, these two observations could shed light on the reliability of 

sensory organs. While some neural circuits are exquisitely finely tuned (e.g., Kawasaki et 

al., 1988), others exhibit surprisingly large amounts of variability, due, for instance, to 

stochastic release of neurotransmitters or chaotic dynamics of neural circuits. Likewise, the 

quality of some of our sensory organs, like proprioceptors or the ocular lens, is not 

particularly impressive. The optics of the eye are of remarkably poor quality and introduce a 

noninvertible blurring transformation which severely degrades the quality of the image. As 

Helmholtz once said: “If an optician wanted to sell me an instrument that had all these 

defects, I should think myself quite justified in blaming his carelessness in the strongest 

terms, and giving him his instrument back” (Cahan, 1995). Bad optics are not a source of 

internal noise, but they introduce bias, or systematic errors. As is well known in estimation 

theory, reducing bias can be done only at the cost of increasing variability (the socalled bias-

variance tradeoff) and, in that sense, bad optics can contribute to behavioral variability. The 

key questions are as follows: why are the optics so bad, and why are there significant 

sources of internal noise in neural circuits? One answer to this question is that the problem 

of inference in vision is so complex that the loss of information due to suboptimal inference 

overwhelms the loss due to bad optics.
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Although we have discussed perceptual problems so far, similar issues come up in motor 

control. Proprioception is clearly central to our ability to move. Patients who have lost 

proprioception are unable to move with fluidity (Rothwell et al., 1982). Yet, our ability to 

locate our limbs with proprioception alone is quite poor (van Beers et al., 1998) compared 

to, say, our ability to locate our limbs with vision (van Beers et al., 1996). If proprioception 

is so critical for movement, why isn’t it more precise? According to the perspective 

presented here, it is because the variance associated with approximations of the limb 

dynamics is even larger. Theories of motor control have argued that we use internal models 

of the limb dynamics when planning and controlling motor behaviors (Jordan and 

Rumelhart, 1992). However, human limbs are simply too complex to be modeled perfectly. 

As a result, neural circuits must necessarily settle for suboptimal models. If the models are 

suboptimal and the approximations are severe, the motor variability will be much larger than 

it would be with a perfect model. There is, then, little incentive to make proprioception very 

reliable, as further decreases in the variance of proprioception would only marginally 

increase motor performance. This could explain why proprioception is rather unreliable 

despite being essential to our ability to move. This would also predict that a large fraction of 

motor variability emerges at the planning stage, where limb dynamics have to be 

approximated, rather than, say, in the muscles (Hamilton et al., 2004) or proprioceptive 

feedback (Faisal et al., 2008). This is, indeed, consistent with recent experimental results 

(Churchland et al., 2006).

Suboptimal Inference and Neural Variability

How does neural processing that influences behavioral variability also influence neural 

variability? In particular, we ask the following question: suppose a neural circuit has 

performed some probabilistic inference task. How would suboptimal inference affect the 

neural variability in the population that represents the variables of interest? The answer, as 

we will see, is not straightforward. Most importantly, one should not expect single-cell 

variability to reflect or limit behavioral variability.

Uncertainty on a single trial is related to the variability across trials, the latter being what we 

call behavioral variability. For instance, if you reach for an object in nearly complete 

darkness, you will be very uncertain about the location of the object. This will be reflected 

in a lack of accuracy on any one trial, and large variability across trials. In general, 

behavioral variability and uncertainty should be correlated, and are equal under certain 

conditions (Drugowitsch et al., 2012). Here we take them as equivalent.

Uncertainty is represented by the distribution of stimuli for a given neural response, the 

posterior distribution p(s|r). We define neural variability quite broadly as how neural 

responses vary, due both to the stimulus and to noise. Neural variability is then characterized 

by the distribution of neural responses given a fixed stimulus, p(r|s). These two are related 

via Bayes’ rule,

(Equation 1)
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Since suboptimal inference changes uncertainty (the left hand side), it must change the 

neural variability too (the right hand side).

Given Equation 1, it would be tempting to conclude that an increase in uncertainty (e.g., in 

the variance of the posterior distribution, p(s|r)) implies a decrease in the signal to noise 

ratio of single neurons, as measured by, say, the single-cell variance or the Fano factor. 

Unfortunately, such simple reasoning is invalid. The term p(r|s) that appears on the right 

hand side of Equation 1 is the conditional distribution of the whole population of neural 

activity. It thus captures correlations and higher order moments, not just single cell 

variability. As a result the relationship between uncertainty and neural variability is 

complex.

In the case of a population of neurons with Gaussian noise and a covariance matrix that is 

independent of the stimulus, the variance of the posterior distribution is given approximately 

by (Paradiso, 1988; Seung and Sompolinsky, 1993)

(Equation 2)

where Σ is the covariance matrix of the neural responses, f is a vector of tuning curves of the 

neurons, and a prime denotes a derivative with respect to the stimulus, s. For population 

codes with overlapping tuning curves, the single cell variability (given by the diagonal 

elements of the covariance matrix) has very little effect on the posterior variance, σ2—

changes in the single-cell variability introduce changes in σ2 that are proportional to 1/n, 

where n is the number of neurons. Thus, if correlations are such that the posterior variance is 

independent of n (as it must be whenever there is external noise and n is large), single-cell 

variability has very little effect on behavioral variability. This is why the uncertainty of the 

optimal network asymptotically converges with increasing n to the minimal achievable 

behavioral variance (Figure 4). This convergence has an interesting consequence for large 

networks: if we eliminate the stochastic spike generation mechanism, thus removing all 

internal noise, behavioral variability would not decrease much at all, as it simply erases the 

tiny gap between the blue and red curves in Figure 4.

The insignificant impact of the stochastic spike generation mechanisms on network 

performance underscores the limitation of a very common assumption in systems 

neuroscience, namely that a decrease in single cell variance (or Fano factor) is associated 

with a decrease in behavioral variability. This assumption seems consistent with 

experimental data showing that Fano factors appear to decrease when attention is engaged 

(Mitchell et al., 2007). However, as we have just seen, the single cell variability has minimal 

impact on uncertainty, and therefore behavioral variability.

This has important implications for how suboptimal inference affects neural variability. A 

suboptimal generative model can substantially increase uncertainty. If uncertainty changes, 

then something about the neural responses must change to satisfy Equation 1. And if it is not 

the single-cell variance, it must be the tuning curves, the correlations, or higher moments. 

This claim can be made more precise if neural tuning curves and correlations depend only 

on the difference in preferred stimulus (Zohary et al., 1994). Under this scenario, improving 
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the quality of inference performed by the network results in smaller correlations as long as 

the tuning curves remain the same (Bejjanki et al., 2011). Again, this is by no means a 

general rule. If the tuning curves change as a result of making an approximation less severe, 

it is in fact possible to decrease uncertainty while increasing correlations.

In summary, the relationship between suboptimal inference and neural variability is 

complex. With population codes, suboptimal inference increases uncertainty by reshaping 

the correlations or the tuning curves or both. Suboptimal inference may also have an impact 

on single-cell variability, but in large networks, changes in single-cell variability alone have 

only a minor impact on behavioral performance.

What Suboptimal Inference Explains

Recently, Osborne et al. (2005) argued that 92% of the behavioral variability in smooth 

pursuit is explained by the variability in sensory estimates of speed, direction, and timing, 

suggesting that very little noise is added in the motor circuits controlling smooth pursuit. If 

one were to build a model of smooth pursuit, a natural way to capture these results would be 

to inject a large amount of noise into the networks prior to the visual motion area MT and 

very little noise thereafter. Although this is possible, it is a strange explanation: why would 

neural circuits be noisy before MT but not after it? We propose instead that most of the 

uncertainty (in this case, the variability in the smooth pursuit) comes from suboptimal 

inference and that suboptimal inference is large on the sensory side and small on the motor 

side. This would explain the Osborne et al. (2005) finding without having to invoke different 

levels of noise in sensory and motor circuits. And it is, indeed, quite plausible. MT neurons 

are unlikely to be ideal observers of the moving dots stimulus used in their study; they are 

more likely tuned to motion in natural images. Therefore, the approximations involved in 

processing the dot motion will result in large stimulus uncertainty in MT. By contrast, it is 

quite possible that the smooth pursuit system is near optimal. Indeed, the eyeball has only 3 

degrees of freedom and it is one of the simplest and most reliable effectors in the human 

body (it is so reliable that proprioceptive feedback plays almost no role in the online control 

of eye movements; Guthrie et al., 1983).

If this explanation is correct, these results could be modified by comparing performance for 

two stimuli that are equally informative about direction of motion, but for which one 

stimulus is closer to the optimal stimulus for MT receptive fields. We predict that the 

percentage of the variance in smooth pursuit attributable to errors in sensory estimates 

would decrease when using the near-optimal stimulus. By contrast, if the variance of the 

sensory estimates is dominated by internal noise, such a manipulation should have little 

effect.

A related prediction can be made about speed perception. Weiss et al. (2002) have shown 

that a wide variety of motion percepts can be accounted for by a Bayesian model with a 

single parameter, namely, the ratio of the width of the likelihood function to the standard 

deviation of the prior distribution. The width of the likelihood is meant to model any internal 

noise that may have corrupted the neural responses (Stocker and Simoncelli, 2006; Weiss et 

al., 2002). If this is indeed internal noise, this variance should not be affected by the type of 
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stimulus (e.g., dot versus Gabor). By contrast, in the framework we propose, the width of the 

likelihood is due to a combination of noise and suboptimal inference. Therefore, this 

variance should depend on the stimulus type even when stimuli are equally informative, 

since different motion stimuli are unlikely to be processed equally well. More specifically, 

let us assume that the cortex analyzes motion through motion energy filters. Such filters are 

much more efficient for encoding moving Gabor patches than moving dots. Therefore, we 

predict that the width of the likelihood function, when fitted with the Bayesian model of 

Weiss et al. (2002), will be much larger for dots than Gabor patches, when matched for 

information content. This prediction can be readily generalized to other domains beside 

motion perception.

Similar ideas could be applied to decision making. Shadlen et al. (1996) argue that the only 

way to explain the behavior of monkeys in a binary decision making task given the activity 

of the neurons in area MT is to assume an internal source of variability, called “pooling 

noise” between MT and the motor areas. More recent results, however, suggest that, 

contrary to what was assumed in this earlier paper, animals do not integrate the activity the 

MT cells throughout the whole trial, but stop prematurely on most trials due to the presence 

of a decision bound (Mazurek et al., 2003). This stopping process integrates only part of the 

evidence and, therefore, generates more behavioral variability than a model that integrates 

the neural activity throughout the trial. Once this stopping process is added to the decision-

making model, we predict that there will be no need to assume that there is internal pooling 

noise.

In the domain of perceptual learning and attention, it is common to test whether Fano factors

—a measure of single-cell variability—decrease as a result of learning or engaging attention 

(Mitchell et al., 2007). Such a decrease is often interpreted as a possible neural correlate of 

the improvements seen at the behavioral level. Once again, suboptimal inference provides an 

alternative explanation: behavioral improvement can also result from better models of the 

statistics of the incoming spikes for the task at hand, without necessarily having to invoke a 

change in internal noise. As shown by Dosher and Lu (1998) and Bejjanki et al. (2011) 

experimental results are in fact more consistent with this perspective than a decrease in 

internal noise (see also Law and Gold, 2008). Similar arguments can be made for attention 

(L. Whiteley and M. Sahani, 2008, COSYNE, abstract).

The notion of suboptimal inference also applies to sensorimotor transformations. To reach 

for an object in the world, we need to know its position. At the level of the retina, position is 

specified in eye-centered coordinates but, to be usable to the arm, it must be recomputed in a 

frame of reference centered on the hand, a computation known as a coordinate 

transformation. Sober and Sabes (2005) have demonstrated that this coordinate 

transformation appears to increase positional uncertainty. If there is internal noise in the 

brain, this makes perfect sense: the circuits involved in coordinate transformations add noise 

to the signals, and increase their uncertainty. However, once again, there is no need to 

invoke noise. As long as some deterministic approximations are involved in the coordinate 

transformations, one expects this kind of computation to result in extra behavioral variability 

and added uncertainty about stimulus location.
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Discussion

We have argued that in complex tasks, the main cause of behavioral variability may not be 

internal noise, but suboptimal inference caused by approximating the generative model of 

the sensory input. We have also proposed that this suboptimal inference is primarily 

reflected in the correlations among neurons and their tuning curves.

Outside of neuroscience, the conclusion that suboptimal inference is the main cause of 

behavioral variability is not particularly original. In fact, this was the conclusion reached a 

long time ago in fields like machine learning. It is clear, for example, that the main factor 

that limits the performance of image recognition software is not the amount of internal noise 

in the camera: most digital cameras have better optics than the human eye and more pixels 

than we have cones. Nonetheless humans remain extraordinarily better at image recognition 

than computers. Instead, the bottleneck lies in the quality of the algorithm performing the 

inference; that, in turn is determined primarily by the severity of the approximations 

required. In neuroscience, however, we rarely hear the perspective that suboptimal inference 

may be the major cause of variability. As we saw, many models tend to blame internal 

variability instead (Deneve et al., 2001; Fitzpatrick et al., 1997; Kasamatsu et al., 2001; 

Pouget and Thorpe, 1991; Reynolds and Heeger, 2009; Reynolds et al., 2000; Rolls and 

Deco, 2010; Schoups et al., 2001; Shadlen et al., 1996; Stocker and Simoncelli, 2006; Teich 

and Qian, 2003; Wang, 2002). In fact, in most of these models, internal variability is the 

only cause of behavioral variability.

A consequence of this conclusion is that internal sources of noise can be large without 

affecting behavioral performance—so long as their impact on behavioral variability is small 

compared to the variability introduced by suboptimal inference. Thus, we propose an 

explanation for the surprisingly poor quality of both the optics of the eye and of 

proprioceptive signals. Conversely, if an internal source of noise could have a large impact 

on behavioral variability, it should be small. In the context of decision making, one source 

that could significantly affect the behavior of the animal is a noisy integrator. Interestingly, 

recent experiments appear to suggest that, indeed, this integrator has very small internal 

noise (B.W. Brunton and C.D. Brody, 2011, COSYNE, abstract; Stanford et al., 2010).

Note that we are not claiming that the brain is noiseless. There is internal variability, but we 

argue that its impact on behavioral variability is small compared to the impact of suboptimal 

inference. Also, we would agree that there are situations in which stochastic behavior might 

be advantageous, such as during motor learning (Olveczky et al., 2005; Sussillo and Abbott, 

2009), when exploring a new environment, or when unpredictable behavior is used to 

confuse a predator. In these situations, the brain might produce internal variability that has a 

significant impact on behavior. Stochasticity in the brain could also be used to perform 

probabilistic inference via sampling, a well-known technique in machine learning (Fiser et 

al., 2010; Moreno-Bote et al., 2011; Sundareswara and Schrater, 2008). We emphasize, 

however, that sampling in the brain may or may not lead to significant extra variability at the 

behavioral level. On the one hand, when behavior is based upon the average of a large 

numbers samples, added variability due to sampling is small. On the other hand, when 

probability distributions are relatively flat (or multimodal), a small number of samples could 
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lead to a large increase in variability (Bialek and DeWeese, 1995; Moreno-Bote et al., 

2011). Finally, when the numbers of neurons is small, as is the case for instance in insects, it 

is quite possible that internal variability is no longer negligible and has an impact 

comparable to suboptimal inference.

In summary, we propose that because of the vast redundancy of neural circuits, noise 

internal to the brain is a minor contributor to behavioral variability. Rather, in light of the 

computational shortcuts the brain must exploit, we suggest that suboptimal inference 

accounts for most of our behavioral variability, and thus uncertainty, on complex tasks.
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Figure 1. Typical Neural Model of Sensory Discrimination
The input neurons encode the sensory stimulus and projectto a single decision unit. Internal 

noise is injected in the response of the input units, often in the form of independent Poisson 

variability.
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Figure 2. Variability Induced by Suboptimal Inference
The plot shows the fluctuations in estimated approval ratings using two different methods. 

In popt (red), the estimate from the two different companies are combined optimally, while 

in pav (blue), they are combined suboptimally. Note that the variability in pav is greater than 

the variability in popt. This additional variability in pav is not due to noise; it is due to 

suboptimal inference caused by a deterministic approximation of the assumed statistical 

structure of the data.
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Figure 3. Amplification of Noise by Suboptimal Inference
(A) The image consists of a Gabor patch oriented at either +5° or −5°, plus small additive 

noise on each pixel. Both units compute the dot product of the image with a linear filter 

(their feedforward weights) to yield a decision of which stimulus is present. The top unit 

uses the filter that discriminates optimally between these two particular oriented stimuli. In 

contrast, the bottom unit uses a filter that is optimized for a Gabor patch with twice the 

frequency of the patch in the image. The plot on the right shows the activity of the two units 

for 100 presentations of the Gabor patches, all oriented at +5° but with different pixel noise. 

The filters have been normalized to ensure that the mean response is 1 in both cases. The 

standard deviation of the bottom unit (blue) is 54 times larger than the standard deviation of 

the top unit (red; although the trace looks flat, it does in fact fluctuate). In other words, more 

than 98% of the variability of the bottom unit is due to the use of a suboptimal filter.

(B) Percentage of Fisher information loss as a function of the wavelength of the filter. The 

information loss increases steeply as soon as the wavelength of the filter differs from the 

wavelength in the image (set to 50).
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Figure 4. Suboptimal Inference Dominates over Internal Noise in Large Networks
(A) Network architecture. Two inputs layers encode the position of an object based on visual 

and auditory information, using population codes. Typical patterns of activity on a given 

trial are shown above each layer. These input neurons project onto an output layer 

representing the position of the object based on both the visual and auditory information.

(B) Behavioral variance of the network (modeled as the variance of the maximum likelihood 

estimate of position based on the output layer activity) as a function of the number of 

neurons in the output layer. Red line: lower bound on the variance given the information 

available in the input layer (based on the Cramer-Rao bound). Blue curve: network with 

optimal connectivity. The increase in variance (compared to the red curve) is due to internal 

noise in the form of stochastic spike generation in the output layer. The blue curve 

eventually converges to the red curve, indicating that the impact of internal noise is 

negligible for large networks (the noise is simply averaged out). Green curve: network with 

suboptimal connectivity. In a suboptimal network, the information loss can be very large. 

Importantly, this loss cannot be reduced by adding more neurons; that is, no matter how 

large the network, performance will still be well above the minimum variance set by the 

Cramer-Rao bound (red line). As a result, for large networks, the information loss is due 

primarily to suboptimal inference and not to internal noise.
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Figure 5. Suboptimal Inference on Inputs without Internal Noise
Handwritten digit recognition can be formalized as a problem of modeling manifolds in n-

dimensional space, where n is the number of pixels in the image. Each point in this space 

corresponds to one particular image (only two dimensions are shown for clarity). We show 

here a schematic representation of the manifolds corresponding to rotated 2s (red solid line) 

and 3s (black solid line). Modeling these manifolds is typically hard and requires 

approximations. One common approach involves using a locally linear approximation, 

shown here as dashed lines. This approximation would result in misclassifying the image of 

the 2 shown with a black background as a 3, as it lies closer to the linear approximation of 

the manifold corresponding to 3. This illustrates how suboptimal inference can affect 

behavioral performance even when the inputs are unaffected by internal noise.
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