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Abstract

Hemostasis, the process of blood clot formation and resolution in response to vascular injury, and 

thrombosis, the dysregulation of hemostasis leading to pathological clot formation, are widely 

studied. However, the genetic variability in hemostatic and thrombotic disorders is incompletely 

understood, suggesting that novel mediators have yet to be uncovered. The zebrafish is developing 

into a powerful in vivo model to study hemostasis, and its features as a model organism are well 

suited to (a) develop high-throughput screens to identify novel mediators of hemostasis and 

thrombosis, (b) validate candidate genes identified in human populations, and (c) characterize the 

structure/function relationship of gene products. In this review, we discuss conservation of the 

zebrafish hemostatic system, highlight areas for future study, and outline the utility of this model 

to study blood coagulation and its dysregulation.
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Introduction

Since the first description of the coagulation cascade over a half century ago [1, 2], 

clinicians have developed the ability to measure various clotting proteins and establish 

diagnoses in affected patients suffering bleeding or thrombotic diatheses [3]. However, 

despite these useful tools, genetic variability often complicates the ability to interpret plasma 

coagulation factor levels [3, 4]. Affected patients with similar clotting ex vivo testing 

profiles may have significantly different clinical manifestations, with high degrees of 

variable expressivity and incomplete penetrance [3]. Mouse models have been used with 
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some success to identify genetic modifiers that may underlie this variability, but this 

approach is time consuming and costly [5–12].

The zebrafish (Danio rerio) is a small tropical freshwater fish of the minnow family that has 

gained popularity as a vertebrate animal model to study human disease [13]. Many of the 

features that make zebrafish ideal to study in the laboratory are related to husbandry as well 

as physical and developmental characteristics. First, adults can produce up to 200–300 

offspring weekly, which make high-throughput genetic studies in zebrafish particularly 

robust. Second, embryonic development is external and transparent, allowing detailed 

observations with as little as a light microscope. Third, zebrafish embryos and larvae during 

this developmental period [0–7 days post-fertilization (dpf)] are millimeters (mm) in length, 

and a single 100 mm culture dish can support hundreds of individuals. Compared to other 

commonly used mammalian animal models, five to tenfold more adults can be housed in 

equivalent space and at lower costs. These advantages have facilitated massively high-

throughput genetic screens for developmental phenotypes in zebrafish [14•]. This has 

translated into a significant expansion of our knowledge of basic human biology and led to 

important insights into the pathogenesis and treatment of human diseases. These advantages 

coupled with emerging genome editing technologies ensure that zebrafish will remain an 

important model organism. Recently, these tools have facilitated investigation into the 

processes of hemostasis and the pathogenesis of thrombotic disorders. This field has 

historically been underrepresented in use of the zebrafish model but is well positioned to 

take advantage of its unique and powerful capabilities.

Coagulation Factors are Highly Conserved in Zebrafish Genomic Sequence

The zebrafish genome is highly conserved with humans, and 70 % of human genes possess 

apparent zebrafish orthologs [15•]. Zebrafish experienced a massive genome duplication 

during evolution with the result that 30–40 % of genes remain duplicated [16•]. As a 

consequence, some genes have divided their functions between paralogs or acquired new 

roles. Although the majority of coagulation factors are present as a single copy, a few appear 

to be duplicated [17]. The blood coagulation system has also been shown to be conserved in 

other non-mammalian vertebrates, such as the teleost Fugu rubripes (Fugu, puffer fish) [18–

20]. These data provided an initial foundation suggesting that the zebrafish model would be 

well suited for blood coagulation research.

Conservation of the Coagulation Cascade in Zebrafish

Zebrafish coagulation factor genes are highly conserved with their corresponding orthologs 

in humans. To study the impact of targeted gene knockdown, antisense morpholino 

oligonucleotides (MOs) [21] had been the technology of choice in the preceding decade. 

Reduction of prothrombin (F2) using MOs demonstrated a dual phenotype [22] with 

similarity to the mouse F2 knockout [23, 24]. At 1 dpf, many embryos demonstrated severe 

growth retardation. This was followed on 2 dpf by bleeding along the trunk, with secondary 

anemia, compromised circulation, and pericardial edema. Of the embryos that did not 

exhibit these phenotypes, 5–10 % developed intracerebral hemorrhage and showed a lack of 

thrombus formation following laser-induced endothelial injury.

Kretz et al. Page 2

Curr Pathobiol Rep. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zebrafish factor VII (F7) shares a high degree sequence homology to mammalian factor VII 

and was also shown to be produced and secreted into the circulation by the liver [25], akin to 

mammalian factor VII. Immunodepletion of F7 resulted in prolonged fibrin generation upon 

stimulation using thromboplastin as a source of tissue factor, demonstrating an intact and 

functionally conserved extrinsic coagulation pathway in zebrafish. Specific MO knockdown 

of f7 prolonged the time to occlusion following laser injury in larvae, implying that a 

zebrafish ortholog to tissue factor can support F7-dependent coagulation in vivo [26]. 

Although an ortholog to F7-activating protease (Fsap/Habp2) is present in zebrafish, MO 

knockdown of fsap did not affect time to occlusion or activation of F7 [26]. Recent in vitro 

studies have also called into question the role for FSAP-mediated activation of F7 [27], in 

support of the findings in zebrafish. However, MO knockdown of the transmembrane serine 

protease hepsin resulted in decreased levels of activated F7, as well as prolongation of the 

laser-induced time to occlusion [26]. These results are inconsistent with data from the 

targeted Hepsin knockout mouse, which had no abnormalities in various clotting assays 

[28]. These conflicting data suggest that, despite sequence conservation with human 

orthologs, Hepsin and Fsap function might not be completely conserved between zebrafish 

and mammals. Alternative roles for these proteases in zebrafish might be relevant to human 

biology and warrant continued study.

von Willebrand factor (Vwf) is a critical protein responsible both for adhesion of platelets to 

the injured vessel wall and as a circulating chaperone for coagulation factor VIII [3, 29]. The 

human gene is extremely large and consists of 52 exons, with an excessively large exon 28. 

These features are duplicated in zebrafish, although the overall locus is compressed from 

176 to 81 kilobases (kb) [30, 31]. Human VWF has a propeptide and is a target for cleavage 

by the protease ADAMTS13, features which appear to be conserved based on the vwf cDNA 

sequence [31]. Although the overall protein identity is 46 %, surprisingly the A1 and A2 

domains (platelet binding and ADAMTS13 proteolysis, respectively) were the least 

conserved [31]. RNA in situ hybridization in embryos and larvae showed no signal in 

endothelial cells [31], although immunostaining with an anti-human VWF antibody detected 

widespread vascular expression [32]. Depletion of vwf by MO knockdown resulted in 

intracranial and yolk hemorrhage as well as impaired thrombocyte aggregation [32]. 

Expression of the zebrafish vwf cDNA in mammalian cell culture demonstrated assembly of 

multimers and pseudo-Weibel-Palade body-like organelles [31], both hallmarks of 

mammalian VWF. These data demonstrate conservation of the most essential roles of 

zebrafish and human VWF. This suggests that zebrafish may be a useful in vivo model for 

studying mutations within VWF that cause von Willebrand disease, the most commonly 

inherited bleeding disorder.

Fibrinogen is a hexamer that is assembled as a homodimer of three polypeptide chains, 

fibrinogen α, β, and γ (FGA, FGB, and FGG) [3, 33]. Genomic sequencing identified 

syntenic orthologs on zebrafish chromosome 1 (fga, fgb, and fgg) [15•]. This was also 

corroborated through cytogenetic in situ hybridization [34], although further study identified 

some differences. For example, the zebrafish fgg locus was noted to be spaced relatively 

farther from fga and fgb with two intervening genes, whereas the 3 loci are serially clustered 

in humans [34]. At the amino acid level, Fgb and Fgg are greater than 50 % identical to their 
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human orthologs, whereas Fga shares only ~34 % identity [34]. As expected, expression of 

all three chains was detected in hepatic cells through in situ hybridization of larvae, although 

there was signal in the syncytial layer surrounding the yolk [34, 35], consistent with changes 

in sites of gene expression during embryonic development. Liver-specific expression of an 

fgb-egfp (enhanced green fluorescent protein) transgene revealed functional conservation, as 

the expressed fusion protein accumulated in thrombi induced by laser-mediated endothelial 

injury [35]. Of note, adult transgenics showed occasional signs of external hemorrhage, 

suggesting functional dysfibrinogenemia due to the presence of the EGFP tag [35], serving 

as an important caution for modifications to the COOH-terminus of the fibrinogen molecule. 

Intraventricular and intramuscular hemorrhage were the primary phenotypes observed after 

individual and combined MO knockdown of the fibrinogen chains, strikingly similar to the 

symptomatology of patients with hypo- and afibrinogenemia [35].

The discovery and application of genome editing using zinc finger nucleases (ZFNs), TAL 

effector nucleases (TALENs), and CRISPR/Cas9 (clustered regularly interspaced short 

palindromic repeats) RNA-guided nucleases to alter target sequences has great potential for 

rapid and robust gene disruption in zebrafish [36•, 37, 38, 39••]. These offer an alternative to 

MO technology, which can be unpredictable and often yields incomplete gene silencing. 

Recently, a systematic validation study of vascular phenotypes derived from MO 

knockdown in comparison to targeted genetic mutants derived through genome editing 

showed poor phenotypic correlation [40••]. Although the authors did not test for the 

potential off target effects of genome editing as an explanation for the discrepancies, the 

observed biological changes following MO-induced gene silencing are nonetheless called 

into question, at least for studies of vessel development.

A knockout of fga using ZFNs has been described [41•], and complete ablation of fibrinogen 

was demonstrated using a panel of anti-zebrafish fibrinogen antibodies. Overt hemorrhage 

was observed in adult homozygous mutant fish but not in embryos and larvae suggesting 

variable roles for fibrinogen during development. The reduced viability observed in the 

fga−/− mutant fish population was incompletely penetrant, which may reflect the known 

genomic heterozygosity of laboratory zebrafish [15•, 42]. In support of this conclusion, Fga 

ablation is variably lethal on different mouse genetic backgrounds [43].

In addition to known procoagulant effectors of the blood clotting system, zebrafish also 

express conserved natural anticoagulant factors, including antithrombin III (At3) [44, 45••]. 

Targeted ablation of at3 using ZFNs was followed by spontaneous intracardiac thrombi with 

a variable range of lethality in adulthood [45••]. Although the endpoint of pathologic 

thrombus formation was consistent with the mouse knockout [46] and patient data [3], it 

occurred at a much later time point than the in utero lethality observed in mammals. 

Stimulation by laser-induced vascular injury in 3 dpf larvae resulted in the failure to form an 

occlusive thrombus, a phenotype more consistent with bleeding rather than thrombophilia. 

Infusion of plasma-derived human fibrinogen restored the ability to develop induced 

thrombi, suggestive of a consumptive coagulopathy in at3−/− mutant fish. Injection of 

fluorescently labeled human fibrinogen into larvae resulted in widespread fluorescence 

accumulation in the circulatory system of unprovoked at3−/− mutants. This would be 

expected in the syndrome of disseminated intravascular coagulation (DIC), a disorder 
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resulting from loss of regulation of the coagulation system [47]. Importantly, larval DIC was 

reversed by expression of human AT3, which was leveraged as an in vivo platform to study 

the impact of previously described AT3 mutations [45••]. Mutations in the AT3 P1 arginine 

eliminated the capacity to rescue this phenotype, whereas disruption of the AT3 heparin 

binding site had no effect. These data highlight the power of coupling zebrafish and genome 

editing tools to study human diseases. Whole genome sequencing of human disease 

populations regularly uncovers genome sequence variants of unknown biological 

importance. As this technology is increasingly applied to the clinic, there is a recognized 

need for rapid and robust tools for evaluating the impact of gene sequence variants on 

protein function. Zebrafish may offer the unique capacity to rapidly characterize sequence 

variants in an in vivo setting.

Defining the Role of Thrombocytes in Hemostasis and Thrombosis

The closest equivalent to the platelet in zebrafish is the thrombocyte, a nucleated cell also 

found in birds [48], and evidence continues to support a functional correlation to 

mammalian platelets. Previous studies in trout (Oncorhynchus mykiss) established that like 

platelets thrombocytes respond to either thrombin or a thromboxane mimetic (U-46619), by 

forming aggregates [49]. Furthermore, other canonical platelet agonists (including collagen, 

ADP, ristocetin, and arachidonic acid) cause zebrafish thrombocytes to aggregate, and many 

receptors have been found to be conserved (P2Y12, Gp6, Gp1b, and Tbxa2r, respectively) 

[50]. Thrombocyte aggregation can be inhibited by an RGDS tetra-peptide, suggesting a role 

for an integrin-like fibrinogen receptor during thrombocyte accumulation at sites of injury 

[51]. Although ultrastructure analysis has identified vesicles within thrombocytes that 

resemble platelet granules [50], more direct evidence for a fully functional open canalicular 

system is still needed.

Zebrafish lack an analog to the polyploid megakaryocyte, and thrombocyte production 

remains incompletely understood. Thrombopoietin (Tpo) and its receptor (Mpl) are 

conserved and MO knockdown of the latter decreased mobilization of a thrombocyte/

erythroid precursor cell population (TEPs) from the extravascular compartment between the 

dorsal aorta and caudal vein [52]. Recently, TEPs were identified and isolated from 

zebrafish, and stimulation by zebrafish Tpo promoted thrombocyte differentiation, whereas 

stimulation by erythropoietin promoted erythroid differentiation [53]. The high-throughput 

screening capacity of zebrafish could provide a unique opportunity to identify novel 

mediators of thrombocyte development. Study of zebrafish thrombocytes has led to novel 

insights into platelet function (reviewed elsewhere [54, 55]), suggesting that results from 

thrombocyte production screens in zebrafish may be relevant to human biology.

Zebrafish Screens from Hematology to Hemostasis

The use of zebrafish as a model to study hematopoiesis is well established and serves as a 

proof-of-principle for guiding future discoveries in hemostasis. Forward genetic screens 

employing large-scale mutagenesis led to the identification of novel genes that regulate 

blood development [56, 57]. Furthermore, this approach has identified key mediators of 

human diseases, such as the link between ferroportin and hemochromatosis [58, 59]. The 
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first genetic screen in blood clotting employed laser-induced endothelial injury to produce 

thrombi in larvae, uncovering a mutation linked to the prothrombin (f2) locus [60]. These 

studies are facilitated by the highly fecund nature of zebrafish and the accessibility of their 

circulatory system to observation, features that are critical to hemostasis research.

Zebrafish also have been utilized for small molecule screens in both embryos and larvae 

[61]. For example, a stable derivative of prostaglandin E2 (PGE2) was shown to enhance 

hematopoietic stem cell engraftment in zebrafish embryos and mice [62]. This discovery 

was extended into nonhuman primates [63], followed by a small human clinical trial with 

umbilical cord blood transplantation [64•]. This example proves the feasibility of translating 

chemical screens performed in zebrafish into treatments for human diseases.

In hemostasis, recent experimentation testing the safety of cationic PAMAM dendrimers, an 

emerging basis for nanoparticles in biomedical applications, revealed substantial 

thrombocyte and fibrinogen aggregation akin to disseminated intravascular coagulation 

(DIC) [65]. This important toxicity result detected in zebrafish urges caution in moving 

forward to human trials for applications using this nanoparticle. With the conservation of the 

major components of the blood coagulation pathway, zebrafish are particularly well suited 

for screening small molecules that may evolve into the next generation of anticoagulants. 

Such a screen can readily be optimized to focus on targeting thrombosis-related pathologies 

while limiting the complication of bleeding that plagues the majority of traditional and new 

oral anticoagulants [66, 67].

Dissection of Human Coagulation and Associated Disorders Using 

Zebrafish

Blood coagulation requires well-timed orchestration of soluble plasma proteins with 

hematopoietic and vessel wall cellular mediators. As demonstrated for At3, zebrafish are 

uniquely poised to rapidly screen novel human sequence variants in an in vivo setting where 

the complexity of the entire circulatory systems comes to bear. This feature may be 

particularly useful in human genetics where validation of a genomic sequence variant linked 

to a particular disease is a major bottleneck. Zebrafish have assisted this process in a number 

of fields, including thrombocytopenia and associated disorders, as biochemical or cellular 

approaches are not always sufficient for such complex systems. Human familial autosomal-

dominant thrombocytopenia was linked to a locus on chromosome 10p, and a missense 

mutation in microtubule-associated serine/threonine-like kinase (MASTL) was identified as a 

potential candidate gene. MO knockdown of the zebrafish ortholog of MASTL recapitulated 

clinical features, including thrombocyte deficiency and reduction of itga2b and mpl 

expression, consistent with a MASTL-dependent thrombocytopenia [68]. Similar 

experiments in zebrafish larvae also confirmed NBEAL2 and RBM8A as the mutated loci in 

the gray platelet and thrombocytopenia with absent radii syndromes, respectively [69, 70].

Thrombosis models have been widely used in mice to study blood coagulation in an in vivo 

setting; however, these techniques are technically cumbersome and low throughput [71]. 

Induced thrombosis in zebrafish larvae offers many advantages and has been used to 

validate targets identified via systems biology. Targeted screening in zebrafish of five 
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predicted thrombocyte-expressed genes uncovered a previously unappreciated role for 

BAMBI (bone morphogenic protein and activin membrane-bound inhibitor) in laser-induced 

thrombus formation [72]. Subsequent studies in mice validated these results and determined 

that BAMBI expressed on the vessel wall, and not platelets, supports thrombus stability 

following laser-induced injury [73]. Zebrafish have also been used to validate potential 

mediators of thrombus formation identified from platelet mRNA expression profiling or 

genome-wide association studies (GWAS). These studies identified COMMD7 and 

LRRFIP1 as genes that contribute to thrombus formation [74]. Furthermore, zebrafish were 

successfully used to validate hits identified via GWAS meta-analyses for platelet count and 

mean platelet volume [75], providing a highly tractable system for validation of genomic 

signals from human populations.

Conclusion

Over the last two decades, the zebrafish has been established as a vertebrate organism with 

significant benefits beyond traditional mammalian models. The work summarized above 

demonstrates that it is a useful tool for the study of hemostasis. However, success in these 

endeavors will depend on continued delineation of the conservation among the key 

mediators of the blood clotting system. Such conservation provides the rationale for 

employing some of the most powerful high-throughput screening tools available to the 

zebrafish investigator. Zebrafish are particularly well suited for small molecule screens [13] 

that may identify novel anticoagulants. Forward genetic screening may uncover previously 

unknown mediators of thrombosis and thus possible new targets for future anticoagulant 

therapy. Furthermore, combined with emerging genome editing approaches, zebrafish are a 

convenient model to test hypotheses uncovered by systems biology pipelines, validate 

candidate disease genes, and study structure/function relationships for proteins in an in vivo 

setting. Leveraging the power of zebrafish offers the opportunity to enhance future research 

into the regulation of hemostasis and pathogenesis of thrombotic disorders that may 

ultimately improve the quality of diagnosis and treatment of important human diseases.
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