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Abstract

In this essay we illustrate some general principles of
mathematical modeling in biology by our experiences
in studying the molecular regulatory network underlying
eukaryotic cell division. We discuss how and why the
models moved from simple, parsimonious cartoons to
more complex, detailed mechanisms with many kinetic
parameters. We describe how the mature models made
surprising and informative predictions about the control
system that were later confirmed experimentally. Along
the way, we comment on the ‘parameter estimation
problem” and conclude with an appeal for a greater role
for mathematical models in molecular cell biology.
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Accurate descriptions of our pathetic thinking
about nature

Jeremy Gunawardena [1] opened this series of review
articles (on ‘models in biology’) with a quote from Nobel
Laureate James Black, who described mathematical
models as "accurate descriptions of our pathetic thinking
about nature". Black, who made skilful use of mathemat-
ical models on the road to discovering antagonists of B-
adrenergic receptors, was certainly not equating math-
ematical models with ‘pathetic thinking’ (as some people
believe) but rather suggesting that mathematical models
could be useful in turning our provisional ideas about
molecular biology into real knowledge about living cells.
Black saw three essential roles for models in biology: to
expose assumptions, to define expectations, and to de-
vise new tests. Our purpose in this review is to illustrate
these principles by our experiences in modeling the
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control of mitosis in eukaryotic cells. We structure our
review around subheadings derived from some cogent
observations by Gunawardena (slightly paraphrased) about
the art of building mathematical models in biology [1].

Focus on the biology by asking a specific

question

We focus in this review on the molecular mechanisms
controlling entry into and exit from mitosis (M phase)
in the natural cell cycles of frog embryos and fission
yeast cells and in the artificial mitotic cycles exhibited by
frog egg extracts. Because our focus is on certain princi-
ples of model building rather than a comprehensive
description of cell cycle controls, we will not discuss the
mechanisms controlling commitment of cells to DNA
replication (S phase). Following an ancient tradition of
cell biologists, we refer to G1, S and G2 phases of the
cell cycle simply as ‘interphase’.

To describe the role of mathematical modeling in this
endeavor, we start by summarizing the relevant know-
ledge — in 1990 — of the physiology and biochemistry
of M-phase controls in frog eggs and fission yeast cells.
Our description is based loosely on review articles of the
time by Murray and Kirschner [2] and by Nurse [3].

Immature frog oocytes, which are arrested in G2 phase
of meiosis I, can be induced by progesterone to proceed
through meiosis I and arrest again in metaphase of mei-
osis II. These mature oocytes are ready for fertilization,
which induces entry into a sequence of 12 rapid, syn-
chronous, mitotic cycles culminating in the midblastula
transition. Masui and Markert [4] demonstrated that the
progesterone signal can be bypassed by injecting imma-
ture oocytes with cytoplasm from mature oocytes, which
(they opined) contained a ‘maturation promoting factor’
(MPF) that triggered the activation of a pool of inactive
MPF in the immature oocyte. Later experiments by
Kirschner and colleagues [5] showed that ‘MPF activity’
is elevated whenever frog eggs are in M phase (meiosis
in oocytes or mitosis in fertilized eggs), and the acronym
was reinterpreted as ‘M-phase promoting factor’.
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Using frog egg extracts, which recapitulate in vitro
many features of MPF activation and inactivation, Mur-
ray and Kirschner, among others, showed biochemically
that the rate-limiting step for MPF activation in extracts
is the synthesis of a single protein, cyclin B, and that
MPF inactivation, as the extract returns to interphase, is
associated with cyclin B proteolysis by a ubiquitin-
dependent pathway [6, 7]. (The anaphase promoting
complex, APC, is the ubiquitin-conjugating enzyme that
promotes cyclin degradation as cells exit mitosis.) In
addition, MPF accumulates in cells during interphase in
an inactive form (preMPF); then, as cells enter mitosis,
preMPF is converted to active MPF in an autocatalytic
(self-amplifying) process. These discoveries led to a
picture of M-phase control in frog embryos similar to
the diagram in Fig. la.

Meanwhile, Nurse and colleagues, studying cell growth
and division in fission yeast by genetic tools, had discov-
ered three genes involved in regulating entry into mi-
tosis: cdc2, cdc25 and weel. The genetic evidence
suggested that the cdc2 gene product, the protein Cdc2,
can be either ‘inactive’ (in interphase) or ‘active’ (in mi-
tosis). Cdc25, the product of the cdc25 gene, appeared to
promote the activation of Cdc2, and Weel to inhibit the
activation of Cdc2. Significantly, Nurse found that the
length of rod-shaped fission yeast cells when they enter
mitosis is sensitively dependent on the dosage of the
weel and cdc25 genes. Deletion of weel makes cells
smaller, whereas overexpression of weel makes cells
larger. Deletion and overexpression of cdc25 have the
opposite effects. These facts are consistent with the no-
tion that Weel is an inhibitor of entry into mitosis and
Cdc25 is an activator. Upon cloning these genes, Nurse
and coworkers found that Cdc2 is a serine/threonine
protein kinase and Weel is a tyrosine/threonine protein
kinase. The amino acid sequence of Cdc25 was unlike
any other proteins known at that time. With characteris-
tic caution, Nurse [3] diagrammed the genetic evidence
as in Fig. 1b, although he speculated that Weel inhibited
Cdc2 by phosphorylating it on neighboring threonine
and tyrosine residues, and Cdc25 activated Cdc2 by pro-
moting the removal of these phosphate groups.

The activity called MPF proved particularly difficult to
purify biochemically, but this feat was eventually
achieved by Lohka et al. [8], who showed that MPF ac-
tivity was associated with co-purification of Cdc2 and
cyclin B [9-11]. It was thought most likely that cyclin
binds to Cdc2 to form a kinase-active heterodimer
(a process called ‘stoichiometric’ activation), but the
possibility that cyclin played a catalytic role in the
activation of Cdc2 could not be ruled out.

Two other experiments are especially relevant to our
story. Mark Solomon, working in Kirschner’s lab, was
studying the activation of Cdc2 by cyclin B in frog egg
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extracts that lacked both cyclin synthesis and cyclin deg-
radation [12]. Solomon supplemented these extracts
with fixed concentrations of non-degradable cyclin B
and measured the resultant activity of Cdc2 kinase (by
its phosphorylation of a representative substrate, histone
H1) as a function of cyclin B level. We shall call this a
‘signal-response’ curve: cyclin B level being the signal,
and Cdc2-kinase activity being the response. Solomon
found a distinct ‘cyclin threshold” for Cdc2 activation
(Fig. 1c). For cyclin concentrations less than the thresh-
old, he observed only background levels of histone H1
phosphorylation, but as soon as the cyclin level was
greater than the threshold, the extract abruptly exhibited
a high rate of histone phosphorylation, which increased
further with increasing cyclin concentration.

In a similar fashion, Marie-Anne Félix was studying
Cdc2-induced degradation of cyclin in frog egg extracts
in Karsenti’s lab [13]. To an interphase-arrested extract
(no cyclin synthesis), she added a small amount of [3°S]-
labeled cyclin B plus a measured amount of exogenously
synthesized Cdc2:cyclin B heterodimers (i.e., MPF, mea-
sured in units of kinase activity per microliter of ex-
tract). She found that for MPF activity less than 6 U/yl,
the [**S]-labeled cyclin B was only slowly degraded, but
for higher concentrations of MPF (=12 U/pl), the radio-
actively labeled cyclin B was rapidly degraded, after a
time delay of 15 minutes or longer (Fig. 1d).

In the next section, we describe three simple mathem-
atical models of these interactions between Cdc2 and
cyclin B. The strengths and weaknesses of these models,
in light of the experimental results of the time, set the
stage for later, more successful models.

We never bother ourselves with all the details

In 1991 three competing models of the cyclin-MPF net-
work were published by Norel and Agur [14], Goldbeter
[15], and Tyson [16]. Basing their models loosely on the
experimentalists’ informal diagrams sketched in Fig. 1a,
b, all three modelers focused on certain features of the
network that they thought to be most important
(Fig. 2a—c, left), while neglecting other biochemical de-
tails known (or suspected) at the time. For instance,
Norel and Agur assumed that cyclin drives the produc-
tion of MPF in a catalytic manner and that MPF acti-
vates its own production (‘autocatalysis’). Norel and
Agur also assumed that MPF activates cyclin degrad-
ation (by activating the APC, the enzyme ‘E’ in Fig. 2a,
left), but that cyclin degradation is distinct from MPF
destruction. Goldbeter also posited a catalytic function
for cyclin activation of MPE, without the positive feed-
back loop whereby MPF activates itself. Cyclin degrad-
ation in Goldbeter’s model is a two-step process,
whereby MPF first activates the APC (‘E; in Fig. 2b, left),
and then the APC drives cyclin degradation. In Tyson’s
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Fig. 1. Molecular aspects of mitotic control in eukaryotic cells. a Biochemists' view of the regulation of M-phase promoting factor (MPF) in early
frog embryos. Derived from the discussion in [2]. Cyclin is synthesized from amino acids (aa) and degraded by a ubiquitin-dependent pathway,
catalyzed by the anaphase promoting complex (APC). Cyclin promotes the activation of MPF, which enhances its own production in an autocatalytic
fashion. MPF promotes the interphase-to-metaphase transition and activates the APC. b Geneticists' view of Cdc2 activation in fission yeast cells.
Derived from the discussion in [3]. Active Cdc2 promotes the interphase-to-metaphase transition. The activation of Cdc2 is inhibited by Weel and
promoted by Cdc25. ¢ Solomon’s signal-response curve. Adapted from figure 4B of [12]. A fixed amount of non-degradable cyclin B was added to an
interphase-arrested frog egg extract (all protein synthesis is inhibited by cycloheximide). The resultant activity of MPF (the Cdc2:cyclin B heterodimer)
was measured as the rate of phosphorylation of histone H1. Notice that there is a distinct cyclin threshold (between 12 and 15 nM) for activation of
MPF. d Félix's experiment. Adapted from figure 1A of [13]; used by permission. An interphase-arrested frog egg extract is doped with a small amount
of [**Slcyclin B and then supplemented with increasing amounts of exogenously synthesized MPF. The resultant activity of APC is evident from the rate
of degradation of the [**Slcyclin added to the extract. For MPF concentrations between 0 and 6 U/l (open circles), the rate of cyclin degradation is
minimal, and the ‘cyclin remaining’ at each time point is set to 100 %. For larger MPF concentrations, ‘cyclin remaining’ is relative to these control
points. For [MPF] = 12 U/ul (closed circles), the [**Slcyclin is rapidly degraded after a time lag of ~25 minutes. For larger concentrations of MPF, 24 U/l
(open squares) and 48 U/ul (closed squares), cyclin is degraded at the same high rate, but the time lag decreases to ~10 minutes
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model, on the other hand, cyclin is a stoichiometric acti-
vator of Cdc2; ie., cyclin binds with phosphorylated
Cdc2 to form preMPF (Fig. 2c, left). preMPF is then
converted into active MPF by the phosphatase activity of
Cdc25. Because Cdc25 is activated by MPF, the conver-
sion of preMPF to active MPF is a self-amplifying
process in Tyson’s model. Tyson neglected the role of
MPF in activating the APC; instead he assumed, without
much experimental evidence, that only a phosphorylated
form of cyclin was rapidly degraded.

Based on the reaction networks in Fig. 2 (left panels),
the modelers converted their biochemical assumptions

about the interactions of cyclin and MPF into differential
equations for the rates of change of cyclin level and
MPF activity. These mathematical equations describe the
expected properties of the hypothetical mitotic control
system given the assumptions behind each model, and
these properties can then be compared with experimen-
tal observations to assess the reliability of the model. For
instance, all three models exhibit spontaneous oscilla-
tions of MPF activity similar to MPF oscillations ob-
served in frog egg extracts and to the mitotic cycles
observed in early frog embryos. MPF oscillations in each
model depend, of course, on the values assigned to the
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Fig. 2. Three early models of the mitotic control system proposed by Norel and Agur [14] (a), Goldbeter [15] (b), and Tyson [16] (c). Left panels:
Molecular mechanisms. Solid arrows represent chemical reactions; dashed arrows represent catalytic activities. £ and H are enzymes that catalyze
particular reactions; ks is the rate constant for cyclin synthesis; —P indicates a phosphorylated protein. Middle panels: Oscillatory ranges. As a
function of increasing rate of synthesis of cyclin, we plot MPF activity of each model for two types of solutions. The solid (dashed) lines
correspond to stable (unstable) steady state solutions of the model's differential equations. The blue circles correspond to the maximum (upper)
and minimum (lower) activity of MPF during an oscillatory solution for a particular value of ks. Notice that oscillatory solutions are observed only
over a range of values of k. Right panels: Signal-response curves. For a fixed concentration of cyclin, we plot the steady state activity of MPF as
predicted by each model. Black squares represent Solomon’s observations (adapted from Fig. 1c). In (a) and (c) the dashed up-arrow indicates the
cyclin level where the control system would make an abrupt jump to a state of high MPF activity. In the Norel-Agur model, the MPF activity
increases without bound (indicated by the question mark)
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rate constants peculiar to each model, as illustrated in
the middle panels of Fig. 2, which shows how the ampli-
tude of MPF oscillations depends on the rate of synthe-
sis of cyclin B (the rate constant k;). Notice that, in each
model, the rate of cyclin synthesis must be greater than
a certain minimum value for MPF oscillations to appear,
as observed by Murray and Kirschner [6].

The models differ, however, in the dependence of MPF
activity on a fixed concentration of cyclin (right panels
of Fig. 2), which is Solomon’s signal-response curve
(Fig. 1c). The Norel/Agur model is inconsistent with Sol-
omon’s curve because the model has no ‘upper’ steady
state of high MPF activity. In Goldbeter’s model, MPF
activity increases abruptly over a small range of cyclin
concentrations (a phenomenon called ‘ultrasensitivity’
[17]). Goldbeter’s ultrasensitive signal-response curve is
consistent with the abrupt rise of MPF activity observed
by Solomon. However, Goldbeter’s curve has a flat plat-
eau for cyclin concentrations greater than the threshold,
whereas Solomon’s measurements show a steady rise in
MPF activity for increasing cyclin concentration above
the threshold. In contrast to Goldbeter’s sigmoidal
signal-response curve, Tyson’s model predicts an S-
shaped curve, which is also consistent with Solomon’s
experimental results, provided one interprets Solomon’s
‘threshold” with the lower turning point of the S-shaped
curve. Although both Goldbeter and Tyson referred to
Solomon’s paper, neither of them commented on the sig-
nificance of Solomon’s ‘cyclin threshold for Cdc2 activa-
tion” with respect to their computed ‘signal-response’
curves.

The 1991 models were simple, with two or three differ-
ential equations (one for each time-varying species) and a
handful of rate constants (one or two for each biochemical
reaction). However, they were of little value in providing a
unified, accurate picture of what was then known about
mitotic regulation in eukaryotes and in making reliable
predictions. To overcome these problems would require a
more careful accounting of the molecular biology and cell
physiology of frog eggs and yeast cells.

Modeling starts from known causalities from
which predictions are made

In 1993, we proposed a model of mitotic controls in frog
eggs and extracts [18] that combined the best features of
Tyson’s and Goldbeter’s models, namely, stoichiometric
binding of Cdc2 and cyclin B, positive feedback loops
through Cdc25 and Weel, and delayed activation by
MPF of the APC. Compared to the 1991 models, our
1993 model (Fig. 3) included more reactions among add-
itional biochemical species (e.g., the regulatory enzymes
Weel and Cdc25) and, hence, more differential equa-
tions to solve and more rate constants to estimate. In re-
turn, the added complexity allowed us to simulate in
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great detail many characteristic features of autonomous
mitotic cycles in frog eggs [18] and of size-controlled
division cycles in fission yeast [19, 20]. For example, the
1993 model accounts nicely for the classic experiments
of Solomon et al. [12] and Félix et al. [13], as can be seen
by comparing the simulations in Fig. 3b, ¢ with the ex-
perimental results in Fig. 1c, d.

The successful features of the 1993 model gave us the
confidence to make some intrepid predictions.

First prediction (P1)

If MPF is indeed an S-shaped function of cyclin level, as
suggested by Fig. 3b, then Solomon’s threshold reflects a
discontinuous jump in MPF activity (the upward arrow
in Fig. 3b), not a sigmoidal switch, as suggested by
Goldbeter’s model (Fig. 2b, right panel). Consequently, if
one were to start the extract in the upper steady state
(the mitotic state) and decrease the cyclin concentration
in stages, then one would observe a lower cyclin thresh-
old for MPF inactivation (the discontinuous jump indi-
cated by the downward arrow in Fig. 3b). According to
our 1993 model (and Tyson’s 1991 model), there should
be two different cyclin thresholds: one for flipping the
switch ‘on’ at the up-arrow (Solomon’s threshold), and a
lower threshold for flipping the switch ‘off’ at the
down-arrow (a prediction of the model). For cyclin
concentrations between the two thresholds, the switch
can be either off (low MPF activity) or on (high MPF
activity) depending on whether the switch started out
in the off or on position. This sort of behavior — called
‘bistability’ — is familiar to anyone who has operated
an old-fashion ‘snap-action’ light switch (as explained,
for example, in Wikipedia), which toggles abruptly be-
tween lights on and lights off as the lever is pushed be-
yond the central position. When the lever is in the
central position, the lights can be either on or off, de-
pending on whether the lever is being pushed from the
on position or from the off position. Our prediction
that MPF activation is governed by a bistable switch
differs radically from the simple interpretation of
Solomon’s observations as a sigmoidal signal-response
curve, for which MPF activation and inactivation occur at
the same concentration of cyclin.

Second prediction (P2)

Furthermore, if Solomon’s threshold corresponds to a
discontinuous transition at the turning point of an S-
shaped signal-response curve, then, if the cyclin concen-
tration is only slightly larger than the threshold, the
transition is still all-or-none but the time required to
make the transition is very long (a phenomenon called
‘critical slowing down’ in the field of dynamical systems).
Again, these properties are not characteristic of a sig-
moidal switch.
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‘interphase-arrested extract) and the initial concentration of MPF is increased from 0 to 0.9 (where 1.0 is the maximum possible MPF

Third prediction (P3)

In addition, if MPF activation (at the interphase-to-
mitosis transition) is governed by the turning point of an
S-shaped curve, then the most natural explanation for
checkpoint signals that delay this transition is a bio-
chemical change that moves the turning point to larger
values of total cyclin B.

Fourth predicition (P4)

The most sensitive point in the mechanism for such a
signal to act is the protein phosphatase that opposes
MPF in the phosphorylation of Weel and Cdc25. This
theoretical observation suggests a possible role for regu-
lated serine/threonine protein phosphatases in cell cycle
control.

At the time we made these predictions, there were no
experimental observations to suggest that our predic-
tions were correct and plenty of reasons to doubt them.
Ten vyears later, predictions P1-P3 were confirmed

experimentally by Sha et al. [21] and by Pomerening
et al. [22]. Prediction P4 was not borne out by later mo-
lecular studies of checkpoint mechanisms, but regulated
phosphatases, as we shall see, were found to play critical
roles in other situations.

The tension between parsimony and detail runs
through systems biology like a fault line
Theoreticians, especially physicists, like simple, elegant
models with few parameters (four parameters supposedly
suffice to ‘fit an elephant’), but living matter, it would ap-
pear, is not so simple. The 1991 models of MPF regulation
were parsimonious but inaccurate and ineffectual. Effect-
ive models of mitotic control (models that can account for
a wide range of important physiological features and that
can make trustworthy predictions) require dozen(s) of
differential equations (one for each important protein and
post-translationally modified form) and an attendant
proliferation of unknown rate constants. Nonetheless, we
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were able to show [19] that the model in Fig. 3a, under
quite reasonable conditions, can be reduced to just two
differential equations and a few control parameters. This
reduced model provides the desired accurate and parsimo-
nious picture of many characteristic features of mitotic
control in frog eggs and fission yeast cells. However, to dig
deeper into the molecular foundations of cell cycle con-
trol, including regulation of DNA synthesis as well as mi-
tosis, requires the creation of more detailed dynamical
models, as illustrated by our later studies of fission yeast
[23] and budding yeast [24].

The principal disadvantage of a biologically
detailed model is the parameter estimation
problem

If we are compelled to build detailed models, then we
must eventually face the problem of how to estimate
dozens of unknown parameter values (rate constants,
binding constants, enzyme activities, and so on). There
is nothing new or unexpected about this problem; every
rate constant is estimated ultimately by fitting a mechan-
istic model to experimental data. The more complicated
the mechanism and the longer the list of unknown rate
constants, the more data will be needed to estimate
them. To estimate a large number of parameters, we will
need reliable data that probe every aspect of the mech-
anism, but we do not need great quantities of data. A
few data points on a time course of cyclin accumulation
or disappearance may be enough to estimate the rate
constant of cyclin synthesis or degradation with enough
accuracy for our purposes. Indeed, we found, in fitting
the 1993 model to frog egg-and-extract data, that we
could estimate the important rate constants in the
model with some confidence. One might consider these
rate constant values as additional predictions of the
model, since they were not, at the time, measured by in-
dependent biochemical investigations. Over the next few
years, Kumagai, Dunphy and other biochemists, employ-
ing clever manipulations of frog egg extracts, provided
direct measurements of many of the rate constants esti-
mated by the model [25]. Although these biochemists
were unaware of our model and certainly not intending
to confirm our parameter values, their measured values
are very much in line with our estimates [26].

Mathematical models allow us to navigate with
confidence far from the assumptions and reach
surprising conclusions

The 1993 model led to a surprising conclusion, later
confirmed experimentally, that entry into mitosis is an
irreversible transition because it is implemented by a
molecular mechanism exhibiting bistability (an S-shaped
signal-response curve). The transition is triggered by
cyclin concentration exceeding a threshold for MPF
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activation; after the transition is made, the cell remains
in a mitotic state as cyclin concentration drops in
anaphase and telophase, until the reverse transition (mi-
tosis-to-interphase) is triggered at the other turning
point of the S-shaped curve. In ensuing publications, we
proposed that other cell cycle transitions (such as entry
into S phase and exit from mitosis) are also controlled
by bistable reaction networks [27], and these predictions
have been confirmed in every case [28-31].

The model also predicts that spatial waves of MPF
activation should propagate through multinucleate (syn-
cytial) cells at a speed of ~50 um per minute [19]. Al-
though waves of mitosis traveling at the predicted speed
are apparent in a 1974 film of nuclear divisions in an
acellular slime mold [32], mitotic waves were only re-
cently observed and accurately quantified by Chang and
Ferrell [33] in frog egg extracts.

The interesting question now is how various
molecular components collectively give rise to
phenotype and physiology

Another surprising development is the recent recogni-
tion that one of the MPF-counteracting phosphatases,
PP2A:B559, is regulated during entry into and exit from
mitosis [34, 35]. This phosphatase (which we shall refer
to as ‘B55’) is inhibited by the small proteins Arppl9
and endosulfine-a (which we will refer to collectively as
Ensa). Ensa, in turn, is activated by phosphorylation by
Greatwall kinase (Gwl), and Gwl is activated by phosphoryl-
ation by MPF (Cdc2:cyclin B) [36]. Experimental evidence
suggested that B55 opposes the MPF-catalyzed phosphory-
lations of Weel and Cdc25 [34, 35] and of the APC [37],
and we proposed (for theoretical reasons) that B55 is the
Cdc2-counteracting phosphatase for Gwl as well. These
known and predicted roles of B55 create a multitude of
new positive and negative feedback loops in the network
(Fig. 4a) with interesting dynamical consequences [38].

Of special significance is the double-negative feedback
loop between Gwl and B55, which (we propose) creates
a bistable switch controlled by MPF [38]. (Let’s call it
the BEG switch, for B55-Ensa-Gwl [39].) As a cell enters
mitosis, B55 activity is high, and high MPF activity is re-
quired to flip the BEG switch to the state of low B55 ac-
tivity. Once the switch is flipped, moderate or even low
activity of MPF is enough to keep B55 activity off and
APC activity on (Fig. 4b). For this reason (we propose),
as cells degrade cyclin B during anaphase and telophase,
they do not prematurely inactivate the APC and abort
cyclin B degradation. There is experimental evidence
that APC activity functions as an ultrasensitive switch
[40]; we propose that, on closer examination, APC will
behave as a bistable switch (Fig. 4c) [38, 37].

If we correctly understand the role of regulated B55 in
entry into and exit from mitosis, then one might
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reasonably ask how we could have achieved such a good
description of mitotic controls in frog eggs with the
1993 model, which neglected any regulation of the MPE-
counteracting phosphatase. The answer seems to lie in
our choice of parameter values. In the 1993 model, we
introduced a Cdc2-counteracting phosphatase (called
‘PPase’ in that paper, which we now know to be B55),
and assigned it a moderate activity needed to set the
limits of the bistable region (Fig. 3b) created by the in-
teractions of MPF with Weel and Cdc25. Meanwhile,
APC activation was controlled by a time-delay mechan-
ism through the ‘intermediary enzyme’ IE in Fig. 3a. By
adjusting the parameter values in the TE-APC’ part of
the network we could get APC to turn on after a time
delay consistent with Félix et al. [13] (Fig. 3c) and to stay
on long enough to degrade most of the cyclin B during
the transition from metaphase to interphase. Compared
to the 1993 model, the new model [38], with regulated
B55, is parametrized differently and gives a better de-
scription (we believe) of the course of events at mitosis
in frog embryos.

It is worth mentioning that the BEG switch is not
essential for entry into mitosis in mammalian cells
[39, 41]. In this sense, our 1993 model of frog egg
extracts is actually more appropriate as a model of
mammalian cells than of frog eggs, for which it was
intended. Or we might say it is a model of frog eggs
with constitutively phosphorylated Gwl.

The BEG mechanism was discovered because it is es-
sential for mitotic entry in frog egg extracts [36, 42]. If
Gwl and/or Ensa are depleted from extracts, then nuclei
are blocked in late interphase (with replicated DNA).
Why, we might ask, is Ensa essential in embryos but not
in somatic cells? Recall that immature oocytes must ar-
rest in G2 phase of meiosis I, awaiting a hormonal signal
to undergo maturation. In this state, they may accumu-
late very high levels of preMPF, but they must not enter
meiotic M phase prematurely. Having a high level of
PP2A:B558 could be a fail-safe mechanism for stabilizing
the arrested oocyte. But in this case, B55 activity must
be down-regulated in meiosis I in order for the egg to
proceed into meiosis II, which might be the role of Gwl
and Ensa.

A mathematical model is a logical machine for
converting assumptions into conclusions

In our experience, mathematical modeling has been an
effective tool for investigating alternative hypotheses
about the molecular mechanisms controlling the cell
division cycle. The models showed how positive and
negative feedback loops in the cyclin-MPF control sys-
tem create toggle switches and oscillators that are cru-
cial to the temporal sequencing of cell cycle events. Our
1993 model made many non-intuitive predictions about
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MPF activation in frog egg extracts, as described earlier.
Later models of cell cycle controls in fission yeast [20, 23]
and budding yeast [24] provided detailed accounts of the
idiosyncratic phenotypes exhibited by mutant yeast
strains, and suggested a new way to understand the irre-
versibility of cell cycle transitions in terms of bistable
signal-response curves [27]. In most cases, the predictions
of the models have been fully confirmed by subsequent
experiments, as summarized in [43].

In general terms, building a model forces the modeler
to lay out his or her assumptions clearly; analyzing and
simulating the model determines the logical implications
of these assumptions; and comparing the conclusions to
experimental facts assesses the explanatory and predict-
ive power of the mechanistic hypothesis. Where the con-
clusions of the model diverge from experimental facts
may suggest problems with the ‘working hypotheses’ or
missing components in the mechanism.

Biology is complicated enough that we surely
need every tool at our disposal

If mathematical modeling is such a nifty tool, why has it
taken so long for molecular biologists to incorporate it
into their armamentarium? In our experience, mathem-
atical modeling of the cell cycle was at first politely
ignored, then actively opposed, and lately grudgingly
accepted. Perhaps this is to be expected of any new
approach that is unusual and difficult to employ. But
most people are comfortable now with the realization
that molecular cell biology is a complex, interdisciplinary
field that requires expertise from many quarters: genetics,
biochemistry, nanotechnology, image processing, and bio-
informatics, for example. Modern biological research is
team-based, and, where appropriate, these teams need ex-
pertise in mathematical modeling of molecular regulatory
networks. This is a specialized skill, much like X-ray
crystallography, molecular genetics, proteomics or super-
resolution microscopy. Life science departments need to ac-
knowledge the vital role of models in biology and hire com-
putational biologists who can bring this tool to bear on the
important and difficult problems of today and tomorrow.
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