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Abstract

The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is ubiquitously 

expressed in both the central nervous system and in the periphery. CHRNA7 is genetically linked 

to multiple disorders with cognitive deficits, including schizophrenia, bipolar disorder, ADHD, 

epilepsy, Alzheimer’s disease, and Rett syndrome. The regulation of CHRNA7 is complex; more 

than a dozen mechanisms are known, one of which is a partial duplication of the parent gene. 

Exons 5-10 of CHRNA7 on chromosome 15 were duplicated and inserted 1.6 Mb upstream of 

CHRNA7, interrupting an earlier partial duplication of two other genes. The chimeric CHRFAM7A 

gene product, dupα7, assembles with α7 subunits, resulting in a dominant negative regulation of 

function. The duplication is human specific, occurring neither in primates nor in rodents. The 

duplicated α7 sequence in exons 5-10 of CHRFAM7A is almost identical to CHRNA7, and thus is 

not completely queried in high throughput genetic studies (GWAS). Further, pre-clinical animal 

models of the α7nAChR utilized in drug development research do not have CHRFAM7A (dupα7) 

and cannot fully model human drug responses. The wide expression of CHRNA7, its multiple 

functions and modes of regulation present challenges for study of this gene in disease.
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1. The Human Alpha 7 Nicotinic Acetylcholine Receptor Gene Cluster on 

Chromosome 15

The α7 neuronal nicotinic receptor gene, CHRNA7 on Chromosome 15, is widely expressed 

in both the brain and periphery with multiple important roles in cognition and the immune 

system. Decreased expression and function of CHRNA7 have been associated with many 

diseases including schizophrenia, bipolar disorder, attention deficit hyperactivity disorder 

(ADHD), Alzheimer’s disease, autism, epilepsy, and learning disorders. Regulation of 

CHRNA7 expression and function is complex. More than a dozen different mechanisms are 

currently known, including a partial duplication of the parent gene.

1.1 The CHRNA7 gene is partially duplicated, forming a new gene, CHRFAM7A

Gene duplication during evolution resulted in the formation of the nicotinic receptor gene 

family from the primal CHRNA7 gene (Changeux, 2012; Le Novere et al., 2002; Ortells and 

Lunt, 1995). In addition, a new and relatively recent partial duplication of CHRNA7 

occurred, forming a new gene, CHRFAM7A. Construction of a yeast artificial chromosome 

map across the schizophrenia genetic linkage region on chromosome 15q13.3 resulted in the 

discovery of this partial duplication (Gault et al., 1998). The CHRNA7 gene has 10 exons; 

exons 5-10 were duplicated along with additional DNA. The duplicon of ~250Kb was 

inserted centromeric to the CHRNA7 gene by 1.6Mb, interrupting earlier partial duplications 

of two other genes (Gault et al., 1998; Riley et al., 2002). Prior to the partial duplication of 

CHRNA7, several exons of the unc-51 like kinase 4 gene (ULK4) at chromosome 3p22.1 

were duplicated on chromosome 15 (Lang et al., 2014; Riley et al., 2002) (Figure 1A).

In initial studies, four exons were identified in CHRFAM7A (exons A, B, C, and D) (Gault et 

al., 1998). Subsequent use of mRNA from human cell lines THP1 and SHEP1 that do not 

express the CHRNA7 gene, and Rapid Amplification of cDNA 5′-Ends (5′-RACE) identified 

an additional three exons, E, F, and G. The genomic order of the upstream exons is shown in 

Figure 2A and the exon sequences in 2B. Exons A, B, C, and E are copies of ULK4 exons 

(yellow). Exons D, F, and G (green) share homology with the GOLGA8B gene, 2.5 Mb 3′ of 

CHRNA7 (Stephens et al., 2012). Exons A-F constitute the genetic element FAM7A, which 

is duplicated at least four times on chromosome 15q13.3, FAM7A(1-4)(Figure 1A). 

Deletions in the ULK4 gene were recently associated with schizophrenia (Lang et al., 2014). 

However, the duplicated ULK4 exons in FAM7A(A, B, C, and E) are not included in these 

deletions, suggesting that generation of FAM7A was a separate event.

Subsequent to the formation of the FAM7A copies, CHRNA7 exons 5-10 were duplicated 

and interrupted FAM7A(1), upstream, forming the new chimeric gene, CHRFAM7A. 

FAM7A(3) was also duplicated and contained in the 250 Kb duplicon with the CHRNA7 

exons. This partially duplicated CHRNA7 cassette was inserted in a reverse orientation to the 

nearby parent gene (Figure 1B).

The formation of CHRFAM7A is human specific (Locke et al., 2005). CHRFAM7A is not 

found in either rodents or in primates, and likely occurred more than 3.5 million years ago 

when hominids evolved. The duplication is evolutionarily new; CHRNA7 sequences in 
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CHRFAM7A are 99.9% identical to exons 5-10 of CHRNA7 (Gault et al., 1998). The two 

genes, thus, cannot be adequately queried in genome wide association studies (GWAS). 

Large-scale genomic sequencing and SNP analysis methodology do not provide accurate 

mapping of polymorphisms in duplicated regions.

Another small deletion is even more recent, a 2bp deletion in exon 6 of CHRFAM7A (Gault 

et al., 1998; Sinkus et al., 2009). The 2bp deletion is not present in CHRNA7. Further, this 

version of the duplicated gene, CHRFAM7AΔ2bp, is accompanied by a gene inversion 

(Flomen et al., 2008), and has the same orientation as the parent gene, CHRNA7 (Figure 

1C).

The 2bp deletion is found more frequently in Caucasians (42%) than in African Americans 

(14%) (P=1.98 X 10−7) (Sinkus et al., 2009). The data, thus, suggest that the 2bp deletion 

and inversion occurred after the second migration from Africa and after the formation of 

CHRFAM7A.

The two genes, CHRNA7 and its partial duplication CHRFAM7A are intimately related. This 

review reports on the expression, function, and regulation of each separately, followed by 

topics involving both genes.

2. The Alpha7 Nicotinic Acetylcholine Receptor Gene, CHRNA7

The α7 neuronal nicotinic acetylcholine receptor, α7nAChR, is a member of the nicotinic 

acetylcholine receptor family. These receptors are ligand-gated ion channels of five 

subunits, stimulated endogenously by acetylcholine, resulting in flux of the cations Na+, K+, 

and Ca++ (Changeux, 2012; Vijayaraghavan et al., 1992). Eleven nicotinic receptor subunit 

genes are expressed in the human brain, including α2-7, 9, 10, and β2-4 (Elgoyhen et al., 

2009; Lindstrom, 1997), which form multiple pentameric heteromers and a homomeric 

receptor, usually with only α7 subunits (Gotti et al., 2007). Receptors containing both α and 

β subunits bind nicotine with high affinity (nM), but the low-affinity α7nAChRs require μM 

concentrations of nicotine for activation (Dani and Bertrand, 2007; Marks and Collins, 1982; 

Weiland et al., 2000). The α7 nicotinic receptor gene, CHRNA7, is ancient, homologs 

appearing in archaea (Tasneem et al., 2005), possibly as sensors for quaternary ammonium 

metabolites and osmolytes such as choline and glycine betaine (Lucht and Bremer, 1994). 

CHRNA7 may be the evolutionary ancestor of multiple ligand gated ion channels including 

GABA, 5HT3, and the other nicotinic acetylcholine receptor subunit genes (Le Novere et al., 

2002). Perhaps some of its ancient roles developed into peripheral functions, such as in 

inflammation, but as a ligand-gated channel it evolved as an important central nervous 

system receptor.

2.1. Localization and Function

High affinity nicotinic receptors are generally localized pre-synaptically in the CNS, but 

α7nAchRs have a much wider localization and function, being found both pre- and 

postsynaptically (Leonard and Bertrand, 2001; Lindstrom, 1997). They are also expressed in 

the periphery, including on neuroendocrine cells (Song and Spindel, 2008), macrophages (de 

Jonge and Ulloa, 2007), and sperm (Son and Meizel, 2003). The Ca++ permeability of 

Sinkus et al. Page 3

Neuropharmacology. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



α7nAChRs exceeds that of other nicotinic receptor subtypes and also that of NMDA 

receptors (Albuquerque et al., 2009; Vijayaraghavan et al., 1992). Resulting depolarization 

of the cell activates voltage-dependent calcium channels (VDCCs), and induces Ca++ release 

from the endoplasmic reticulum (Shen and Yakel, 2009). The ion selectivity of the receptor 

appears to be regulated by glutamate residues in the intracellular face of transmembrane 

region (TM) TM2, which are not found in other alpha subunits (Corringer et al., 1999).

Normal function of α7nAChRs in mammalian cells requires the co-expression of chaperone 

proteins such as ric-3 (Castelan et al., 2008) and lynx1 (Ibanez-Tallon et al., 2002) that 

facilitate formation of surface receptors.

The principal endogenous ligand for most, if not all, α7nAChRs is acetylcholine. Choline, 

itself, is a specific agonist at α7nAChRs (Uteshev et al., 2003), and is particularly important 

during fetal development (Ross et al., 2010). Hippocampal choline acetyltransferase is not 

expressed until late prenatal or early postnatal development (Court et al., 1993). Thus, 

choline is likely to be the principal ligand for the α7nAChR during this important period of 

neuronal migration and synapse formation.

Following activation, all α7nAChRs then close to a large extent. This process, termed 

desensitization, occurs within just a few ms, faster than at other nAChRs or at other ligand-

gated channels. Desensitization also occurs at hippocampal α7nAChRs (Dani et al., 2000). 

Desensitization probably consists of several processes, none well understood at a molecular 

level. Of some interest, desensitization is less complete at α7nAChRs than at other nAChRs, 

so that some channels remain open even during the so-called “desensitized” state. At 

nicotine concentrations in the brain during smoking (0.1 to 1 μM), this steady-state 

fractional activation may exceed 20% (Wang et al., 2014; Xiao et al., 2015). The response to 

agonists is also likely to be shaped by the recovery from desensitization, which is also faster 

than recovery at other nAChRs. Some experiments show that α7nAChRs recover from 

desensitization in just 15–30s (Frazier et al., 1998).

2.1.1. Central Nervous System Expression and Function—In the brain, 

presynaptic α7nAChR are localized on GABAergic and glutamatergic terminals in 

hippocampus and other regions, where influx of Ca++ leads to release of multiple types of 

neurotransmitters, including GABA, glutamate, acetylcholine, and dopamine (Albuquerque 

et al., 2009; Dani and Bertrand, 2007; Dickinson et al., 2008; Jones and Wonnacott, 2004). 

In human brain both CHRNA7 mRNA and protein, measured by in situ hybridization and 

[125I]-α-bungarotoxin binding, respectively, are expressed in most nuclei (Breese et al., 

1997a). Highest expression is found in hippocampus, cingulate gyrus, lateral and medial 

geniculates, and the reticular nucleus of the thalamus (RTN). In hippocampus, α7nAChR-

mediated release of glutamate is enhanced by the activity of protein kinase A (PKA) (Cheng 

and Yakel, 2014). Protein kinase A expression appears to be permanently up regulated in 

postmortem brain of smokers (Hope et al., 2007).

Postsynaptically, the α7nAChR is found in postsynaptic densities (PSD) (Levy and Aoki, 

2002; Li et al., 2012), where Ca++ influx affects phosphorylation of CREB (Hu et al., 2002), 

leading to changes in gene expression. Treatment with α7nAChR agonists enhances 
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cognitive circuits through an NR2B-NMDAR mechanism (Yang et al., 2013). Expression of 

both NR2A and NR2B is up regulated in postmortem hippocampus of smokers (Mexal et al., 

2005).

Astrocytes also express α7nAChR, but at lower levels than neurons (Shen and Yakel, 2012). 

The influx of Ca++ through α7nAChR promotes further release of calcium from intracellular 

stores, unlike in neurons where Ca++ influx activates voltage-gated calcium channels 

(Sharma and Vijayaraghavan, 2001). Stimulation of astrocytic α7nAChRs results in the 

recruitment of GluA1 and GluA2 AMPA receptors to post-synaptic sites (Wang et al., 

2013).

Thus, α7nAChRs have an important role in the excitatory mechanisms that regulate 

cognitive processes (Lendvai et al., 2013; Wallace and Bertrand, 2013; Wallace and Porter, 

2011). Both agonists and modulators of α7nAChR improve episodic and working memory 

and attention in multiple preclinical models.

2.1.2. Peripheral Expression and Function—The α7nAChR is found on multiple 

types of cells in the periphery including neuroendocrine cells in the lung, where Ca++ influx 

leads to release of bombesin and other peptides (Aguayo, 1994). An important role for 

α7nAChR in peripheral systems seems to be as a modulator of inflammatory responses, 

where activation of the receptor prevents release of cytokines such as TNFα, IL-6, IL-8 and 

high mobility group B protein-1 (HMGB1) (de Jonge and Ulloa, 2007; Wang et al., 2003). 

This response requires STAT3 protein expression in macrophages (Pena et al., 2010), and 

the Ly-6 protein family in keratinocytes (Chernyavsky et al., 2010). Additional sites of this 

ubiquitous receptor include in the skin (Ortiz and Grando, 2012), bone marrow (Pinheiro et 

al., 2011), fibroblast-like synoviocytes (van Maanen et al., 2009), and sperm (Son and 

Meizel, 2003). The wide expression of α7nAChR in neuroendocrine tissues suggests that 

Ca++ entry through this receptor may modulate a large variety of functions in the organism.

2.1.3. Expression in Development—The α7nAChR is expressed early in hippocampal 

development in the mouse at Embryonic Day 13 (E13) and peaks in the neonatal period at 

Postnatal Day 5 (P5) (Adams et al., 2002), suggesting that it influences early processes such 

as neuronal migration, dendritic formation and pruning (Aramakis et al., 2000; Catone and 

Ternaux, 2003; Morley and Mervis, 2013). Expression parallels the development of calcium 

binding proteins, probably because overexpression of Chrna7 before these proteins are 

expressed is toxic (Berger et al., 1998).

The early switch of chloride channels, regulating the change of positive to negative 

stimulation and accompanied by down regulation of NKCC1 and up regulation of KCC2, is 

controlled by the expression of α7nAChR (Liu et al., 2006). The switch does not occur in 

murine models with decreased Chrna7 expression.

Less is known about the localization of CHRNA7 gene expression in human development. 

Nicotinic receptors, including α7nAChR, are present in human prenatal brain and spinal 

cord at 4–6 weeks gestation, comparable to that in rodents based on hippocampal 

development (Hellstrom-Lindahl and Court, 2000). CHRNA7 mRNA declines with age. In 
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adult postmortem brain, CHRNA7 mRNA and protein are expressed in most brain regions, 

with highest expression in nuclei involved in cognitive processing (Breese et al., 1997a). 

The developmental gene expression switch from NKCC1 to KCC2, described above, that 

regulates the inhibitory effects of GABA is impaired in schizophrenic individuals (Arion 

and Lewis, 2010; Morita et al., 2014; Tao et al., 2012). In humans the role of α7nAChR is 

likely to be important for competent development of both synaptic and peripheral 

mechanisms.

2.2 Regulation of Human CHRNA7

2.2.1 Regulation by Nicotine—It has been known since 1983 that chronic exposure to 

nicotine increases the number of high-affinity nicotinic receptors. In human brain, this is 

measured by [3H]-nicotine or [3H]-epibatidine binding (Breese et al., 1997b; Perry et al., 

1999), or by positron emission tomography scanning using the α4β2* nAChR ligand 2-

[18F]fluoro-A-85380 (Brody et al., 2013). As in rodents, this “up regulation” occurs in 

humans in a dose-dependent manner in which heavier smokers have much higher levels of 

[3H]-nicotine binding, essentially doubling the number of receptors (Breese et al., 1997b). 

[3H]-Nicotine binding is also detected in polymorphonuclear cells (PMN) isolated from 

human blood, where a similar up regulation in the number of receptors is found in smokers 

and the binding is also dose dependent (Benhammou et al., 2000). In schizophrenic smokers, 

high-affinity nicotine binding does not increase in postmortem brain (Breese et al., 2000), or 

in leukocytes (Leonard, 2014).

The mechanism for up regulation by nicotine in rodent brain is thought to occur at the 

protein level rather than the transcriptional level (Henderson and Lester, 2014; Pauly et al., 

1991). While nicotine binding may promote protein stabilization, there is evidence that 

nicotine binding in the endoplasmic reticulum may act as a pharmacological chaperone to 

bring receptors out of the endoplasmic reticulum, eventually increasing function and 

receptor binding at the plasma membrane (Kuryatov et al., 2005; Lester et al., 2009).

As in rodents, the human α7nAChR is less sensitive to up regulation by nicotine than is the 

high-affinity receptor, probably due to the increased IC50 (Marks et al., 1986). While high-

affinity nicotine binding is almost doubled in hippocampus of smokers [125I]-α-

bungarotoxin binding, specific for α7nAChRs, is increased only in very heavy smokers 

(Breese et al., 2000).

Nicotine intake in humans results in changes in hippocampal gene expression of more than 

200 genes (Mexal et al., 2005). Both NR2A and NR2B NMDA receptor subunits are up 

regulated in postmortem brain of smokers, as are other genes in the NMDA postsynaptic 

density. Some of the changes in smokers appear to be permanent (Hope et al., 2007). 

Regulation of gene expression by smoking is different in schizophrenic patients (Mexal et 

al., 2005). While many genes are up or down regulated in a similar manner to control 

subjects, more than 75 genes are differentially regulated in patients. One of these genes is 

CHRNA7. Expression of both mRNA and protein for CHRNA7 is low in schizophrenic non-

smokers, compared to controls, but is brought to control levels in smokers (Mexal et al., 

2010). Schizophrenic smokers, thus, appear to express equivalent α7 protein to that in 

control smokers. However, schizophrenics have 50% less [125I]-α-bungarotoxin binding in 
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hippocampus (Freedman et al., 1995), in cortex (Guillozet-Bongaarts et al., 2014; Marutle et 

al., 2001), and in the reticular nucleus of the thalamus (Court et al., 1999). These results 

suggest there may be aberrant assembly or trafficking of receptors to neuronal membranes in 

schizophrenic patients.

2.2.2. Regulation by Transcriptional Mechanisms—Promoter polymorphisms have 

been identified in CHRNA7. In a proximal promoter of 300bp, immediately upstream of the 

translation start site, 21 polymorphisms are known (Leonard et al., 2002), most of which 

decrease transcription in an in vitro assay. This is a large number of polymorphisms for such 

a small DNA fragment, considering that the average mutation rate is 1 in 108 nucleotides per 

generation (Nachman and Crowell, 2000), and promoter sequence is usually conserved. 

CHRNA7 promoter mutations are associated with schizophrenia and with sensory processing 

deficits (Leonard et al., 2002).

The CHRNA7 proximal promoter can also be methylated, which decreases transcription 

(Canastar et al., 2012). In SHEP cells, a human permanent neuroblastoma cell line 

commonly used in neuroscience research (Biedler et al., 1978), the CHRNA7 promoter is 

heavily methylated, preventing expression of this gene. Further, in human tissues, CHRNA7 

mRNA levels are correlated with the extent of promoter methylation (Canastar et al., 2012).

The AP2-α gene has been identified as a potent repressor of CHRNA7 transcription (Finlay-

Schultz et al., 2011). AP-2α is a transcription factor that binds in the proximal promoter of 

CHRNA7.

The neuregulin gene, NRG1, regulates CHRNA7 transcription; polymorphisms in the 

promoter region of NRG1 are associated with levels of CHRNA7 mRNA (Mathew et al., 

2007).

2.2.3. Regulation of Function—Although α7nAChR generally assemble as homomers, 

a heteromeric α7 receptor containing β2 subunits has been reported in human basal forebrain 

(Liu et al., 2009). This heteromer has slower kinetics with nicotinic receptor agonists and is 

inhibited by oligomeric amyloid beta (Aβ1-42), suggesting the heteromer might be involved 

in decreased cholinergic function in Alzheimer’s disease. Binding of amyloid may increase 

the trafficking of α7nAChR to the plasma membrane, inducing a hyperexcitability and/or 

excitotoxity (Liu et al., 2013).

The tryptophan metabolite kynurenic acid, an NMDA receptor antagonist, decreases 

function of α7nAChR and increases expression of high-affinity nicotinic receptors (Hilmas 

et al., 2001). Schizophrenic patients have higher levels of kynurinine (Erhardt et al., 2001; 

Schwarcz et al., 2012), which could disrupt cognitive and sensory processes (Albuquerque 

and Schwarcz, 2013; Pocivavsek et al., 2012).

There is evidence for regulation by neurosteroids (Bullock et al., 1997). Steroids appear to 

be non-competitive antagonists, binding in the channel of the receptor (Grun et al., 1995). 

Chronic corticosterone treatment in adrenalectomized mice reduces [125I]-α-bungarotoxin 

binding and auditory gating in C3H mice (Stevens et al., 2001). Other compounds, including 

antidepressant drugs such as fluoxetine and bupropion also bind in the channel of 
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α7nAChR, resulting in inhibition (Fryer and Lukas, 1999a, b). Functional promoter 

mutations that decrease CHRNA7 transcription are associated with a decreased cortisol 

response to a blood draw stressor (Sinkus et al., 2010). These results suggest that regulation 

of α7nAChR by steroids is likely to be important for the role of this receptor in infection and 

stress responses (Rosas-Ballina and Tracey, 2009).

The peptide product of the CHRFAM7A gene also regulates function of α7nAChRs, as 

discussed in the Section 3.

3. The Duplicated Alpha 7 Gene, CHRFAM7A

As described in Section 1, The CHRNA7 gene was partially duplicated relatively late in 

evolutionary history, forming a new gene, CHRFAM7A, mapping 1.6 Mb centromeric to the 

parent gene. As a recent discovery, much less is known about the duplication.

3.1 Localization and Expression of the CHRFAM7A Gene

The CHRFAM7A gene is expressed in both human brain and in the periphery. CHRFAM7A 

mRNA represents approximately 10–20% of the α7 sequence in the mRNA of human brain 

(de Lucas-Cerrillo et al., 2011; Gault et al., 1998). Most of the transcripts begin in exon D 

and contain only sequence from exons D, C, B, and A. Rare transcripts contain exon E or 

begin in exon F or G.

CHRFAM7A is transcribed efficiently, but is translated poorly. Compared to translation of 

CHRNA7 mRNA, translation of CHRFAM7A mRNA occurs with a 5% efficiency (Araud et 

al., 2011; Wang et al., 2014). Putative translation start sites are shown in Figure 3, and 

amino acid sequences of the peptides in Figure 4. In silico analysis of the CHRFAM7A 

mRNA suggests that translation from the AUG codon in exon B results in CHRNA7 

sequence from amino acid 117 (Figure 3B.1). The translated peptide subunit, dupα7, would 

be missing one glycosylation site, but retain the cysteine bridge and vicinal cysteines of the 

agonist binding site (Figure 4B). If the 2bp deletion in exon 6 is present, a translational start 

in exon B would lead to a truncated peptide (Figure 3B.2). However, there are two AUG 

codons in exon 6 (Figure 2B.3). It is, thus, likely that translation starts from one of these 

codons, resulting in a peptide that is out of frame for either 5 or 12 amino acids (Araud et 

al., 2011). Then the 2bp deletion would change the reading frame back to that of CHRNA7 

(Figure 3B.3). This peptide, dupΔα7, would be missing all of the glycosylation sites and the 

cysteine bridge (Figure 4C). Assembly of only one dupα7 subunit with four α7 subunits 

would remove two of the five agonist binding sites (Figure 4D).

3.2 Function of the CHRFAM7A Gene

3.2.1 The CHRFAM7A and CHRFAM7AΔ2bp Gene Products, dupα7 and 
dupΔα7 Assemble with α7 Subunits—Assembly of the chimeric gene products dupα7 

and dupΔα7 with α7 subunits to form the receptor (α7dupα7*) was studied utilizing Förster 

fluorescence energy transfer (FRET) (Wang et al., 2014). FRET was measured with an 

acceptor photobleaching method, previously adapted for nAChR subunits (Drenan et al., 

2008; Nashmi et al., 2003), and with a fluorescent lifetime imaging technique newly applied 

to nAChRs (Wang et al., 2014). Positive FRET is detected only when subunits are <12 nM 
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apart. Several fluorescent moieties were cloned into the large cytoplasmic loop portion of 

the genes. After transfection of N2A cells with either dupα7 or dupΔα7, and α7, FRET 

measurements show that the duplicated and WT subunits are in close proximity and likely 

assemble together (Wang et al., 2014). Competition with unlabeled subunits confirmed the 

result. The stoichiometry is not yet known. Interestingly, FRET measurements show that the 

CHRFAM7A gene products, dupα7 and dupΔα7, also assemble with α4 and α3 nicotinic 

receptor subunits.

Electrophysiological experiments utilized the substituted cysteine accessibility mutagenesis 

technique (Akabas et al., 1994; Akabas et al., 1992). A dupα7 or dupΔα7 subunit, Cys-

mutated in the M2 region, was coexpressed with α7. As a result, ACh responses were 

decreased by alkylation of the Cys residue with ethylammonium methanethiosulfonate 

(MTSEA). This shows that dupα7 co-assembles with native α7 subunits to form functional 

nAChRs; likewise for dupΔα7 subunits. Functional coassembly is likely possible if only a 

single dupα7 or dupΔα7 subunit is present in the pentamer (dupα7:α7 or dupΔα7:α7 subunit 

molar ratio < 1)(Wang et al, 2014). Inspection of Figure 4D indicates that incorporation of 

two adjacent dupα7 or dupΔα7 subunits would decrease the number of agonist binding sites 

in the pentamer to only two; and if the two dupα7 or dupΔα7 subunits are non-adjacent, 

only a single binding site survives. Earlier experiments show that α7nAChRs are poorly 

activated with only one or two of the binding sites occupied (Murray et al., 2012).

3.2.2. The Duplicated Gene Products are Dominant Negative Regulators of 
α7nAChR Function—The CHRFAM7A gene product, dupα7, was identified in 

lymphocytes but does not exhibit acetylcholine or nicotine binding when expressed alone 

(Villiger et al., 2002). Expression of α7 and dupα7 in a 1:1 molar ratio in oocytes resulted in 

a decrease of acetylcholine-stimulated current by more than 30% (Araud et al., 2011; de 

Lucas-Cerrillo et al., 2011), suggesting that the CHRFAM7A gene product (dupα7) is a 

dominant-negative regulator of ion channel function. The dupΔα7 subunit, containing a 2bp 

deletion in exon 6, is a more potent inhibitor than the wild-type dupα7 subunit (Araud et al., 

2011). Thus, the number of copies and mutation status of CHRFAM7A can regulate 

CHRNA7 function.

Binding of [125I]-α-bungarotoxin to the α7dupα7* receptor was also decreased, compared to 

oocytes expressing only CHRNA7 (Araud et al., 2011). It is not known whether the 

decreased toxin binding is due to sequestration of the receptor in the endoplasmic reticulum 

or because two [125I]-α-bungarotoxin binding sites are lost for each dupα7 or dupΔα7 

subunit incorporated in the α7dupα7* heteromer (Figure 4D). The ratio of α7 to dupα7 and 

the presence of the 2bp deletion (dupΔα7) is, therefore, important for evaluating the overall 

function of α7nAChR in human patients.

3.3 Regulation of the CHRFAM7A Gene

A promoter for the CHRFAM7A gene has not been characterized, but may contain exon D, 

which has Sp-1 and AP2α binding sites. Promoter investigation in CHRFAM7A is 

complicated by a gene inversion that is present in alleles containing the 2bp deletion in exon 

6 (CHRFAM7AΔ2bp; dupΔα7)(Flomen et al., 2008). Regulatory regions may differ for this 
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allele, present in 42% of Caucasian subjects. Further, long distance regulation for both 

CHRNA7 and CHRFAM7A has recently been reported. Chromosome conformation capture 

on chip (4C) analysis was utilized to show genomic interaction of DNA sequence at 

chromosome 15q11.2 with both CHRFAM7A and CHRNA7 at 15q13.3 (Yasui et al., 2011).

Very little is known about the effects of nicotine on the CHRFAM7A gene. In macrophages 

1μM nicotine down regulates CHRFAM7A mRNA by approximately 50% (de Lucas-

Cerrillo et al., 2011). A quantitative determination of CHRFAM7A mRNA levels in primary 

lymphocytes from control and schizophrenic smokers and non-smokers is shown in Figure 

5. In human lymphocytes from non-mentally ill control subjects, CHRFAM7A mRNA levels 

are not significantly decreased by nicotine, as is seen in macrophages. However, 

schizophrenic individuals have significantly more CHRFAM7A mRNA than do controls and 

smoking does not down regulate the higher mRNA levels in patients. CHRFAM7A mRNA is 

also up regulated in the prefrontal cortex (PFC) of schizophrenic patients and the up 

regulation is not changed in schizophrenic smokers (Dr. Barbara Lipska, NIMH, personal 

communication). Thus, schizophrenic patients may have increased levels of CHRFAM7A 

expression in multiple central and peripheral tissues that are not affected by smoking.

The CHRFAM7A gene product, dupα7, is a dominant negative regulator of α7nAChR 

function and results in decreased binding of [125I]-α-bungarotoxin to the heteromeric 

receptor α7dupα7* (Araud et al., 2011). Therefore, increased expression of the CHRFAM7A 

gene in schizophrenic individuals may account for the decreased [125I]-α-bungarotoxin 

binding seen in these patients. Dupα7 and dupΔα7 also assemble with α4 and α3 subunits 

(Wang et al., 2014). It is possible that the increased expression of CHRFAM7A in 

schizophrenics might also account for the failure to up regulate nicotine binding to high 

affinity receptors (Breese et al., 2000).

In the immune system, infection regulates levels of CHRFAM7A mRNA. 

Lipopolysaccharide (LPS) treatment of the monocytic cell line, THP-1, decreases 

transcription of CHRFAM7A (Benfante et al., 2011). This would increase the function of 

α7nAChRs and decrease levels of cytokines (de Jonge and Ulloa, 2007; Pavlov et al., 2009).

Changes in expression of CHRFAM7A and CHRFAM7AΔ2bp may, thus, be critical for 

multiple functions in human subjects.

4.0 Mutation in the CHRNA7/CHRFAM7A gene cluster

Mutation screening in both of these genes was done in mRNA as there is more than 99% 

conservation in the duplicated CHRNA7 exons 5-10 (Gault et al., 2003).

4.1 Mutation in CHRNA7

An mRNA screen in 300 schizophrenics and control subjects found only a rare mutation in 

the coding region of the CHRNA7 gene and none of these were associated with 

schizophrenia (Gault et al., 2003). The proximal promoter contains a large number of 

polymorphisms, which are associated with schizophrenia and also with the P50 auditory 

gating deficit (Leonard et al., 2002). Promoter mutation generally down regulates 
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transcription of the CHRNA7 gene. A polymorphism 1830bp upstream in the 5′-regulatory 

region (not duplicated) of CHRNA7 (rs3087454) is strongly associated with schizophrenia 

(Stephens et al., 2009). This same SNP is associated with improvement in the fMRI default 

network with an α7nAChR partial agonist, DMXB-A (Tregellas et al., 2011), and with 

normal infant P50 gating following perinatal choline administration (Ross et al., 2013). 

These results suggest that rs3087454 can be used successfully in pharmacogenomics studies.

4.2 Mutation in CHRFAM7A

In the CHRFAM7A gene, a 2bp deletion in exon 6 was found (Gault et al., 1998). This allele, 

CHRFAM7AΔ2bp, is present much more frequently in Caucasian individuals (42%) than in 

African Americans (14%) and is significantly associated with schizophrenia (Sinkus et al., 

2009). The 2bp deletion is associated with the P50 deficit (Flomen et al., 2013; Raux et al., 

2002), with poor episodic memory (Dempster et al., 2006), and is inversely associated with 

idiopathic generalized epilepsy (Rozycka et al., 2013). The 2bp deletion in CHRFAM7A is 

found less frequently in individuals with a CHRNA7 promoter mutation, and is in linkage 

disequilibrium with a 3bp intronic insertion in CHRNA7 exon 7, -11insGTT, the latter of 

which might lead to alternative splicing (Gault et al., 2003; Rozycka et al., 2013). 

CHRFAM7AΔ2bp (dupΔα7) is a more potent dominant negative regulator of α7nAChR 

function than the normal copy, CHRFAM7A (dupα7) (Araud et al., 2011).

5.0 Copy Number Variation in CHRNA7 and CHRFAM7A

CHRFAM7A varies in copy number; some individuals have only one copy of CHRFAM7A 

and a rare subject has no copies. Copy number of the CHRNA7 gene is not as variable; 

deletion and duplication are rare. We developed a copy number assay for alleles of 

CHRFAM7A, utilizing real-time quantitative PCR and exon-specific primers (Flomen et al., 

2006; Sinkus et al., 2009). Table 1 shows copy number data for the CHRNA7 gene (7) and 

the CHRFAM7A gene (7A) in 772 individuals, 322 control subjects and 450 schizophrenics. 

Copy number variations are found in both cohorts. The most common genotype is two 

copies of each gene, 7(2)/7A(2) (78%). Approximately 20% of individuals have only one 

copy of CHRFAM7A, and only 1% have no copies. Other subjects (3%) have extra copies of 

CHRNA7 and/or CHRFAM7A. There are no significant differences in copy number in the 

schizophrenic patients in this cohort.

Deletions involving the CHRNA7 and CHRFAM7A genes are rare but quite strongly 

associated with schizophrenia (Stefansson et al., 2008; Stone et al., 2008)(Table 2). The 

CHRNA7 gene is deleted in these cases but the CHRFAM7A gene is usually present, leaving 

the patient with only one copy of CHRNA7 and two copies of the dominant-negative 

regulatory gene, CHRFAM7A.

Similar and rare deletions and duplications in this same region have been reported in mental 

retardation, autism, seizures, and bipolar disorder (Masurel-Paulet et al., 2010). Rare, large 

duplications of 15q13.3 are found in ADHD (Williams et al., 2012b). In all of these reports, 

the large deletions and duplications are rare, but strongly associated with disease. There are 

six repetitive regions on Chromosome 15 identified as breakpoint regions (BP) in Prader-

Willi Syndrome (Mewborn et al., 2001; Miller et al., 2009). Approximately 20% of Prader-
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Willi patients exhibit psychoses (Boer et al., 2002; Vogels et al., 2004). Deletions found in 

schizophrenia and other mental disorders involve BP4 and BP5 (Mewborn et al., 2002), 

which contain the CHRNA7/CHRFAM7A gene cluster.

Mapping of the chromosomal aberrations in most of these studies generally do not make it 

clear whether both the CHRNA7 and CHRFAM7A genes are affected; they are only 1.6Mb 

apart. Since the CHRFAM7A gene product, dupα7, inhibits α7nAChRs, the number of 

CHRFAM7A copies remaining could have an important effect on function of α7nAChRs in 

these subjects.

6.0 Genetics of CHRNA7 and CHRFAM7A in Mental Illnesses

The possible polymorphisms that can be used for genetic studies in these two genes are 

limited and complex. The CHRNA7 proximal promoter (not duplicated) is polymorphic with 

21 known mutations (Leonard, 2014; Leonard et al., 2002), most of which decrease 

transcription, suggesting that heterogeneity at this locus is an important consideration. In 

initial studies, we did find association of a single promoter SNP at −86C/T to schizophrenia, 

but the association was stronger for grouped functional variants both to schizophrenia and to 

the P50 deficit (Leonard et al., 2002).

The genetic association of most of the CHRNA7 gene with mental disorders is complicated 

by the partial duplication of this gene (Gault et al., 1998). Exons 5-10 of the parent gene are 

duplicated, incorporated in a new, expressed gene, CHRFAM7A, mapping 1.6Mb from 

CHRNA7. The duplicated sequence in CHRFAM7A is 99.9% identical to that in CHRNA7. 

Therefore, markers in exons 5-10 cannot be correctly used for genetic studies unless they 

have been mapped. The CHRNA7 gene does have two very large introns (introns 2 and 4). 

Intron 2 is not duplicated and much of intron 4 is not duplicated. SNPs in this part of the 

gene can be queried. However, the remaining half of the gene cannot be examined in the 

newer high-throughput genetic studies such as genome wide association studies (GWAS). 

This has likely resulted in a gross underestimation of association of the CHRNA7 gene with 

mental illness and other diseases. Table 2 summarizes positive genetic results, utilizing 

mapped markers in non-duplicated regions, for linkage and association of CHRNA7 and 

CHRFAM7A in mental illness.

6.1. Schizophrenia

The expression of α7nAChRs is decreased in multiple regions of postmortem brain in 

schizophrenic subjects, including the hippocampus (Freedman et al., 1995), cortex (Guan et 

al., 1999; Guillozet-Bongaarts et al., 2014; Marutle et al., 2001), and the reticular thalamic 

nucleus (Court et al., 1999).

Genetically, the CHRNA7 gene was initially linked to schizophrenia, utilizing a dinucleotide 

marker, D15S1360, in intron 2. Linkage was more significant to a sensory deficit, the P50 

(LOD = 5.3), which is inherited as an autosomal dominant trait (Freedman et al., 1997). 

Subsequent positive linkage to schizophrenia was found to other microsatellite markers near 

the CHRNA7 gene at 15q13.3 that are not in duplicated regions (Faraone et al., 2004; 

Freedman et al., 2001; Gejman et al., 2001; Kaufmann et al., 1998; Liu et al., 2001; Riley et 
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al., 2000; Tsuang et al., 2001)(Table 2). Other groups did not find linkage to this region 

using similar methodology (Curtis et al., 1999; Iwata et al., 2007; Neves-Pereira et al., 

1998). An association study of 14 candidate genes with schizophrenia in a large European 

cohort failed to find significant association to any of these genes, highlighting the 

importance of heterogeneity in the genetics of mental disorders (Sanders et al., 2008).

A SNP, rs3087454, in the 5′-UT of CHRNA7 was associated with schizophrenia (Stephens 

et al., 2009), with a positive fMRI improvement in the default network with DMXB-A 

treatment in schizophrenia (Tregellas et al., 2011), and with a positive effect on the P50 

sensory processing measure in newborns following perinatal choline administration (Ross et 

al., 2013)(Table 2).

Several studies support the association of the 2bp deletion in exon 6 of the CHRFAM7A 

gene, with schizophrenia (Table 2). Although the 2bp deletion is more common in 

Caucasians, association to schizophrenia is found in both African Americans and Caucasians 

(Sinkus et al., 2009). It is also a risk factor for having a P50 sensory processing deficit 

(Flomen et al., 2013; Raux et al., 2002) and poor episodic memory (Dempster et al., 2006). 

It seems to be protective for some forms of epilepsy (Rozycka et al., 2013). Lai et al. did not 

find association in schizophrenia, but copy number was not determined in this study (Lai et 

al., 2001).

6.2. Bipolar Disorder

The expression of α7nAChRs, as measured by [125I]-α-bungarotoxin binding, appears to be 

increased in hippocampus of bipolar patients (Thomsen et al., 2011). The association of the 

CHRNA7 gene cluster with bipolar disorder has been supported in multiple studies, 

including genetic linkage (Turecki et al., 2000), association (Ancin et al., 2011)(Table 2), 

and in neurobiological studies of the P50 deficit (Leonard et al., 2001; Martin et al., 2007). 

Patients with bipolar disorder have cognitive deficits involving attention that are similar to 

patients with schizophrenia (Ancin et al., 2010b). Bipolar patients with psychotic symptoms 

also have deficits in the sensory processing deficit phenotype, P50 gating (Sanchez-Morla et 

al., 2008). In bipolar type schizoaffective disorder, P50 deficits are associated with the 

presence of grouped functional mutations in the CHRNA7 proximal promoter (Martin et al., 

2007).

SNP analysis in the non-duplicated region of CHRNA7 shows association for decreased risk 

of bipolar disorder with rs6494223 in intron 3 of CHRNA7 (Ancin et al., 2010a), a haplotype 

containing this SNP is associated with impaired attention in the disorder (Ancin et al., 2011). 

A single promoter SNP in CHRNA7, −86C/T, was also genotyped, but no association was 

found. As previously mentioned, the proximal promoter is extremely heterogeneous, 

suggesting that depending on the population single SNPs are not common enough to 

produce positive results.

The presence of the 2bp deletion in the duplicated alpha 7 gene, CHRFAM7A, that 

functionally inhibits α7nAChR function is significantly associated with bipolar disorder as 

well as schizophrenia (Hong et al., 2004)(Table 2). This study also found more than two 

alleles of the 2bp deletion genotype in several bipolar subjects.
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6.3 Autism

Expression of the α7nAChR is decreased in postmortem brain of both Rett syndrome and in 

autism (Ray et al., 2005; Yasui et al., 2011). As in schizophrenia and bipolar disorder, 

auditory evoked responses are abnormal (Dinstein et al., 2012; Orekhova et al., 2008). A 

large genetic linkage study of autism pedigrees in Utah shows significant linkage at 

15q13.1-q14, the locus of the CHRNA7/CHRFAM7A gene cluster (Allen-Brady et al., 2010)

(Table 2). Rare chromosomal deletions in autistic patients have also been reported at this 

locus (Pinto et al., 2010).

These results suggest that common deficits in attention and focus are found in 

schizophrenia, bipolar disorder and autism, and further that the CHRNA7/CHRFAM7A gene 

locus may have an important role.

6.4 Alzheimer’s disease

Alzheimer’s disease (AD) is denoted by cholinergic denervation of the cortex, which most 

severely affects the hippocampus and temporal lobes (Craig et al., 2005). Pathological 

findings include extracellular plaques containing β amyloid (Aβ) peptide and neurofibrillary 

tangles of hyperphosphorylated tau protein (Sivaprakasam, 2006). Aβ1-42 and α7nAChR are 

co-localized in many regions, including the hippocampus, where they associate with pM 

affinity (Wang et al., 2000). In normal brain, soluble Aβ1-42 is present in pM concentrations, 

binding near the agonist site and activating α7nAChR. However, as AD progresses Aβ1-42 

concentrations increase to the nM range, resulting in inactivation of α7nAChRs. For a 

review, see (Parri et al., 2011). A recent report shows that α7 subunits assemble with β2 

subunits to form α7β2* receptors in select regions such as the basal forebrain, where they 

exhibit increased affinity for Aβ1-42 and are up regulated by this peptide (Liu et al., 2009; 

Murray et al., 2012). Binding of high (nM) concentrations of Aβ1-42 induces a 

hyperexitability, which may affect receptor up regulation and development of AD 

symptomatology (Liu et al., 2013). The gene product of CHRFAM7A, dupα7 only found in 

human subjects, also assembles with α7 subunits forming functional α7dupα7* receptors 

(Wang et al., 2014). It will be of interest to investigate possible association of Aβ peptides 

with this newly characterized receptor.

Multiple genetic studies suggest an important role for CHRNA7 in Alzeimer’s disease (Table 

2). A haplotype block in the 5′-UT and intron 2 of CHRNA7, containing rs1514246, 

rs2337506, and rs8027814, is associated with decreased risk of AD (Carson et al., 2008b). 

The same investigative group found association of another CHRNA7 SNP, rs6494223 in 

intron 3, to AD with delusions (Carson et al., 2008a). This latter SNP was also associated 

with impaired attention in bipolar disorder, discussed above (Ancin et al., 2011). 

Acetylcholinesterase inhibitors (AEI), such as galantamine are frequently utilized for 

treatment of AD (Taylor, 1998). Women with AD carrying the polymorphism rs8024987 in 

intron 2 of CHRNA7 show improved cognitive symptoms with AEI (Weng et al., 2013).

Genetics and functional studies, thus, indicate an important role for the CHRNA7/

CHRFAM7A gene group in Alzheimer’s disease.
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7.0 Cognition and the CHRNA7/CHRFAM7A Gene Cluster

Expression and function of α7nAChR affects multiple disorders. All of the mental illnesses 

discussed above are characterized by cognitive disorders, such as attention and working 

memory, in which α7nAChRs are known to play a role. Additional mental disorders in 

which cognition and the α7nAChR have been implicated include Down’s syndrome 

(Deutsch et al., 2014), and Parkinson’s disease (Quik et al., 2013). There are common and 

measurable phenotypes for cognitive deficits that will be useful for drug development 

(Levin, 2013), such as episodic memory (acquisition, consolidation, retrieval), working 

memory (temporary information storage), attention (ability to focus), and sensory processing 

(P50 gating), reviewed in (Wallace and Bertrand, 2013; Wallace and Porter, 2011). 

Medications developed to treat cognitive deficits will likely be helpful across disorders.

8.0 Drug Development

The efficacy of therapeutic agents targeted toward the α7nAChR was first suggested in 

studies of atypical neuroleptics. The atypical antipsychotic, clozapine, although having 

adverse side effects on neutrophil count and also on weight gain, is the most effective 

treatment for schizophrenia to date (McEvoy et al., 2006; Miyamoto et al., 2012). Clozapine, 

has a complex pharmacology with a higher affinity for 5HT2A serotonin receptors than for 

dopamine D2, which partially defines atypicals (Meltzer et al., 1989; Miyamoto et al., 2012). 

Of clozapine’s multiple targets, it is an antagonist of the 5HT3 serotonin receptor, blockade 

of which releases high levels of acetylcholine (Shirazi-Southall et al., 2002). The effects of 

clozapine on the positive symptoms of psychosis, such as hallucinations and delusions, are 

most likely mediated through these three receptors. The IC50 for 5HT3 is 0.9μM in oocytes. 

Clozapine inhibits α7nAChR at higher concentrations, IC50=3.2μM, also in oocytes (Singhal 

et al., 2007). At therapeutic doses in humans (0.5–2μM) clozapine has positive effects on 

sensory processing deficits (Nagamoto et al., 1996) and decreases smoking in schizophrenic 

patients (McEvoy et al., 1995). These results suggest that increased release of acetylcholine 

from the 5HT3 blockade may be targeting nicotinic receptors. In support of this hypothesis, 

other 5HT3 blockers such as olanzapine (Simosky et al., 2003) and tropisetron (Koike et al., 

2005; Zhang et al., 2012) also normalize P50 sensory processing. Currently, little is known 

about the pharmacology of α7nAChRs containing the CHRFAM7A subunit, dupα7. 

Coassembly of α7 and dupα7 results in decreased [125I]-α-bungarotoxin binding (Araud et 

al., 2011) and altered sensitivity to both varenicline and choline (Wang et al., 2014). It is 

reasonable to suggest that clozapine might have an altered affinity for an α7dupα7* receptor 

in humans. Relative effects of clozapine at α7dupα7*, compared to its known effects on 

other receptors, such as 5HT3, might explain the positive outcome for the P50 deficit. For 

example, clozapine may preferentially block α7dupα7* receptors, diverting acetylcholine to 

receptors containing only α7 subunts.

Varenicline, a full agonist at α7nAChR (Mihalak et al., 2006), improves cognition and has 

anti-smoking effects in schizophrenic patients (Smith et al., 2009; Williams et al., 2012a). 

Receptors containing the CHRFAM7A gene products, dupα7 and dupΔα7 have increased 

sensitivity to varenicline, which may account for reports of exacerbation of psychosis in a 
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few cases (Freedman, 2007; Wang et al., 2014). The increased sensitivity also suggests that 

varenicline or related compounds may be helpful for smoking cessation in this disorder.

The first clinical trial of an α7nAChR targeted drug, the partial agonist 3-[(2,4-dimethoxy) 

benzylidene] anabaseine (DMXB-A, GTS-21) (Mahnir et al., 1998) resulted in positive 

results for both sensory processing deficits and attention measures in schizophrenia 

(Freedman et al., 2008; Olincy et al., 2006). The default network in human brain, aberrant in 

schizophrenic patients, shows improvement following treatment with DMXB-A (Tregellas 

et al., 2011). The improvement is associated with a SNP (rs3087454) in the 5′-upstream 

regulatory region of the CHRNA7 gene, previously associated with schizophrenia (Table 2) 

(Stephens et al., 2009). DMXB-A may also be useful in Parkinson’s disease in a 

neuroprotective role (Suzuki et al., 2013).

A new therapeutic approach of treating sensory deficits prenatally with choline, a specific 

agonist of the α7nAChR, is showing some promise. The α7nAChR is expressed very early 

in development, during the time of neuronal migration and synapse formation (Adams et al., 

2002; Broide et al., 1995). Choline is essential for brain development (Zeisel, 2006) and 

levels are often low in pregnancy (Ross et al., 2010). A recent study, utilizing infant sensory 

processing where P50 suppression is measured when the baby is sleeping (Hunter et al., 

2008), shows that prenatal choline during fetal development results in normal P50 measures 

in the infant (Ross et al., 2013). The positive effects are associated with the risk allele for 

SNP rs3087454 in the CHRNA7 gene.

α7nAChR containing the CHRFAM7A gene products dupα7 and dupΔα7 have altered 

sensitivities to choline (Wang et al., 2014). Heteromers of α7dupα7* have an increased 

sensitivity to choline, but heteromers containing dupΔα7 with the 2bp deletion in exon 6 do 

not demonstrate this sensitivity. Thus, CHRFAM7AΔ2bp carriers may have altered 

responses to choline early in development and benefit from dietary choline supplements.

Heteromeric α7dupα7* receptors are also potentiated efficiently by Type II positive 

allosteric modulators (PAMs), such as 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-

isoxazol-3-yl)-urea (PNU-120596), which acts in the transmembrane portion of the receptor, 

affecting the duration of channel opening (Araud et al., 2011; Bertrand et al., 2008). Type II 

PAMs have the advantage that they do not up regulate receptors, as do agonists of the 

α7nAChR (Christensen et al., 2010).

One of the major issues with the development of drugs targeted to the α7nAChR is the 

partial duplication of CHRNA7 to form a chimeric gene, CHRFAM7A, which functions as a 

dominant negative regulator (Araud et al., 2011). The gene duplication is not found in either 

rodents or in primates (Locke et al., 2005) and, thus, no animal models exist to act as 

surrogates for drug testing of an α7dupα7* receptor. While drugs targeted to the α7nAChR 

have and are being developed, it will be difficult to determine efficacious doses in 

preclinical testing until animal models expressing CHRFAM7A can be generated. Testing in 

animals expressing only the Chrna7 gene has likely resulted in fewer positive results in 

some clinical trials, where more optimum dosing might have been effective.
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8.0 Summary and Future Directions

The CHRNA7 gene cluster is ubiquitously expressed in the human body and has roles in 

CNS and peripheral development, cognitive performance, and inflammation. The early 

appearance of α7nAChRs in evolution as an important source of calcium entry into the cell, 

may explain its residual peripheral functions and development of synaptic roles. The 

CHRNA7 gene is the parent of other nicotinic receptors, and of a recent additional 

duplication to form the new gene, CHRFAM7A, only found in humans. Regulation of 

expression and function of the α7nAChR is complex with more than a dozen mechanisms 

known to date, including regulation by its own duplication. Each of these requires further 

investigation, particularly in human cohorts, and studies on the regulation and expression of 

the CHRFAM7A gene have only just begun.

The α7nAChR plays a strong role in cognitive phenotypes, which are aberrant in both 

mental and degenerative diseases. Preclinical drug evaluation will need to address altered 

efficacy of compounds at α7dupα7* receptors, which are not found in current animal 

models. Focus on the development of α7dupα7* receptor agonists and modulators that can 

enhance cognition in human subjects may benefit multiple disorders.
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Highlights

• The α7 nicotinic receptor gene, CHRNA7, is associated with many mental 

illnesses

• CHRNA7 on chromosome 15 was partially duplicated forming a new gene, 

CHRFAM7A

• The gene product of CHRFAM7A, dupα7, assembles with α7 subunits 

(α7dupα7*)

• Dupα7 is a dominant negative regulator of α7nAChR function

• CHRFAM7A is not present in either rodents or primates, only in humans
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Figure 1. 
Duplication of exons 5-10 of the CHRNA7 gene and formation of the chimeric gene 

CHRFAM7A on chromosome 15q13.3. (A) Prior to the duplication of CHRNA7, exons A, B, 

C, and E were duplicated from ULK4 on chromosome 3 and exons D, F, and G were 

duplicated from other regions of chromosome 15. Copies of these exons, A-F (FAM7A) are 

present at least four times on chromosome 15. (B) Subsequently, exons 5-10 of CHRNA7 

and 3′ DNA (~250Kb) were duplicated, interrupting a copy of A-F, FAM7A(1), centromeric 

to CHRNA7 by 1.6Mb forming the chimeric gene, CHRFAM7A. The original orientation of 

CHRFAM7A relative to CHRNA7 was head to head. (C) A 2bp deletion in exon 6 of 

CHRFAM7A is associated with an inversion of the gene. CHRFAM7AΔ2bp is in the same 

orientation as CHRNA7 (tail to head). CHRNA7 exons in red; FAM7A exons in blue; 

CHRNA7 exons in red; CHRNA7 promoter in yellow.
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Figure 2. 
Order and sequence of upstream exons of CHRFAM7A. (A) Genomic order of the upstream 

exons of CHRFAM7A. Diagram is not to scale. The sizes of the exons and the distance 

between are indicated in base pairs. Exons duplicated from the ULK4 gene are shown in 

yellow; those with homology to GOLGA8B are in green; CHRNA7 exon 5 in blue. (B) DNA 

sequence of the 5′ upstream exons of CHRFAM7A with exons indicated by color, below. 

Putative translation start codons are highlighted in fuchsia in exon B for CHRFAM7A and 

exon 6 for CHRFAM7AΔ2bp. The 2bp deletion (TG) in exon 6 is in bold.

Sinkus et al. Page 32

Neuropharmacology. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Translation products from the CHRFAM7A gene. (A) CHRFAM7A mRNA. The most 

common transcript includes only upstream exons D, C, B, and A. (B) Putative translation 

products. (B.1) Normal translated sequence with methionine start codon in exon B. Peptide 

contains 26 aa coded by exons A and B before entering in frame sequence of CHRNA7 at aa 

117. (B.2) A truncated peptide is formed when the 2bp deletion is present if translation 

begins in exon B. The 2bp deletion is in the codon for aa167 and changes the reading frame, 

leading to a stop codon. (B.3) Initiation of translation in exon 6 in the CHRFAM7AΔ2bp 

mRNA. Two methionine codons are present in exon 6. Translation starts lead to either 6 or 

13 aa out of frame before the 2bp deletion in the codon for aa167. After the 2bp deletion, aa 

sequence reverts to that of CHRNA7. MSR, membrane spanning region; aa, amino acid.
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Figure 4. 
Putative topology of CHRNA7, CHRFAM7A, and CHRFAM7AΔ2bp gene products. (A) The 

normal α7 subunit with three glycosylation sites and signal peptide. (B) CHRFAM7A gene 

product (dupα7), missing the signal peptide and two glycosylation sites. (C) 

CHRFAM7AΔ2bp gene product (dupΔα7), missing the signal peptide, all glycosylation sites, 

and the cysteine bridge. (D) Pentameric structure of the normal α7nAChR on the left and a 

pentamer containing the peptide of the duplicated subunit on the right. Note that 

incorporation of a single duplicated gene subunit eliminates two agonist binding sites, which 

are localized at the extracellular subunit interfaces.
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Figure 5. 
Relative expression of CHRFAM7A in primary lymphocytes of control and schizophrenic 

subjects. Real-time PCR was utilized to quantify expression of CHRFAM7A in primary 

lymphocytes from control and schizophrenic, non-smokers and smokers. Fifteen subjects in 

each of the four groups were analyzed. Results were normalized to the housekeeping gene 

SLC9A1, a Na+/H+ antiporter using mean normalized expression (MNESLC) and actual 

efficiencies of each run. Expression of the SLC9A1 gene was not changed in any of the 

groups. Expression of the CHRFAM7A gene was significantly increased in lymphocytes 

from schizophrenic patients. Smoking did not significantly decrease transcription of 

CHRFAM7A in controls. In schizophrenic smokers, the levels of CHRFAM7A mRNA were 

not changed, remaining higher than control smokers. (*, p<0.05; **, p<0.01)
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